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A NOTE ON WEAK SOLUTIONS
TO STOCHASTIC DIFFERENTIAL EQUATIONS

Martin Ondreját and Jan Seidler

We revisit the proof of existence of weak solutions of stochastic differential equations with
continuous coeficients. In standard proofs, the coefficients are approximated by more regular
ones and it is necessary to prove that: i) the laws of solutions of approximating equations form
a tight set of measures on the paths space, ii) its cluster points are laws of solutions of the
limit equation. We aim at showing that both steps may be done in a particularly simple and
elementary manner.
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1. INTRODUCTION

Let b : R≥0×Rm −→ Rm and σ : R≥0×Rm −→ Rm⊗Rn be Borel functions. (Notation
we use is introduced below.) We shall consider a stochastic differential equation

dX = b(t,X) dt+ σ(t,X) dW. (1)

Recall that a (weak) solution to (1) is a triple X = ((Ω,F , (Ft),P ),W,X), where
(Ω,F , (Ft),P ) is a stochastic basis, W an n-dimensional (Ft)-Wiener process and X
an (Ft)-progressively measurable process in Rm such that∫ t

0

{
‖b(s,Xs)‖+ ‖σ(s,Xs)‖2

}
ds <∞

and

Xt = X0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs

for any t ≥ 0 P -almost surely. Let % be a Borel probability measure on Rm, we say that
the solution X satisfies the initial condition

X0 ∼ % (2)
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if X(0)#P = %, that is, X(0) has the law %. We say that the solution X is strong,

provided the process X is (FX0,W
t )-adapted, where (FX0,W

t ) is the augmented canonical
filtration generated by the Wiener process W and the initial condition X0.

If the coefficients b and σ are continuous and satisfy a suitable growth hypothesis,
then a (weak) solution to the problem (1), (2) exists, as was shown by A. V. Skorokhod
already in 1961 ([14]). It is well known that uniqueness may fail even in the deterministic
case; furthermore, it can be shown that strong solutions exist only under additional as-
sumptions. Let us recall the basic structure of standard proofs of Skorokhod’s result (cf.
e. g. [15, Theorem 6.1.7], [11, Theorem IV.2.2], [12, Theorem 5.4.22]). One approximates
the coefficients b and σ by functions bk and σk, k ≥ 1, so that existence of solutions
(Wk, Xk) to

dX = bk(t,X) dt+ σk(t,X) dW, X(0) ∼ %,
may follow from elementary theory of stochastic differential equations and it may be
possible to prove that

i) the set L of laws of the processes Xk, k ≥ 1, on the space of trajectories is relatively
weak∗ compact (equivalently, tight),

ii) cluster points of L are laws of a solution to the limit problem (1), (2).

The first step is simpler, usually one finds uniform estimates of moduli of continuity
of paths of the processes Xk and invokes the Ascoli–Arzelà theorem. Alternatively, it is
possible to use compactness of the Riemann–Liouville operator; such a proof, inspired
by infinite-dimensional stochastic analysis, was developed in [8] and [9] for coefficients
satisfying the linear growth hypothesis or the hypotheses of Khas’minskĭı’s test for non-
explosion, respectively. In the present paper, we propose yet another proof in the latter
case, which relies on the embedding theorem for Slobodeckĭı spaces but otherwise it is
quite simple and straightforward (see Theorem 1.2 and Corollary 1.3 below).

The second step is more challenging. We have

Xk(t) = Xk(0) +

∫ t

0

bk(s,Xk(s)) ds+

∫ t

0

σk(s,Xk(s)) dWk(s)

and the main problem is to show that∫ ·
0

σk(s,Xk(s)) dWk(s) −→
k→∞

∫ ·
0

σ(s,X(s)) dW (s) (3)

in law for some Wiener process W and a process X which is a limit in law of Xk’s.
Albeit results providing sufficient conditions for (3) to hold are known (see e. g. [13] for
a survey and references), it seems that it is not easy to apply them to a construction of
weak solutions. A possible way round is the following: set

Mk = Xk −Xk(0)−
∫ ·
0

bk(s,Xk(s)) ds,

then Mk is a continuous local martingale with a tensor quadratic variation

〈〈Mk〉〉 =

∫ ·
0

σk(s,Xk(s))σ∗k(s,Xk(s)) ds.
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Since the formulae for Mk and 〈〈Mk〉〉 involve only Lebesgue integrals, recalling that
(bk, σk) converge to (b, σ) and the sequence {Xk} convergent in law may be represented
(on another stochastic basis) by a sequence {X̃k} convergent almost surely (by the
Skorokhod representation theorem, see e. g. [7, Theorem 11.7.2]) it is possible to show
that

M = X̃ − X̃(0)−
∫ ·
0

b(s, X̃(s)) ds

is a continuous local martingale with

〈〈M〉〉 =

∫ ·
0

σ(s, X̃(s))σ∗(s, X̃(s)) ds.

The theorem on integral representation of martingales (see e. g. [11, Theorem II.7.1’])
yields now a Wiener process W̃ such that

M =

∫ ·
0

σ(s, X̃(s)) dW̃ (s),

thus (W̃ , X̃) is the weak solution sought after. (If one works with a solution to the
martingale problem instead of a weak solution, then the integral representation theo-
rem is hidden in the proof of equivalence of these two notions; moreover, Skorokhod’s
representation theorem may be sometimes avoided, e. g. for bounded coefficients.) In
the paper [8], wishing to make the proof much more elementary, we eliminated both
the integral representation theorem (via a trick coming from the theory of stochastic
wave maps) and, more importantly for the present paper, the Skorokhod representation
theorem using (virtually) results on preservation of the martingale property under con-
vergence in law (cf. [5] for a survey of such results). Now we aim at making a step further
and to prove (3) directly. (We were inspired in part by the paper [1], where a proce-
dure involving (an analogue of) (3) is used to construct a weak solution to a stochastic
Navier–Stokes equation, but in conjunction with the Skorokhod representation theorem;
see also [6, Lemma 2.1] which is a strengthened version of the basic trick from [1].) The
core of our approach is the following observation: set γε = ε−11(0,ε) and denote by ∗
the convolution. We replace the integral∫ ·

0

σk(s,Xk(s)) dWk(s)

with ∫ ·
0

γε ∗ σk(·, Xk(·))(s) dWk(s) (4)

and note that (4) may be easily expressed as a Lebesgue integral (see Lemma 2.3), hence
it is straightforward to pass to the limit k → ∞ and the proof may be completed by
taking the limit ε ↓ 0. That the limit process is the desired one can be checked in a
simple way using essentially the Lenglart inequality (see Theorem 1.1 and its proof).

The proof of Theorem 1.1 has an additional merit: it enables us to implement in
a very straightforward manner a procedure proposed in [10] to obtain a strong solution
provided pathwise uniqueness holds for (1), (2) (see Remark 1.4).
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Notation

IfX and Y are metric spaces, we denote by C (X;Y ) the space of all continuous mappings
from X to Y and by C 0,β(X;Y ) its subspace of β-Hölder continuous functions. We write
C (X) instead of C (X;R) and denote by Cb(X) the subspace of bounded functions from
C (X) equipped with the sup-norm. The space C (R≥0;Rn) will be endowed with the
topology of locally uniform convergence, which turns it into a Polish metric space. Let
P(X) stand for the space of all Borel probability measures on X, this space inherits the
weak∗ topology from Cb(X)∗; a limit with respect to this topology will be denoted by
w*-lim. (In probability theory, this topology is usually called weak, but we adhere to the
functional analytic terminology here.) If µ ∈P(X) and h : X −→ Y is a Borel mapping
we denote by h#µ the image of the measure µ under h, that is, h#µ(B) = µ(h−1B)
for all Borel sets B ⊆ Y . We shall write ν -limj→∞ fj = f if measurable functions fj
converge to f in probability on a probability space (N,N , ν).

The space Rd ⊗ Rl is identified with the space of all linear mappings from Rl to Rd

and endowed with the Hilbert-Schmidt norm ‖A‖ =
(

Tr(AA∗)
)1/2

.
If h : R≥0 −→ Y is a function on R≥0, we denote by πth its restriction to the interval

[0, t], t ∈ R≥0. In the sequel, any function q defined on R≥0 is tacitly extended to R by
setting q = 0 on R<0.

Let V be a function having two continuous derivatives on Rm (in symbol, V ∈
C 2(Rm)), by DV and D2V we denote the first and second Fréchet derivative of V ,
respectively. Analogously, if V is a function on R≥0 × Rm and V (t, ·) ∈ C 2(Rm), the
first and second Fréchet derivatives of V (t, ·) are denoted by DxV , D2

xV , respectively.

Main results

Now we may state our theorems, but let us stress again that these results are well
known, the novelty of our approach lies in simplified proofs. The first of them deals with
identification of a limit of a sequence of solutions to stochastic differential equations.

Theorem 1.1. Let Fk : R≥0×Rm −→ Rm and Gk : R≥0×Rm −→ Rm⊗Rn, k ≥ 0, be
Borel functions. Assume:

(A1) Fk(t, ·) and Gk(t, ·) are continuous on Rm for any k ≥ 0 and t ∈ R≥0,

(A2) for any T,R ≥ 0,∫ T

0

sup
k≥0

sup
‖x‖≤R

{‖Fk(t, x)‖+ ‖Gk(t, x)‖2
}

dt <∞, (5)

(A3) for any t ≥ 0,

lim
k→∞

Fk(t, ·) = F0(t, ·), lim
k→∞

Gk(t, ·) = G0(t, ·) locally uniformly on Rm,

(A4) for any k ≥ 1 there exists a weak solution ((Ωk,Fk, (F k
t ),Qk),Wk, Xk) to

dX = Fk(t,X) dt+Gk(t,X) dW, (6)
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(A5) {Xk#Qk; k ≥ 1} is a tight set of Borel probability measures on C (R≥0;Rm).

Let % ∈ P(Rm) be a cluster point of {Xk(0)#Qk; k ≥ 1}. Then there exists a weak
solution to the problem

dX = F0(t,X) dt+G0(t,X) dW, X0 ∼ %. (7)

For autonomous equations (whose coefficients do not depend on time) the assumption
(A2) follows from (A1) and (A3). Further, the supremum in (5) may be taken over x ∈
Qm, ‖x‖ ≤ R by (A1), so the integrand is measurable. The solution ((Ω,F , (Ft),P ),W,
X) to (7) constructed in the course of the proof of Theorem 1.1 is such that X#P is a
cluster point of the set {Xk#Qk; k ≥ 1}, as may be checked easily tracing the proof.
Therefore, Theorem 1.1 may be restated in the following way (we content ourselves to
equations with coefficients continuous in both variables for simplicity): Set

Y = C (R≥0 × Rm;Rm)× C (R≥0 × Rm;Rm ⊗ Rn)×P(C (R≥0;Rm))

and endow the first two factors with the topology of locally uniform convergence and
the last one with the weak∗ topology. Given (b, σ) ∈ C (R≥0 × Rm;Rm) × C (R≥0 ×
Rm;Rm ⊗ Rn) we denote by L(b, σ) the set of all measures ν of the form ν = X#Q,
where ((Ω,F , (Ft),Q),W,X) is a solution of (1). Then Theorem 1.1 says that the set
{(b, σ, ν); ν ∈ L(b, σ)} ⊆ Y is closed in Y . (We may replace L(b, σ) with the set of all
measures of the form (W,X)#Q, modifying the space Y accordingly.)

Our second theorem provides a method for checking tightness of laws of solutions to
a family of stochastic differential equations.

Theorem 1.2. Let Fα : R≥0 × Rm −→ Rm and Gα : R≥0 × Rm −→ Rm ⊗ Rn, α ∈ A,
be Borel functions locally bounded uniformly in α ∈ A, i. e.

∀R, T ∈ R≥0 sup
α∈A

sup
0≤t≤T

sup
‖x‖≤R

{
‖Fα(t, x)‖+ ‖Gα(t, x)‖

}
≡ κR,T <∞. (8)

Let ν ∈ P(Rm), suppose that for every α ∈ A there exists a solution ((Ωα,Fα, (Fα
t ),

Qα),Wα, Xα) to the problem

dX = Fα(t,X) dt+Gα(t,X) dW, X(0) ∼ ν.

Assume further that {Xα; α ∈ A} are bounded in probability on compact intervals
uniformly in α ∈ A, i. e.

∀T ∈ R≥0 ∀ε > 0 ∃R ∈ R≥0 sup
α∈A

Qα

{
sup

0≤t≤T
‖Xα(t)‖ > R

}
≤ ε. (9)

Then {Xα#Qα; α ∈ A} is a tight set of Borel probability measures on C (R≥0;Rm).

We assume that all equations have the same initial condition only for simplicity,
(9) implies that {Xα(0)#Qα;α ∈ A} is a tight set and this is sufficient for the proof.
Plainly, (9) is a crucial assumption of Theorem 1.2; it need not be clear how to check
it for particular families of stochastic differential equations. However, it can be shown
easily that (9) holds if there exists a suitable Lyapunov function. Namely:
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Corollary 1.3. Theorem 1.2 remains true if instead of (9) it is assumed that there
exists a function V ∈ C 2(Rm) satisfying

(i) V ≥ 0 on Rm,

(ii) lim‖x‖→∞ V (x) = +∞, and

(iii) for any T ≥ 0 there exists a constant c <∞ such that

〈
DV (x), Fα(t, x)

〉
+

1

2
Tr
(
D2V (x)Gα(t, x)G∗α(t, x)

)
≤ c
(
1 + V (x)

)
for all α ∈ A, t ∈ [0, T ], and x ∈ Rm.

Remark 1.4. If pathwise uniqueness holds for (7) and there exists a weak solutions to
this equation, the Yamada-Watanabe theory implies that there exists a strong solution.
Combining the idea of the proof of Theorem 1.1 with a simple yet very useful lemma
due to I. Gyöngy and N. Krylov (see [10, Lemma 1.1]) we may establish existence of
a strong solution in a more elementary way. Namely, varying the proof of Theorem 1.1
we shall prove:

Let the hypotheses (A1), (A2) and (A3) of Theorem 1.1 be satisfied and let % ∈
P(Rm). Assume further:

(A4’) there exist a stochastic basis (G,G , (Gt),Q), a G0-measurable Rm-valued random
variable ψ such that ψ#Q = %, an n-dimensional (Gt)-Wiener process B and

(G ψ,B
t )-progressively measurable processes Zk in Rm, k ≥ 1, such that Zk(0) = ψ

and (G,G , (G ψ,B
t ),Q), B, Zk) solves the problem (6), k ≥ 1,

(A5’) {Zk#Q; k ≥ 1} is a tight subset of P(C (R≥0;Rm)),

(A6) pathwise uniqueness holds for (7) with the initial condition X(0) ∼ %.

Then there exists an m-dimensional (G ψ,B
t )-progressively measurable processes Z such

that Z(0) = ψ Q-almost surely and (G,G , (G ψ,B
t ),Q), B, Z) solves the equation (7).

The Gyöngy–Krylov lemma was applied in [10] to construct a strong solution of a
stochastic differential equation with continuous coefficients for which pathwise unique-
ness holds and there exists a suitable Lyapunov function. We follow exactly the same
pattern of reasoning, but the technicalities of our approach are quite different from those
in [10].

Remark 1.5. The proof of Theorem 1.1 yields also another corollary:

Let ((Ω,F , (Ft),P ),W,X) be the solution to the problem (7) constructed in the
proof of Theorem 1.1, the hypotheses of which are assumed to be satisfied. Let p be
a proper regular version of the conditional probability P (· |X0); denote by (F y

t ) the
completion of the filtration (Ft) with respect to the measure p(y, ·), y ∈ Rm. Then for
%-almost all y ∈ Rm, ((Ω,F , (F y

t ), p(y, ·)),W,X) is a solution to the equation

dX = F0(t,X) dt+G0(t,X) dW, X0 = y.
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Let us recall that a proper regular conditional probability p is defined as a system
(p(y, ·), y ∈ Rm) of probability measures on F such that the function y 7−→ p(y,A) is
Borel measurable for any A ∈ F , p(y, {X0 = y}) = 1 for %-almost all y ∈ Rm, and∫

{X0∈B}

P (A |X0) dP = P (A ∩ {X0 ∈ B}) =

∫
B

p(y,A) d%(y)

for every A ∈ F and Borel set B ⊆ Rm (see e. g. [3, Theorem 10.4.8, Corollary 10.4.9]).
Our result is not surprising, of course, one may found much more general results in

this direction e. g. in [15, Chapter 6], but our proof requires essentially no extra effort;
moreover, whilst in [15] martingale problems are solved, we find weak solutions with the
same driving process W for %-almost all y ∈ Rm.

Example 1.6. We shall indicate how Theorem 1.1 and Corollary 1.3 may be employed
to prove the Skorokhod theorem on existence of solutions to stochastic differential equa-
tions with continuous coefficients. Let us consider the problem (1), (2) assuming that
b : R≥0×Rm −→ Rm, σ : R≥0×Rm −→ Rm⊗Rn are Borel functions, b(t, ·) ∈ C (Rm;Rm),
σ(t, ·) ∈ C (Rm;Rm ⊗ Rn) for any t ≥ 0, % ∈ P(Rm) and there exists a function
V ∈ C 2(Rm) satisfying the hypotheses (i) and (ii) of Corollary 1.3 and such that for
any T > 0 one has〈

DV (x), b(t, x)
〉

+
1

2
Tr
(
D2V (x)σ(t, x)σ∗(t, x)

)
≤ c
(
1 + V (x)

)
(10)

for some constant c < ∞ and all t ∈ [0, T ], x ∈ Rm. A weak solution of (1), (2) is
constructed in two steps.

Step 1. Le us assume that b and σ satisfy, instead of (10), a linear growth hypothesis

sup
0≤t≤T

sup
x∈Rm

‖b(t, x)‖+ ‖σ(t, x)‖
1 + ‖x‖

<∞ for any T > 0. (11)

Let φ be a mollifier, that is, φ ∈ C∞(Rm), φ ≥ 0, the support of φ is contained in the
unit ball of Rm and

∫
Rm φ dx = 1. Set φk(x) = kmφ(kx), x ∈ Rm, and

bk(t, ·) = b(t, ·) ∗ φk, σk(t, ·) = σ(t, ·) ∗ φk, t ≥ 0, k ≥ 1.

Then bk and σk are locally Lipschitz continuous in the space variables and satisfy a
linear growth estimate uniformly in k ≥ 1,

sup
k≥1

sup
0≤t≤T

sup
x∈Rm

‖bk(t, x)‖+ ‖σk(t, x)‖
1 + ‖x‖

<∞ for any T > 0. (12)

Elementary theory of stochastic differential equations implies that the equations

dX = bk(t,X) dt+ σk(t,X) dW, X(0) ∼ %, (13)

k ≥ 1, have solutions (Wk, Xk) and due to (12) the laws of Xk’s are tight by Corollary
1.3 used with the Lyapunov function V : x 7−→ 1 + ‖x‖2. It follows from the properties
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of φ that the assumptions (A1), (A2) and (A3) of Theorem 1.1 are satisfied as well,
hence, under (11), there exists a solution of (1), (2).

Step 2. Suppose now that only (10) holds and set

bk(t, x) =


b(t, x), t ≥ 0, ‖x‖ ≤ k,
b(t, x)

(
2− k−1‖x‖

)2
, t ≥ 0, k < ‖x‖ ≤ 2k,

0, otherwise,

and

σk(t, x) =


σ(t, x), t ≥ 0, ‖x‖ ≤ k,
σ(t, x)

(
2− k−1‖x‖

)
, t ≥ 0, k < ‖x‖ ≤ 2k,

0, otherwise.

Coefficients defined in this way are bounded, so Step 1 shows that the problem (13) has
a solution for any k ≥ 1 and the laws of these solutions form a tight set by Corollary 1.3,
which may be applied with the Lyapunov function V that appears in (10), since it can be
established easily that with this choice of V (and bk, σk) the assumption (iii) of Corollary
1.3 is satisfied. To check that the assumptions (A1), (A2) and (A3) of Theorem 1.1 are
satisfied is straightforward, thus existence of a solution to (1), (2) follows immediately.

2. PROOFS

The following lemma is essentially a variant of the Lenglart inequality, we provide its
simple proof for completeness.

Lemma 2.1. Let M be a continuous local martingale in Rd defined on a stochastic
basis (Ω,F , (Ft),P ), M0 = 0. Then

P
{

sup
t∈[0,T ]

‖Mt‖ > a & 〈M〉1/2T < b
}
≤ b2

a2

for all T ≥ 0 and any a, b > 0.

P r o o f . Choose an arbitrary κ ∈ (0, a) and set

τ = inf{t ≥ 0; ‖Mt‖ ≥ κ}, σ = inf{t ≥ 0; 〈M〉1/2t ≥ b}.

Then

P
{

sup
t∈[0,T ]

‖Mt‖ > a & 〈M〉1/2T < b
}

= P {0 < τ < T, σ ≥ T}

≤ P
{
‖Mτ∧σ∧T ‖ ≥ κ

}
≤ 1

κ2
E‖Mτ∧σ∧T ‖2

=
1

κ2
E〈M〉τ∧σ∧T ≤

1

κ2
E〈M〉σ ≤

b2

κ2
.

(We have used that (Mτ∧·) is a bounded local martingale, hence an L2-martingale.)
Passing κ ↗ a we complete the proof. �



896 M. ONDREJÁT AND J. SEIDLER

The following generalization of the mapping theorem for weak∗ convergence of prob-
ability measures (see e. g. [2, Theorem 2.7]) is surely well known, but since we cannot
find a reference, we include a proof. (A more general result is stated in [4, Proposition
3.2], but without proof; moreover, the version given below may be established in a more
straightforward way.)

Lemma 2.2. Let X and Y be metric spaces. Assume that hn, h : X −→ Y , n ∈ N, are
continuous mappings satisfying

lim
n→∞

hn = h uniformly on compact sets in X

and µn, µ ∈P(X), n ∈ N, are such that

w*-lim
n→∞

µn = µ (14)

and the set {µn; n ∈ N} is tight. Then

w*-lim
n→∞

hn#µn = h#µ. (15)

In particular, for every G ⊆ Y open,

lim inf
n→∞

µn{hn ∈ G} ≥ µ{h ∈ G}. (16)

Note that if X is Polish, tightness of {µn; n ∈ N} follows from (14) by the Prokhorov
theorem.

P r o o f . By the portmanteau theorem, (16) follows immediately from (15). To establish
(15), it suffices to show that

lim
n→∞

∫
X

u ◦ hn dµn = lim
n→∞

∫
Y

udhn#µn =

∫
Y

udh#µ =

∫
X

u ◦ hdµ

for any bounded uniformly continuous function u : Y −→ R (see again e. g. [2, Theorem
2.1]). However,∣∣∣∣∫

X

u ◦ hn dµn −
∫
X

u ◦ hdµ

∣∣∣∣ ≤ ∣∣∣∣∫
X

u ◦ hdµn −
∫
X

u ◦ hdµ

∣∣∣∣
+

∫
X

∣∣u ◦ h− u ◦ hh∣∣ dµn ≡ I1 + I2.

Choose an arbitrary ε > 0. Since u ◦ h ∈ Cb(X), I1 ≤ ε for all n ≥ n0 for some n0 ∈ N
by (14). By the tightness hypothesis, there exists a compact subset K ⊆ X such that

inf
n∈N

µn(K) ≥ 1− ε.

Denote by dY the metric of the space Y . Since u is uniformly continuous, we may
find δ > 0 such that |u(x) − u(y)| ≤ ε whenever dY (x, y) ≤ δ. Further, hn’s converge
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uniformly to h on K, so there exists n1 ≥ n0 such that supK dY (hn, h) ≤ δ for all n ≥ n1.
Consequently,

I2 ≤
∫
K

∣∣u ◦ h− u ◦ hn∣∣ dµn +

∫
X\K

∣∣u ◦ h− u ◦ hn∣∣dµn
≤ ε+ 2 sup

n∈N
µn(X \K) sup

Y
|u|,

hence ∣∣∣∣∫
X

u ◦ hn dµn −
∫
X

u ◦ hdµ

∣∣∣∣ ≤ 2ε
(
1 + sup

Y
|u|
)

for all n ≥ n1, which proves our claim. �

Now we prove a lemma containing the main technical trick of our approach. Prior
to stating the lemma, we have to introduce a suitable approximation to identity. Let
h ∈ L1

loc(R≥0), for any ε > 0 define

Πεh : R≥0 −→ R, t 7−→ 1

ε

∫ t

t−ε
h(r) dr =

(1

ε
1(0,ε) ∗ h

)
(t).

It is well known that Πεh ∈ L2(0, T ) provided h ∈ L2(0, T ), and

‖Πεh‖L2(0,T ) ≤ ‖h‖L2(0,T ), lim
ε→0+

‖Πεh− h‖L2(0,T ) = 0

(see e. g. [16, Proposition 9.15]).

Lemma 2.3. Let X be a progressively measurable stochastic process defined on a
stochastic basis (Ω,F , (Ft),P ) and such that X ∈ L2

loc(R≥0) P -almost surely, W an
(Ft)-Wiener process, and ε > 0. Then∫ t

0

X(s)
W ((s+ ε) ∧ t)−W (s)

ε
ds =

∫ t

0

ΠεX (s) dW (s)

for any t ≥ 0 P -almost surely.

P r o o f . Set

H(t) =

∫ t

0

X(s) ds, t ≥ 0,

then H(· − δ) is a continuous semimartingale for each δ ≥ 0, thus by the product rule
for semimartingales we get

H(t− δ)W (t) =

∫ t

0

H(s− δ) dW (s) +

∫ t

0

X(s− δ)W (s) ds (17)
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for any t ≥ 0 P -almost surely. We shall use (17) choosing first δ = ε and then δ = 0 to
obtain ∫ t

0

X(s)W ((s+ ε) ∧ t) ds = W (t)

∫ t

t−ε
X(s) ds+

∫ t−ε

0

X(s)W (s+ ε) ds

= W (t)[H(t)−H(t− ε)] +

∫ t

ε

X(s− ε)W (s) ds

= W (t)[H(t)−H(t− ε)] +H(t− ε)W (t)−
∫ t

0

H(s− ε) dW (s),

and ∫ t

0

X(s)W (s) ds = H(t)W (t)−
∫ t

0

H(s) dW (s).

Subtracting the second formula from the first we get

1

ε

∫ t

0

X(s)
[
W ((s+ ε) ∧ t)−W (s)

]
ds =

∫ t

0

1

ε

[
H(s)−H(s− ε)

]
dW (s)

and it only remains to note that

1

ε
[H(s)−H(s− ε)] =

1

ε

∫ s

s−ε
X(r) dr = ΠεX(s).

�

Remark 2.4. (i) Applying Lemma 2.1 to the local martingale M =
∫ ·
0
(ΠεX −X) dW

and invoking Lemma 2.3 we obtain

P
{

sup
0≤t≤T

∣∣∣∫ t

0

X(s)
W ((s+ ε) ∧ t)−W (s)

ε
ds−

∫ t

0

X(s) dW (s)
∣∣∣ > a

&

∫ T

0

∣∣ΠεX(s)−X(s)
∣∣2 ds < b2

}
≤ b2

a2
(18)

for any T ∈ R≥0, ε > 0 and a, b > 0.
(ii) Obviously, Lemma 2.3 remains valid if X is an Rm ⊗ Rn-valued progressively

measurable process with ‖X‖ ∈ L2
loc(R≥0) P -almost surely and W is an n-dimensional

Wiener process; the estimate (18) plainly extends to the multidimensional case as well.

P r o o f o f T h e o r e m 1.1. Let us set Ω = C (R≥0;Rm) × C (R≥0;Rn), endow Ω with
the topology of locally uniform convergence (which turns Ω into a Polish metric space)
and denote by (X,W ) the canonical process on Ω, that is,

(X,W )(t) : Ω −→ Rm × Rn, (ζ, ξ) 7−→ (ζ(t), ξ(t)), t ≥ 0.

Let µk = (Xk,Wk)#Qk be the law of (Xk,Wk) on Ω. Since {Xk#Qk; k ≥ 1} is tight
by (A5), the set M = {µk; k ≥ 1} is tight as well. By our hypothesis on %, we may
choose a cluster point P of M such that X(0)#P = %. There exists a sequence in M
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converging to P ; for notational simplicity we shall assume – without loss of generality
– that P = w*-limk→∞ µk. Let (Ft) be the P -augmentation of the canonical filtration
of (X,W ).

First, let us check that W is an (Ft)-Wiener process on (Ω,F∞,P ). Indeed,

W (0)#P = w*-lim
k→∞

W (0)#µk = w*-lim
k→∞

Wk(0)#Qk = δ0,

hence W (0) = 0 P -almost surely. Further, W is an (Ft)-martingale on (Ω,F∞,P ). Fix
0 ≤ s ≤ t arbitrarily, let ϕ : C ([0, s];Rm)×C ([0, s];Rn) −→ R be a bounded continuous
function. Then

(ζ, ξ) 7−→ ϕ(πsζ, πsξ)
[
ξ(t)− ξ(s)

]
is a continuous mapping from Ω to Rm, hence∫

Ω

ϕ(πsX,πsW )
[
W (t)−W (s)

]
dP

= lim
k→∞

∫
Ω

ϕ(πsX,πsW )
[
W (t)−W (s)

]
dµk

= lim
k→∞

∫
Ωk

ϕ(πsXk, πsWk)
[
Wk(t)−Wk(s)

]
dQk

= 0,

as ϕ(πsXk, πsWk) in F k
s -measurable and Wk is an (F k

t )-martingale. Analogously we
can check that W ⊗W − tI is an (Ft)-martingale on (Ω,F∞,P ), thus our claim follows
from the Lévy theorem (see e. g. [12, Theorem 3.3.16]).

Secondly, we aim at proving that the pair (W,X) solves (7). Fix an arbitrary t ∈ R≥0,
let ε > 0 be also fixed for the time being. Define

Hk : Ω −→ Rm, (ζ, ξ) 7−→ ζ(t)− ζ(0)−
∫ t

0

Fk(s, ζ(s)) ds

−
∫ t

0

Gk(s, ζ(s))
ξ((s+ ε) ∧ t)− ξ(s)

ε
ds,

Rk : Ω −→ R, (ζ, ξ) 7−→
(∫ t

0

∥∥ΠεGk(·, ζ(·))(s)−Gk(s, ζ(s))
∥∥2 ds

)1/2
for any k ≥ 0. Using (A1) and (A2) it is easy to check that Hk and Rk are continuous
(hence Borel) mappings on Ω. Further,

Xk(t)−Xk(0)−
∫ t

0

Fk(s,Xk(s)) ds =

∫ t

0

Gk(s,Xk(s)) dWk(s)

Qk-almost surely, k ≥ 1, since (Wk, Xk) solves (6); recall that∫ t

0

Gk(s,Xk(s))
Wk((s+ ε) ∧ t)−Wk(s)

ε
ds =

∫ t

0

ΠεGk(·, Xk(·))(s) dWk(s),
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therefore

Hk(Xk,Wk) =

∫ t

0

{
Gk(s,Xk(s))−ΠεGk(·, Xk(·))(s)

}
dWk(s).

From Lemma 2.1 we get (cf. Remark 2.4)

µk
{
‖Hk(X,W )‖ > a & Rk(X) < b

}
= Qk

{
‖Hk(Xk,Wk)‖ > a & Rk(Xk) < b

}
≤ b2

a2

for all a, b > 0. Since

∣∣Rk(ζ)−R0(ζ)
∣∣ ≤ (∫ t

0

∥∥ΠεGk(·, ζ(·))(s)−ΠεG0(·, ζ(·))(s)
∥∥ds

)1/2
+

(∫ t

0

∥∥Gk(s, ζ(s))−G0(s, ζ(s)
∥∥ds

)1/2
≤ 2

(∫ t

0

∥∥Gk(s, ζ(s))−G0(s, ζ(s)
∥∥ds

)1/2
,

the assumptions (A3) and (A2) of Theorem 1.1 and the dominated convergence theorem
imply that

lim
k→∞

Hk = H0, lim
n→∞

Rk = R0 uniformly on compact subsets of Ω.

From Lemma 2.2 we obtain

P
{
‖H0(X,W )‖ > a & R0(X) < b

}
≤ lim inf

n→∞
µk
{
‖Hk(X,W )‖ > a & Rk(X) < b

}
≤ b2

a2
,

that is

P

{∥∥∥X(t)−X(0)−
∫ t

0

F0(s,X(s)) ds−
∫ t

0

G0(s,X(s))
W ((s+ ε) ∧ t)−W (s)

ε
ds
∥∥∥ > a

&

∫ t

0

∥∥ΠεG0(·, X(·))(s)−G0(s,X(s))
∥∥2 ds < b2

}
≤ b2

a2
(19)

for any ε > 0, a, b > 0. Since

P -lim
ε→0+

∫ t

0

∥∥ΠεG0(·, X(·))(s)−G0(s,X(s))
∥∥2 ds = 0,

we get

P -lim
ε→0+

∫ t

0

G0(s,X(s))
W ((s+ ε) ∧ t)−W (s)

ε
ds = P -lim

ε→0+

∫ t

0

ΠεG0(·, X(·))(s) dW (s)

=

∫ t

0

G0(s,X(s)) dW (s).
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Convergence in probability implies convergence in law, so using (19) and the portman-
teau theorem we arrive at

P

{∥∥∥X(t)−X(0)−
∫ t

0

F0(s,X(s)) ds−
∫ t

0

G0(s,X(s)) dW (s)
∥∥∥ > a

}
≤ b2

a2

for all a, b > 0, thus

X(t)−X(0)−
∫ t

0

F0(s,X(s)) ds−
∫ t

0

G0(s,X(s)) dW (s) = 0

P -almost surely for any t ∈ R≥0, which means that ((Ω,F∞, (Ft),P ),W,X) is a weak
solution of (7). The initial condition X0 ∼ % is satisfied by our choice of P . �

P r o o f o f T h e o r e m 1.2. It is sufficient to prove that {Xα#Qα; α ∈ A} is a tight
set of measures on C ([0, T ];Rm) for any T ≥ 0. (More precisely, measures (πTXα)#Qα,
α ∈ A, are considered, but the simplified notation cannot cause any confusion.) Let us
fix a T > 0 and define

τα,k = inf{t ∈ [0, T ]; ‖Xα(t)‖ ≥ k}

for α ∈ A and k ∈ R≥0, where we set inf ∅ = T . Let us denote by Eα the integral with
respect to the measure Qα. Choose an arbitrary p ∈ (2,∞), we aim at showing that for
any k ≥ 0 there exists a constant Lk, depending only on T , p and k, such that

sup
α∈A

Eα

∥∥Xα(t ∧ τα,k)−Xα(s ∧ τα,k)
∥∥p ≤ Lk|t− s|p/2 (20)

whenever 0 ≤ s ≤ t ≤ T . Indeed, using the Hölder and Burkholder-Davis-Gundy
inequalities and the local boundedness hypothesis (8) we get

Eα

∥∥Xα(t ∧ τα,k)−Xα(s ∧ τα,k)
∥∥p

≤ 2p−1Eα

∥∥∥∥∫ t∧τα,k

s∧τα,k
Fα(u,Xα(u)) du

∥∥∥∥p
+ 2p−1Eα

∥∥∥∥∫ t∧τα,k

s∧τα,k
Gα(u,Xα(u)) dWα(u)

∥∥∥∥p
≤ 2p−1(t− s)p−1Eα

∫ t∧τα,k

s∧τα,k
‖Fα(u,Xα(u)‖p du

+ 2p−1(t− s)
p
2−1CpEα

∫ t∧τα,k

s∧τα,k
‖Gα(u,Xα(u))‖p du

≤ 2p(T p/2 + Cp)κ
p
k,T (t− s)p/2.

Let an ε > 0 be given, we look for a compact set K ⊆ C ([0, T ];Rm) such that

inf
α∈A

Qα{Xα ∈ K} ≥ 1− 2ε.
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By (9) we may find R ∈ R≥0 such that

inf
α∈A

Qα{τα,R = T} ≥ 1− ε.

Take s ∈ ( 1
p ,

1
2 ), then

Qα

{
ω ∈ {τα,R = T};

∫ T

0

∫ T

0

‖Xα(t, ω)−Xα(s, ω)‖p

|t− s|1+sp
dsdt > Γ

}
≤ 1

Γ
Eα1{τα,R=T}

∫ T

0

∫ T

0

‖Xα(t)−Xα(s)‖p

|t− s|1+sp
dsdt

≤ 1

Γ
Eα

∫ T

0

∫ T

0

‖Xα(t ∧ τα,R)−Xα(s ∧ τα,R)‖p

|t− s|1+sp
dsdt

≤ LR
Γ

∫ T

0

∫ T

0

1

|t− s|1+sp−p/2
dsdt

by the Chebyshev inequality and (20). Note that the right-hand side of this estimate is
finite and independent of α ∈ A, so we may find Γ > 0 such that for any α ∈ A there
exists Ω′α ∈ Fα satisfying Ω′α ⊆ {τα,R = T}, Qα(Ω′α) ≥ 1− 2ε and∫ T

0

∫ T

0

‖Xα(t)−Xα(s)‖p

|t− s|1+sp
dsdt ≤ Γ on Ω′α.

Plainly, ∫ T

0

‖Xα(u)‖p du ≤ RpT on Ω′α;

we may assume that Γ ≥ RpT . Denote by K ′ a closed centered ball with radius (2Γ )1/p

in the Slobodeckĭı space W s,p([0, T ];Rm), we showed that Xα(ω) ∈ K ′ for any α ∈ A and
ω ∈ Ω′α. Let 0 < β < s− 1

p , owing to the embedding W s,p([0, T ];Rm) ↪→ C 0,β([0, T ];Rm)

(see e. g. [17, Theorem 2.8.1]) there exists a closed ball K in C 0,β([0, T ];Rm) such that
Xα(ω) ∈ K for any α ∈ A and ω ∈ Ω′α, that is

inf
α∈A

Qα{Xα ∈ K} ≥ 1− 2ε.

Since closed balls in C 0,β([0, T ];Rm) are compact in C ([0, T ];Rm) by the Arzelà–Ascoli
theorem the proof is completed. �

P r o o f o f C o r o l l a r y 1.3. The proof is fairly standard and we only sketch it. Let
T ≥ 0, we shall show that (9) is satisfied. Set U(t, x) = e−ct(1 + V (x)), t ≥ 0, x ∈ Rm,
then

LU(t, x) ≡ ∂U

∂t
(t, x) +

〈
DxU(t, x), Fα(t, x)

〉
+

1

2
Tr
(
D2
xU(t, x)Gα(t, x)G∗α(t, x)

)
≤ 0
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for all (t, x) ∈ R≥0 × Rm, α ∈ A. Let τα,k be the stopping times defined in the proof of
Theorem 1.2, then

U(t ∧ τα,k, Xα(t ∧ τα,k))− U(0, Xα(0))

=

∫ t∧τα,k

0

LU(s,Xα(s)) ds+

∫ t∧τα,k

0

DxU(s,Xα(s))∗Gα(s,Xα(s)) dWα(s)

≤
∫ t∧τα,k

0

DxU(s,Xα(s))∗Gα(s,Xα(s)) dWα(s)

by the Itô formula. Let ε > 0 be arbitrary, we can find K ⊆ Rm compact such that
ν(K) ≥ 1− ε. Set Mα = {ω ∈ Ωα; Xα(0) ∈ K}, then Mα ∈ Fα

0 and Qα(Mα) ≥ 1− ε
for all α ∈ A as Xα(0)#Qα = ν. We have

Eα1Mα
V (Xα(t ∧ τα,k)) ≤ ecTEα1Mα

V (Xα(0))

+ ecTEα

∫ t∧τα,k

0

1Mα
DxU(s,Xα(s))∗Gα(s,Xα(s)) dWα(s)

= ecTEα1MαV (Xα(0)) ≤ ecT sup
K
V ≡ λ(ε) <∞

for any t ∈ [0, T ]. Consequently, setting qR = inf‖x‖≥R V (x) we get

Qα{ sup
0≤t≤T

‖Xα(t)‖ > R} ≤ Qα{ω ∈Mα; sup
0≤t≤T

‖Xα(t)‖ > R}+ Qα(Ωα \Mα)

≤ ε+ Qα{ω ∈Mα; τα,R < T} = ε+ Eα1Mα
1{τα,R<T}

≤ ε+ Eα1Mα
1{τα,R<T}

V (Xα(τα,R))

qR

≤ ε+
1

qR
Eα1Mα

V (Xα(T ∧ τα,R)) ≤ ε+
λ(ε)

qR

for any α ∈ A. Noting that qR →∞ as R→∞ we can find R ≥ 0 such that

sup
α∈A

Qα

{
sup

0≤t≤T
‖Xα(t)‖ > R

}
≤ 2ε,

hence (9) holds. �

P r o o f o f R e m a r k 1.4. First, let us recall the Gyöngy–Krylov lemma. Let (Ξ,A , q)
be a probability space, Y a Polish space and Uk : Ξ −→ Y A -measurable mappings,
k ≥ 1. Then there exists an A -measurable U : Ξ −→ Y such that q -limk→∞ Uk = U if
and only if for any two subsequences {UMj}, {UNj} of {Uk} there exist a subsequence
{(UMj(l), UNj(l))}∞l=1 of {(UMj

, UNj )} and a Borel probability measure σ on Y × Y sat-
isfying σ{(y, y) ∈ Y × Y ; y ∈ Y } = 1 such that

w*-lim
l→∞

(UMj(l), UNj(l))#q = σ.

Now we may turn to the proof of Remark 1.4. Let {ZMj}, {ZNj} be two arbitrary
subsequences of {Zk}∞k=1, then for any j ≥ 1 (B, (ZMj

, ZNj )) solves the coupled system

d

(
X1

X2

)
=

(
FMj

(t,X1)
FNj (t,X2)

)
dt+

(
GMj

(t,X1)
GNj (t,X2)

)
dB,

(
X1

X2

)
(0) =

(
ψ
ψ

)
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the coefficients of which satisfy the assumptions of Theorem 1.1. By the assumption
(A5’) the set {(ZMj

, ZNj )#Q; j ≥ 1} is plainly tight, so the proof of Theorem 1.1
shows that there exist a stochastic basis ((Θ,R, (Rt),P ), an (Rt)-Wiener process W
and a subsequence {(ZMj(l), ZNj(l)}∞l=1 converging in law to a pair (U, V ) such that
((Θ,R, (Rt),P ),W, (U, V )) is a weak solution to the system

d

(
X1

X2

)
=

(
F0(t,X1)
F0(t,X2)

)
dt+

(
G0(t,X1)
G0(t,X2)

)
dW (21)

and (U(0), V (0))#P = (ψ,ψ)#Q. Consequently, U(0) ∼ %, V (0) ∼ % and the assump-
tion (A6) of pathwise uniqueness yields

P
{

sup
t≥0
‖U(t)− V (t)‖ = 0

}
= 1.

(Note that due to the form of (21) both (W,U) and (W,V ) are solutions of (7), defined
on the same stochastic basis.) Thus, if D denotes the diagonal in C (R≥0;Rm)2, we have

(U, V )#P (D) = 1.

Therefore, setting σ = (U, V )#P in the Gyöngy–Krylov lemma we see that there exists
a random variable Z : G −→ C (R≥0;Rm) such that

Q -lim
k→∞

sup
0≤t≤T

‖Zk(t)− Z(t)‖ = 0 (22)

for any T ∈ R>0. In particular, Z(0) = ψ and Z is a (G ψ,B
t )-adapted stochastic process.

It is known (see e. g. [7, Theorem 9.2.1] that (22) is equivalent to the property that any
subsequence {Zk(j)} of {Zk} has a subsequence {Zk(j(i))} such that

lim
i→∞

sup
0≤t≤T

‖Zk(j(i)) − Z(t)‖ = 0 Q-almost surely. (23)

Using (23) and the assumptions (A2) and (A3) we get

Q -lim
k→∞

∫ T

0

‖Fk(t, Zk(t))− F0(t, Z(t))‖ dt = 0,

Q -lim
k→∞

∫ T

0

‖Gk(t, Zk(t))−G0(t, Z(t))‖2 dt = 0

for all T ∈ R>0, so

Q -lim
k→∞

∫ t

0

Fk(s, Zk(s)) ds =

∫ t

0

F0(s, Z(s)) ds,

Q -lim
k→∞

∫ t

0

Gk(s, Zk(s)) dB(s) =

∫ t

0

G0(s, Z(s)) dB(s)

for any t ≥ 0, which proves our claim. �
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P r o o f o f R e m a r k 1.5. First ve check that there exists a Borel set Λ ⊆ Rm such that
%(Λ) = 0 and W is a Wiener process on (Ω,F , (Ft), p(y, ·)) for every y /∈ Λ. We shall
use the Lévy theorem again. As

∞ >

∫
Ω

sup
0≤t≤K

|Wt|dP =

∫
Rm

∫
Ω

sup
0≤t≤K

|Wt|dp(y, ·) d%(y)

for any K ∈ N, there exists a %-null set Λ′ ⊆ Rm such that sup[0,T ] |W | ∈ L1(p(y, ·)) for
all T ∈ R≥0 and y /∈ Λ′. Fix arbitrary s, t ∈ Q≥0, s < t, and A ∈ Fs, then we obtain

0 =

∫
Ω

1{X0∈B}1A
[
Wt −Ws

]
dP =

∫
B

∫
Ω

1A
[
Wt −Ws

]
dp(y, ·) d%(y)

for all Borel sets B ⊆ Rm, since {X0 ∈ B} ∈ F0 ⊆ Fs and W is a martingale on
(Ω,F , (Ft),P ). Therefore, ∫

A

[
Wt −Ws

]
dp(y, ·) = 0 (24)

for %-almost all y ∈ Rm. Taking into account that Fs is countably generated and
employing Dynkin’s π/λ-argument we may find Λ′′ ⊇ Λ′ such that %(Λ′′) = 0 and (24)
holds for all y /∈ Λ′′, s, t ∈ Q≥0, s < t, and A ∈ Fs. If s, t ∈ R≥0, s < t, we can find
sn, tn ∈ Q≥0, s ≤ sn < tn ≤ t, sn ↘ s, tn ↗ t; by (24)∫

A

[
Wtn −Wsn

]
dp(y, ·) = 0

for all A ∈ Fs ⊆ Fsn and y /∈ Λ′′. Since all paths of W are continuous, it follows
from the dominated convergence theorem that (24) holds for all s, t ∈ R≥0, A ∈ Fs and
y /∈ Λ′′, so W is a martingale on (Ω,F , (Ft), p(y, ·)) for any y /∈ Λ′′. Analogously, we
may study the martingale property of (Wt ⊗Wt − tI).

Further,

lim
ε→0+

∫ t

0

∥∥ΠεG0(·, X(·))(s)−G0(s,X(s))
∥∥2 ds = 0 for all t ≥ 0 P -almost surely,

hence it is easy to check that there exists a %-null set Λ∗ ⊇ Λ such that

lim
ε→0+

∫ t

0

∥∥ΠεG0(·, X(·))(s)−G0(s,X(s))
∥∥2 ds = 0 for all t ≥ 0 p(y, ·)-almost surely

for any y /∈ Λ∗, which implies that

p(y, ·) -lim
ε→0+

∫ t

0

G0(s,X(s))
W ((s+ ε) ∧ t)−W (s)

ε
ds =

∫ t

0

G0(s,X(s)) dW (s) (25)

for all y /∈ Λ∗. (As W is a Wiener process with respect to p(y, ·) for y /∈ Λ∗, the stochastic



906 M. ONDREJÁT AND J. SEIDLER

integral makes sense and Lemma 2.3 may be applied.) Fix t ≥ 0, for a, b, ε > 0 set

Γa,b,ε

=

{∥∥∥X(t)−X(0)−
∫ t

0

F0(s,X(s)) ds−
∫ t

0

G0(s,X(s))
W ((s+ ε) ∧ t)−W (s)

ε
ds
∥∥∥ > a

&

∫ t

0

∥∥ΠεG0(·, X(·))(s)−G0(s,X(s))
∥∥2 ds < b2

}
and

Γa,0 =

{∥∥∥X(t)−X(0)−
∫ t

0

F0(s,X(s)) ds−
∫ t

0

G0(s,X(s)) dW (s)
∥∥∥ > a

}
.

By (25) and the portmanteau theorem

lim inf
ε→0+

p(y, Γa,b,ε) ≥ p(y, Γa,0) for any y /∈ Λ∗,

so by (19) and the Fatou lemma

b2

a2
≥ lim inf

ε→0+
P (Γa,b,ε) = lim inf

ε→0+

∫
Rm

p(y, Γa,b,ε) d%(y) ≥
∫
Rm

p(y, Γa,0) d%(y).

Since b > 0 was arbitrary and the right-hand side does not depend on b we get∫
Rm

p(y, Γa,0) d%(y) = 0

for all a > 0 and our claim follows easily. �
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Sciences, Pod Vodárenskou věž́ı 4, 182 08 Praha 8. Czech Republic.

e-mail: seidler@utia.cas.cz

http://dx.doi.org/10.1007/978-3-540-30788-4_6
http://dx.doi.org/10.1007/978-3-540-30788-4_6
http://dx.doi.org/10.1016/j.physd.2011.03.009
http://dx.doi.org/10.1017/cbo9780511755347
http://dx.doi.org/10.1080/07362994.2012.628916
http://dx.doi.org/10.1080/07362994.2013.799025
http://dx.doi.org/10.1007/bf01203833
http://dx.doi.org/10.1016/s0924-6509(08)70226-5
http://dx.doi.org/10.1007/978-1-4684-0302-2
http://dx.doi.org/10.1007/bfb0093176
http://dx.doi.org/10.1093/acprof:oso/9780198733133.001.0001
http://dx.doi.org/10.1016/s0924-6509(09)x7004-2

	Introduction
	Proofs

