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ON FINITE TIME STABILITY WITH GUARANTEED COST
CONTROL OF UNCERTAIN LINEAR SYSTEMS

Atif Qayyum and Alfredo Pironti

This paper deals with the design of a robust state feedback control law for a class of uncertain
linear time varying systems. Uncertainties are assumed to be time varying, in one-block norm
bounded form. The proposed state feedback control law guarantees finite time stability and
satisfies a given bound for an integral quadratic cost function. The contribution of this paper is
to provide a sufficient condition in terms of differential linear matrix inequalities for the existence
and the construction of the proposed robust control law. In particular, the construction of the
feedback control law is brought back to a feasibility problem which can be solved inside the
convex optimization framework. The effectiveness of the proposed approach is shown by means
of the results obtained on a numerical and a physical example.
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1. INTRODUCTION

The concept of finite time stability (FTS) dates back to the seminal paper by Dorato [14],
and has been revamped in recent years (see the book [5] and the references therein),
because it allows control system designers to overcome some limitations intrinsic to the
classic Lyapunov stability concept.Indeed, FTS is not concerned about the asymptotic
behavior of the state trajectory of a system, but consider its transient behavior over
a given finite time interval, this is important for application where the system state
is required to operate in a fixed region for a given time-frame. In a general setting,
a system is FTS, if assuming that the initial conditions are inside a prescribed region
(which usually is limited by an ellipsoid), then the state trajectories do not cross a given
outer boundary (which usually is again an ellipsoid) for a specified finite time interval.
FTS attracts control system designers, because it guarantees that the system transient
performances satisfy given bounds. In contrast, the classical Lyapunov approach only
deals with the steady state behavior of the state trajectory without giving quantitative
bound on the state trajectories.

The paper is focused on uncertain linear time-varying systems, with uncertainties in
the so-called norm bounded one-block form (for more details see [13] and the references
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therein). The aim is to describe some sufficient conditions allowing to solve the simul-
taneous problem of guaranteeing FTS and an integral quadratic cost constraint. Both
the analysis and state feedback synthesis problems are considered.

Among others, some fundamental results on FTS of linear system have been ex-
tensively discussed in [1, 3, 9], the robustness problem has been considered in [4] for
uncertain linear systems, whereas stochastic systems are studied in [6, 31, 32]. FTS
for nonlinear systems have been comprehensively addressed in [18]. The concept is also
dealt with impulsive dynamical linear systems (IDLS) in [2, 8, 10, 33]. In these papers
the problem of analysis (determine when a not controlled system verifies an FTS condi-
tion) and/or synthesis (design a state or output feedback controller making the closed
loop system to verify an FTS condition) have been considered and solved for various
class of systems. Unfortunately in the design of a control system it is, often, necessary to
consider various performance index, so as multi-objective control design techniques are
desirable from an engineering point of view. From this point of view, integral quadratic
performance index are among the ones more considered in the literature, since the birth
of the linear quadratic optimal control theory [11].

In the context of robust control, the idea of considering an integral quadratic cost
constraint for linear systems can be found in the initial work of Petersen [20, 21, 22],
whereas the problem of impulsive switched systems is considered in [30]. More recent
work can be found in [12, 17, 28].

To the authors best knowledge, the idea of solving a guaranteed cost control (GCC)
problem, together with a FTS constraint, has been considered for the first time in [26].
In this paper we extend the work done in [26] by considering the presence of uncertainties
in the considered system. With respect to the existing literature the novel contribution
of this paper is hence to consider a multi-objective design problem, where the closed
loop system has to simultaneously satisfy the FTS conditions and the guaranteed cost
control constraints, in the presence of time-varying uncertainties.

A similar multi-objective problem has been considered in [7], but in the context
of Input Output Finite Time Stability (IO-FTS). In this case initial conditions of the
controlled system are zero, but the system is subject to a disturbance input; IO-FTS and
a H∞ bound are then simultaneously considered. Here we consider the different case
where the initial conditions are not zero, and instead of an H∞ constraint we consider
a quadratic integral cost constraint. Moreover differently from [7], our approach allows
to explicitly consider actuator constraints. Note that, although not directly discussed in
the paper, the presence of external disturbances can be taken into account in our design
methodology, if these disturbances can be generated by an autonomous exo-system (it
will be sufficient to apply our design methodology to a suitable augmented system).

Summarizing, we can say that the novel contribution of this paper consists in estab-
lishing a framework for linear time-varying system to design a state feedback control law
which guarantees FTS, while simultaneously satisfying an integral quadratic cost con-
straint,with the main aim of contributing to the solution of practical problems defined
over a finite time interval. Our solution will be characterized as a feasibility problem for
a set of suitable differential linear matrix inequalities (DLMIs), that can be solved by
means of well know convex optimization techniques.

Note that in the literature, a different concept of FTS can also be found, where it



On finite time stability with guaranteed cost control 1073

is required that, given an initial condition, the state trajectories converge to the zero
equilibrium in a finite time interval, see [16, 23, 24, 25]; based on Lyapunov stability
criteria, the asymptotic convergence is transformed to finite time convergence. Recent
results achieved, considering the control problem of finite horizon estimation in the
presence of noise for linear time-varying systems [27]. Applications of this theory to the
control of nonlinear systems are reported in [15, 19, 29]. However, this concept is an
independent one, and it is not linked with the content of this paper.

The paper is organized as follows. In Section 2 we give some definitions and state
some preliminary results which are valid for linear time-varying systems. In Section 3
we precisely state the problem we deal with, and we describe the state feedback design
methods. These results lead to the consider the solution of a suitable DLMI feasibility
problem. In Section 4 we consider two different case studies. The first one is a numer-
ical example, whereas the second one considers the problem of controlling an inverted
pendulum on a cart by means of a state feedback control law. Finally in Section 5, some
concluding remarks are given.

2. PRELIMINARIES

We shortly recall the definitions related to FTS of a linear time-varying system (see [1]).

Definition 2.1. (FTS) Given t0 ∈ R, a scalar T > 0, a positive definite matrix
R ∈ Rn×n and a positive definite matrix-valued function Γ(·) ∈ Rn×n, defined in Ω =
[t0, t0 + T ], such that, Γ(t0) < R, the system,

ẋ(t) = A(t)x(t) , x(t0) = x0 , (1)

is said to be finite-time stable with respect to (Ω, R,Γ(·)) if,

xT0 Rx0 ≤ 1⇒ x(t)T Γ(t)x(t) < 1 , (2)

where A(t) ∈ Rn×n and t ∈ Ω.

In general terms, a system is categorized as FTS, if for all initial conditions within
a given inner bound, its state trajectories remain inside a prescribed outer bound over
the time interval of interest.

Remark 2.2. Since quadratic functions are used in condition (2), the FTS property
results in ellipsoidal bounds on initial conditions and state trajectory. Different type of
function can be used to obtain other type of bounds (for example polytopic ones see [1,
chap 6] for more details).

Considering the presence of uncertainties, the concept of FTS is readily extended to
robust finite time stability (RFTS). Here we consider the case where uncertainties, in
the so-called norm bounded one-block form, are added to the system (1).

Definition 2.3. (RFTS) Consider
(
Ω, R,Γ(·)

)
, as in Definition 2.1, and the uncertain

system

ẋ(t) =
(
A(t) + F (t)∆(t)E(t)

)
x(t) , x(t0) = x0 , (3)



1074 A. QAYYUM AND A. PIRONTI

where ∆(·) is an uncertain matrix satisfying the norm bound

∆(t)T ∆(t) ≤ I ⇔ ‖∆(t)‖2 ≤ 1 , (4)

and F (·), E(·) are weighting matrices of suitable dimensions. Then system (3) is said to
be RFTS with respect to

(
Ω, R,Γ(·)

)
, if condition (2) is satisfied for all ∆(·), such that

‖∆(t)‖2 ≤ 1 and t ∈ Ω.

When dealing with uncertain system (3), we resort to the concept of quadratic finite-
time stability (QFTS).

Definition 2.4. (QFTS) Given
(
Ω, R,Γ(·)

)
, as in Definition 2.1, the uncertain sys-

tem (3) is said to be QFTS with respect to
(
Ω, R,Γ(·)

)
, if and only if there exists a

positive definite matrix-valued function P (·) which satisfies the following DLMI/LMI
conditions:

Ṗ (t) +
(
A(t) + ∆A(t)

)T
P (t) + P (t)

(
A(t) + ∆A(t)

)
< 0 ,

P (t) > Γ(t) ,

P (t0) < R ,

for any admissible uncertainty realization ∆(·), and for all t ∈ Ω.

Remark 2.5. The DLMIs involved in the definition of QFTS implies RFTS (see [1,
Lemma 4.1]), therefore, it follows that QFTS is a stronger property than RFTS, in the
sense that QFTS implies RFTS, whereas, the inverse may not be true in general.

In this paper, we consider the following uncertain linear time-varying system

ẋ(t) = A(t)x(t) + F (t)u∆(t) +B(t)u(t) , x(t0) = x0 , (5a)

u∆(t) = ∆(t)v∆(t) , (5b)

v∆(t) = E1(t)x(t) + E2(t)u(t) , (5c)

where x(t) ∈ Rn, u(t) ∈ Rm, F (t) ∈ Rn×p, E1(t) ∈ Rq×n and E2(t) ∈ Rq×m. The
time-varying system matrices A(t), B(t),E1(t), E2(t), and F (t) are piecewise continuous
in the time interval Ω. The uncertain time-varying matrix ∆(t) ∈ Rp×q is assumed to
be Lebesgue measurable and satisfying the spectral norm bound ‖∆(t)‖2 ≤ 1 ,∀t ∈ Ω.
A schematic of system (5) is shown in Figure 1. Note that we have not considered direct
feedthrough matrix from u to u∆ to simplify the main results; however, such assumption
can be easily removed.

In this paper we extend the concept of FTS by introducing an integral quadratic
cost bound on the trajectories of system (5). However, to simplify the discussion, we
first consider the case without uncertainties, and present some preliminary results for
system (1)

Definition 2.6. (FTS-GCB) System (1) is said to be finite time stable with a guar-
anteed cost bound (FTS-GCB) with respect to

(
Ω, R,Γ, Q

)
, where R is a given positive
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Fig. 1. Structure of the considered uncertain system with state

feedback.

definite matrix, Γ(·) and Q(·) are given piecewise continuous positive definite matrix-
valued functions of suitable dimensions defined in Ω, if

xT0 Rx0 ≤ 1⇒

 xT (t)Γ(t)x(t) < 1 ,

Jq ,
∫

Ω

xT (t)Q(t)x(t)dt < 1 .
(6)

The property of guaranteeing an integral quadratic cost bound to the system tra-
jectories has been introduced in [21] for the case of linear time-invariant system over
infinite time horizon. In our case, the FTS-GCB property requires that, if the initial
conditions for the system (1) are inside a given ellipsoid, then the trajectory of the states
remain inside a given ellipsoid (whose boundary can be time-varying), and a bound on
an integral quadratic cost function is satisfied.

Remark 2.7. The term integral quadratic cost is considered implicit in all subsequent
mention of guaranteed cost in this paper to simplify the notation.

The following lemmas play a fundamental role in the derivation of the main results
of this paper. These lemmas give sufficient conditions for FTS-GCB of system (1).

Remark 2.8. To formulate simple and concise expressions, we will often drop the time
dependency, if this is not the cause of ambiguity.

Lemma 2.9. If there exist two positive definite and piecewise continuously differen-
tiable matrix functions P1(t) and P2(t) such that, for t ∈ Ω,

P1(t0) < R (7a)

P1 > Γ (7b)

Ṗ1 +ATP1 + P1A < 0 (7c)

P2 > 0 (7d)

P2(t0) < R (7e)

Ṗ2 +ATP2 + P2A+Q < 0 (7f)

then system (1) is FTS-GCB with respect to (Ω, R,Γ, Q).
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P r o o f . Proof is done in [26]. For completeness it is also reported here.
Inequalities (7a) – (7c) have been proved as necessary and sufficient conditions for

FTS of system (1) (see [1, Theorem 2.1]). The equivalent expression involving the state
transition matrix is circumvented to avoid the computational complexity of determining
state transition matrix and to facilitate the system design and stabilization process. We
only need to show that inequalities (7d) – (7f) implies that the integral quadratic cost
bound is guaranteed, i. e. if xT0 Rx0 ≤ 1, then

Jq =

∫
Ω

xT (t)Q(t)x(t)dt < 1 ,

is satisfied.
Consider a time-varying quadratic Lyapunov function V2(t, x) = x(t)TP2(t)x(t), then

along the trajectory of (1), we have

V̇2 = xT (Ṗ2 +ATP2 + P2A)x = −xT (Q+H)x , (8)

where, by inequality (7f), H ∈ Rn×n is a positive definite matrix. Now integrating left
side of (8), we get∫ t0+T

t0

V̇2dt = V2

(
x(t0 + T )

)
− V2

(
x(t0)

)
= x(t0 + T )TP2(t0 + T )x(t0 + T )− xT0 P2(t0)x0 ,

and integrating right side of (8), we get∫ t0+T

t0

V̇2dt = −
∫ t0+T

t0

xT (Q+H)xdt ,

therefore, (8) can be written as

xT0 P2(t0)x0 = x(t0 + T )TP2(t0 + T )x(t0 + T ) +

∫ t0+T

t0

xTQxdt+

∫ t0+T

t0

xTHxdt .

P2 and H being positive definite matrices, therefore we have

xT0 P2(t0)x0 >

∫ t0+T

t0

xTQxdt .

Finally by using inequality (7e) and considering initial bounds xT0 Rx0 ≤ 1 we have

Jq =

∫ t0+T

t0

xTQxdt < 1 .

This completes the proof. �

At the cost of some conservativeness, the search of two piecewise continuously differ-
entiable matrices P1 and P2 satisfying the conditions of Lemma 2.9, can be reduced to
discover the existence of only one such matrix using the following result.
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Lemma 2.10. If there exists a positive definite piecewise continuously differentiable
matrix function P (·), such that, for t ∈ Ω,

P > 0 (9a)

P (t0) < R (9b)

P > Γ (9c)

Ṗ +ATP + PA+Q < 0 (9d)

then the system (1) is FTS-GCB with respect to (Ω, R,Γ, Q).

P r o o f . The proof is easily obtained from Lemma 2.9 by letting P1 = P2 = P . �

In the next step we consider the case in which we want to make a given linear system
FTS-GCB by means of state feedback. We start with the case of no uncertainties (∆ = 0
in system (5)).

ẋ(t) = A(t)x(t) +B(t)u(t) , x(t0) = x0 . (10)

The control input u(t) is driven by a memoryless state feedback matrix K(t) ∈ Rm×n,
i. e.

u(t) = K(t)x(t) . (11)

Our aim is to choose the state feedback matrix K(t) in such a way to make system (10)
FTS-GCB. Before addressing the problem and stating our main results, we give the
following definition of finite-time stability with guaranteed cost control (FTS-GCC).

Definition 2.11. (FTS-GCC) Given a positive definite matrix R and positive defi-
nite piecewise continuous matrix-valued functions Γ(·), Q(·), Y (·) and Z(·) of suitable
dimensions, possibly time-varying in Ω, then system (10), in the presence of the control
law (11) is FTS-GCC with respect to (Ω, R,Γ, Q, Y, Z) for t ∈ Ω, if

xT0 Rx0 ≤ 1 , (12)

implies

xT (t)Γ(t)x(t) < 1 , (13a)

uT (t)Y (t)u(t) < 1 , (13b)

Jqz ,
∫

Ω

(
xT (t)Q(t)x(t) + uT (t)Z(t)u(t)

)
dt < 1 . (13c)

If the control law (11) satisfies the FTS-GCC conditions (13), then the closed loop
system

ẋ(t) =
(
A(t) +B(t)K(t)

)
x(t) , x(t0) = x0 , (14)

is FTS-GCB with respect to (Ω, R,Γ1, Q1), where Γ1 and Q1 are suitable matrices for
the closed loop system (14) as discussed in the proof of Lemma 2.9.

Problem 2.12. Given system (14), find the state feedback matrix-valued function K(·)
in such a way to satisfy the FTS-GCC conditions (13) with respect to (Ω, R,Γ, Q, Y, Z).



1078 A. QAYYUM AND A. PIRONTI

In the sequel we assume that the matrix Γ, defining the outer bound ellipsoid, as
described in Definition 2.1, can be written as

Γ = STS , (15)

since Γ > 0, this is always possible.
A sufficient condition for the solution of Problem 2.12 is given by the following the-

orem.

Theorem 2.13. If there exist a positive definite piecewise continuously differentiable
matrix X(t) and a piecewise continuous matrix-valued function L(t) such thatΘ11 X LT

X −Q−1 0
L 0 −Z−1

 < 0 (16a)

SXST − I < 0 (16b)(
X LT

L Y −1

)
> 0 (16c)

X(t0) > R−1 (16d)

X > 0 (16e)

where,
Θ11 , −Ẋ +XAT +AX + LTBT +BL

then Problem 2.12 is solved by letting K = LX−1.

P r o o f . Proof is done in [26]. For completeness it is also reported here.
We exploit Lemma 2.10 for the closed loop system (14) to determine that it satisfies

FTS-GCB definition. Indeed, if there exist a piecewise continuously differentiable matrix
P (·) and a piecewise continuous matrix-valued function matrix K(·) such that substi-
tuting (A+BK) and (Q+KTZK) in place of A and Q in the statement of Lemma 2.10,
we obtain

P > 0 (17a)

P (t0) < R (17b)

P > Γ (17c)

Ṗ + (A+BK)TP + P (A+BK) + (Q+KTZK) < 0. (17d)

The inequality (17d) can be written as

Ṗ +ATP +KTBTP + PA+ PBK +Q+KTZK < 0 .

Let P = X−1 and L = KX, we get

−Ẋ +XAT +AX + LTBT +BL+XQX + LTZL < 0 .
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Using definition of Θ11, we get

Θ11 +XQX + LTZL < 0 .

Using Schur complement, inequality (16a) is verified.
Using P = X−1, inequality (17c) can be written as

X−1 − STS > 0 ,

I −XSTS > 0 .

Therefore, inequality (16b) is verified.
The condition (13b) can be written as

xTKTY Kx < 1 .

Using condition (13a) and let L = KX, we get

X − LTY L > 0 .

Therefore, inequality (16c) is verified.
The proof is completed by noting that (16e) and (16d) are easily obtained from (17a)

and (17b) respectively. �

Remark 2.14. The weighting matrices Y (·) and Z(·) provide constraints on the control
input u(t).

Before stating our main theorem, we end this section by giving definitions of robust
finite time stability with guaranteed cost bound (RFTS-GCB) and robust finite time
stability with guaranteed cost control (RFTS-GCC) for the uncertain system (3).

Definition 2.15. (RFTS-GCB) System (3) is said to be RFTS-GCB with respect
to (Ω, R,Γ, Q), where R is a given positive definite matrix, Γ(·) and Q(·) are given piece-
wise continuous positive definite matrix-valued functions of suitable dimensions defined
in Ω, if for every uncertain time-varying matrix ∆(t), satisfying the norm bound (4),
the following condition hold

xT0 Rx0 ≤ 1⇒

 xT (t)Γ(t)x(t) < 1 ,

Jq ,
∫

Ω

xT (t)Q(t)x(t)dt < 1 .
(18)

From the above definition, it follows that an uncertain system of type (3) is RFTS-GCB,
if it is FTS-GCB for all possible realizations of the uncertain matrix ∆(t). However,
to make an uncertain system RFTS, using a control input u(t), we also introduce the
following definition of RFTS-GCC.

Definition 2.16. (RFTS-GCC) Given a positive definite matrix R and positive def-
inite piecewise continuous matrix-valued functions Γ(·), Q(·), Y (·) and Z(·) of suitable
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dimensions, possibly time-varying in Ω, then system (5), in the presence of the control
law (11), is RFTS-GCC with respect to (Ω, R,Γ, Q, Y, Z) defined in Ω, if

xT0 Rx0 ≤ 1 , (19)

implies

xT (t)Γ(t)x(t) < 1 , (20a)

uT (t)Y (t)u(t) < 1 , (20b)

Jqz ,
∫

Ω

(
xT (t)Q(t)x(t) + uT (t)Z(t)u(t)

)
dt < 1 , (20c)

∀∆ such that ‖∆(t)‖2 ≤ 1.

Now we are ready to describe our main results, which deals with RFTS under GCB
and GCC for uncertain linear time-varying systems.

3. MAIN RESULTS

In this section we precisely state the problem we deal with and state our main results.
Considering the uncertain linear time-varying systems of the form (3) and (5), we trans-
form the Lemma 2.10 and Theorem 2.13 of Section 2, into equivalent statements to
make the uncertain systems (3) and (5) simultaneously RFTS and, respectively, GCB,
and GCC. At first, we consider the unforced system (3).

Theorem 3.1. If there exist a positive definite piecewise continuously differentiable
matrix-valued function P (t), and a positive definite piecewise continuous scalar function
λ(t), such that, for t ∈ Ω

λ > 0 (21a)

P > 0 (21b)

P (t0) < R (21c)

P > Γ (21d)(
Ṗ +ATP + PA+Q+ λET

1 E1 PF
FTP −λI

)
< 0 (21e)

Then system (3) is RFTS-GCB.

P r o o f . Inequalities (21) already imply the QFTS conditions (see [1, Theorem 4.1])
and hence RFTS, so we have only to show that these also guarantee that if xT0 Rx ≤ 1,
then the bound on the integral quadratic cost function Jq (18) is satisfied. Define time-
varying quadratic Lyapunov function

V (t, x) = xT (t)P (t)x(t) .

Differentiating with respect to time t along the trajectories, we have

V̇ = ẋTPx+ xT Ṗ x+ xTPẋ

V̇ = xT (A+ F∆E1)TPx+ xT Ṗ x+ xTP (A+ F∆E1)x

V̇ = xT (Ṗ +ATP + PA+ ET
1 ∆TFTP + PF∆E1)x .
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Now, from [20, Theorem 2.2], for any λ > 0 we have that

ET
1 ∆TFTP + PF∆E1 ≤ λET

1 E1 +
1

λ
PFFTP +Q ,

therefore, we get,

V̇ ≤ xT (Ṗ +ATP + PA+ λET
1 E1 +

1

λ
PFFTP +Q)x < 0 .

From above, it follows that the matrix

H∆ = −(Ṗ +ATP + PA+ ET
1 ∆TFTP + PF∆E1)

is positive definite, moreover

V̇ = −xT (Q+H∆)x .

The remaining part of the proof is completed by following the same steps as in the proof
of Lemma 2.9 (by replacing H in (8) with H∆). �

Completing all the progressive steps, finally we refer back to the uncertain system (5).
If the control law (11) satisfies the RFTS-GCC conditions (20), then the closed loop
system

ẋ =
(
A+BK + F∆(E1 + E2K)

)
x , x(t0) = x0 , (22)

is RFTS-GCB with respect to (Ω, R,Γ2, Q2), where Γ2 and Q2 are suitable matrices for
the closed loop system (22) satisfying Theorem 3.1.

Problem 3.2. Given system (22), find the state feedback matrix-valued function K(·)
in such a way to satisfy the FTS-GCC conditions (20) with respect to (Ω, R,Γ, Q, Y, Z).

A sufficient condition to solve Problem 3.2 is given by the following theorem.

Theorem 3.3. If there exist a positive definite piecewise continuously differentiable
matrix X(t), a piecewise continuous matrix-valued function L(t) and a positive definite
scalar function β(t), such that following conditions are satisfied,


Φ11 X LT XET

1 + LTET
2

X −Q−1 0 0
L 0 −Z−1 0

E1X + E2L 0 0 −βI

 < 0 (23a)

SXST − I < 0 (23b)(
X LT

L Y −1

)
> 0 (23c)

X(t0) > R−1 (23d)

X > 0 (23e)

where
Φ11 , Θ11 + βFFT .
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Then Problem 3.2 is solved with K = LX−1.

P r o o f . From Theorem 3.1 we know that the system (22) is RFTS-GCB, if there exist a
positive definite piecewise continuously differentiable matrix function P (t) and a positive
definite piecewise continuous scalar function λ(t), such that,

λ > 0 (24a)

P > 0 (24b)

P (t0) < R (24c)

P > Γ (24d)(
Ψ11 PF
FTP −λI

)
< 0 (24e)

where

Ψ11 , Ṗ + (A+BK)TP + P (A+BK) + (Q+KTZK) + λ(E1 + E2K)T (E1 + E2K) .

After taking Schur complement, inequality (24e) can be written as,

Ṗ + (A+BK)TP + P (A+BK) + (Q+KTZK)

+λ(E1 + E2K)T (E1 + E2K) +
1

λ
PFFTP < 0 .

Let P = X−1, L = KX and λ = β−1, we get

Θ11 + βFFT + LTZL+XQX +
1

β
(E1X + E2L)T (E1X + E2L) < 0 .

Using definition of Φ11, we get

Φ11 + LTZL+XQX +
1

β
(E1X + E2L)T (E1X + E2L) < 0 .

Using Schur complement, the inequality (23a) is proved.
The remaining part of the proof is completed by noting that inequalities (23b) – (23e)

have already been treated in the proof of Theorem 2.13. �

Solutions of Problem 2.12 and Problem 3.2 requires to solve a set of differential linear
matrix inequalities over the interval Ω. As shown in [1], these DLMIs feasibility problem
can be recast in terms of LMIs. This is obtained by splitting the total time interval Ω in
a number of subintervals N , each of length Ts, and assuming a piecewise affine behavior
(with respect to t) for the DLMIs variables. The resulting LMIs could be solved using
off-the-shelf optimization softwares, such as YALMIP, SeDuMi, MATLAB LMI toolbox
etc. For example DLMIs of the matrix-valued functions P (·) in (9), (21) and X(·)
in (16), (23) are transformed to LMIs. These matrices are assumed to have piecewise
affine structure as,

P (t) =


P0 + P1(t− t0) : ∀t ∈ [t0, t0 + Ts]

P0 +

j∑
h=1

PhTs + Pj+1(t− jTs − t0) : j = 1 . . . J

∀t ∈ [t0 + jTs, t0 + (j + 1)Ts] .



On finite time stability with guaranteed cost control 1083

Where P0 and Pjs are the optimization variables. The problem is adequately solved
provided the length of Ts is sufficiently small in the domain Ω such that Pjs can ap-
proximate a generic continuous matrix-valued P (·). Using similar structure, X(·) is also
approximated as a piecewise continuous matrix-valued function.

4. EXAMPLES

In this section we apply the techniques developed in this paper to two illustrative exam-
ples; in particular, the second example, based on the model of an inverted pendulum on
a cart, shows how to design a state feedback controller that satisfy prescribed bounds
on the state trajectory in the presence of uncertainties.

4.1. Numerical example

Consider a fourth order LTI system, with system matrices defined by

A =


−3.0000 −1.0000 −0.7500 −0.5000

2.0000 0 0 0
0 2.0000 0 0
0 0 0.5000 0

 , B =


0.50
0.50
0.50
0.05

 ,

and with the following weighting matrices

R = 15In ,Γ = 4In , Q = 2In , Y = 8 , Z = 4 .

We assume that the time interval of interest is Ω = [0, 10]. Considering the open loop
case (i. e. K = 0), since the DLMIs (9) are feasible, by Lemma 2.10 we can conclude
that the system is FTS-GCB. As an example, Figure 2 shows that both the finite time
stability and the guaranteed cost bound are respected when the initial condition x0 =(
0.05 0.05 0.05 0.05

)T
, satisfying xT0 Rx0 ≤ 1 is chosen.

Now we modify the system by introducing a norm bounded one-block from uncer-
tainty, such that,

F =
(
0.5 0.5 0.5 0.5

)T
, E1 =

(
0.5 0.5 0.5 0.5

)
, E2 = 0.1,∆ = 0.6.

With the presence of uncertainties the property of finite time stability and of guar-
anteed cost bound are no more verified. Indeed as it is shown in Figure 3, if we choose
∆ = 0.6 the bounds on the state trajectory and on the quadratic cost are not satisfied

(here again we choose x0 =
(
0.05 0.05 0.05 0.05

)T
as initial condition). It follows

that our system is not RFTS-GCB, and indeed the DLMIs (21) result to be not feasible.
To make the system RFTS-GCB, we introduce a control input u(t) as in (11) and

look for a feedback matrix K(·), using the conditions (23) of Theorem 3.3. Since the
DLMIs (23) are feasible, we are able to find a state feedback matrix K(·) such that
makes the closed loop system RFTS-GCB. This is shown in Figures 4 – 6, where the
behavior of the system for 100 randomly chosen realization of the uncertain parameter
∆ is shown.
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Fig. 2. Open loop

behavior without uncertainties.
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Fig. 3. Open loop

behavior with uncertainties (∆ = 0.6).
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Fig. 4. Closed loop behavior of the quadratic cost functional for 100

randomly chosen realizations of ∆.
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Fig. 6. Closed loop behavior

of the uTY u for 100 randomly
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4.2. Inverted pendulum on a cart

In this section we consider the problem of controlling an inverted pendulum on a cart
as shown in Figure 7. The linearized model of the system is reported in equation (25),

where the state vector is x =
(
η η̇ θ θ̇

)T
, with θ being the pendulum angle, and η being

the horizontal position of the cart (see Figure 7). The parameters of the model are
reported in Table 1.

mc cart mass 0.5 Kg
mp pendulum mass 0.2 Kg
Lp pendulum length 0.3 m
Ip pendulum moment of inertia 0.006 Kg ·m2

bc coefficient of friction of the cart 0.1 N/(m · s)
η cart horizontal position
η̇ cart horizontal velocity
θ pendulum angular position

θ̇ pendulum angular velocity
u cart controlling input for stabilization

Tab. 1. Inverted pendulum parameters.
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Fig. 7. Example of a cart with an inverted pendulum.

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

 (
m

)

Cart Position

0 0.5 1 1.5 2 2.5 3

-20

0

20

 (
°
 )

Pendulum Angle

0 0.5 1 1.5 2 2.5 3

Time (s)

-10

0

10

u
 (

N
)

Control Force

Fig. 8. Cart position η of pendulum, angle θ and control input u(t).

ẋ(t) =


0 1 0 0

0 − bc(Ip+mpL
2
p)

Ip(mc+mp)+mpmcL2
p

m2
pL

2
pg

Ip(mc+mp)+mpmcL2
p

0

0 0 0 1

0 − −bpmpLp

Ip(mc+mp)+mpmcL2
p

mpLpg(mc+mp)
Ip(mc+mp)+mpmcL2

p
0

x(t)

+


0

Ip+mpL
2
p

Ip(mc+mp)+mpmcL2
p

0
mL

I(M+m)+mML2

u(t) . (25)
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Fig. 9. Perfomance indices achieved by the RFTS-GCC

state-feedback control for the inverted pendulum on a cart.

The considered time interval is Ω = [0, 3] and the respective weighting matrices are,

R = 8In ,Γ = In , Q = 3In , Y = 1× 10−4 , Z = 0.5× 10−4 .

We also consider the presence of uncertainties in the model parameters, by considering
a norm bounded one-block form uncertainty characterized by the following matrices,

F =
(
0 0.9 0 0.9

)T
,

E1 =
(
0 0.05 0.3 0

)
,

E2 = 0.012 .

We try to achieve the following FTS performance bound

|η| < 0.5 m,

|θ| < 12◦ ,

|u| < 6 N ,

in Ω when xT0 Rx0 ≤ 1. Figure 8 shows the obtained closed loop behavior when the
system driven by the initial condition, x0 = [0.4, 0.1, 0.2, 0.1]T . The designed control
law allows to satisfy the RFTS-GCC property as shown in Figure 9.

5. CONCLUSION

In this paper the finite-time stabilization problem for linear time-varying uncertain sys-
tem is addressed. Sufficient conditions are given to design a state feedback controller
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which is able to achieve not only finite time stability of the plant, but also to guaranteed
cost a given bound for an integral quadratic cost function. The design procedure re-
quires the solution of a DLMI feasibility problem of DLMIs. Simulation results show the
ease to analyze a system in the presence of uncertainties in the so-called norm bounded
one-block form..

6. FUTURE RECOMMENDATIONS

Further enhancement in this line of research could be in establishing similar results in the
output feedback case, and to extend the theory to impulsive and discrete time systems.
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