Kybernetika 54 no. 5, 1011-1032, 2018

Sliding-mode pinning control of complex networks

Oscar J. Suarez, Carlos J. Vega, Santiago Elvira-Ceja, Edgar N. Sanchez and David I. RodriguezDOI: 10.14736/kyb-2018-5-1011


In this paper, a novel approach for controlling complex networks is proposed; it applies sliding-mode pinning control for a complex network to achieve trajectory tracking. This control strategy does not require the network to have the same coupling strength on all edges; and for pinned nodes, the ones with the highest degree are selected. The illustrative example is composed of a network of 50 nodes; each node dynamics is a Chen chaotic attractor. Two cases are presented. For the first case the whole network tracks a reference for each one of the states; afterwards, the second case uses the backstepping technique to track a desired trajectory for only one state. Tracking performance and dynamical behavior of the controlled network are illustrated via simulations.


sliding mode, backstepping, pinning control, complex network, trajectory tracking


05C82, 93D05, 93C10


  1. A. L. Barabási and R. Albert: Emergence of scaling in random networks. Science 286 (1999), 5439, 509-512.   DOI:10.1126/science.286.5439.509
  2. S. P. Bhat and D. U. Bernstein: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000), 3, 751-766.   DOI:10.1137/s0363012997321358
  3. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D. U. Hwang: Complex networks: Structure and dynamics. Phys. Rep. 424 (2006), 4, 175-308.   DOI:10.1016/j.physrep.2005.10.009
  4. G. Chen and T. Ueta: Yet another chaotic attractor. Int. J. Bifurcation Chaos 9 (1999), 7, 1465-1466.   CrossRef
  5. G. Chen, X. Wang and X. Li: Fundamentals of Complex Networks: Models, Structures and Dynamics. John Wiley and Sons, Singapore 2014.   CrossRef
  6. T. Chen, X. Liu and W. Lu: Pinning complex networks by a single controller. IEEE Trans. Circuits Systems I: Regular Papers 54 (2007), 6, 1317-1326   CrossRef
  7. S. Drakunov, D. Izosimov, A. Lukyanov, V. A. Utkin and V. I. Utkin: The block control principle. 1. Automat. Remote Control 51 (1990), 5, 601-608.   CrossRef
  8. S. V. Emelyanov: Variable Structure Control Systems. Nouka, Moscow 1967.   CrossRef
  9. P. Erdos and A. Rényi: On the evolution of random graphs. Inst. Math. Hungar. Acad. Sci. 5 (1960), 1, 17-60.   CrossRef
  10. G. Hu and Z. Qu: Controlling spatiotemporal chaos in coupled map lattice systems. Phys. Rev. Lett. 72 (1994), 1, 68.   DOI:10.1103/physrevlett.72.68
  11. J. Guldner and V. I. Utkin: Tracking the gradient of artificial potential fields: Sliding mode control for mobile robots. Int. J. Control 63 (1996), 3, 417-432.   DOI:10.1080/00207179608921850
  12. J. Guldner and V. I. Utkin: The chattering problem in sliding mode systems. In: 14th Intenational Symposium of Mathematical Theory of Networks and Systems, (MTNS), Perpignan 2000.   CrossRef
  13. H. K. Khalil: Noninear Systems. Prentice-Hall, New Jersey 2002.   CrossRef
  14. A. Khanzadeh and M. Pourgholi: Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear Dynamics 88 (2017), 4, 2637-2649.   DOI:10.1007/s11071-017-3400-x
  15. M. Krstic, I. Kanellakopoulos and P. V. Kokotovic: Nonlinear and Adaptive Control Design. Wiley, 1995.   CrossRef
  16. H. Lee and V. I. Utkin: Chattering suppression methods in sliding mode control systems. Ann. Rev. Control 31 (2007), 2, 179-188.   DOI:10.1016/j.arcontrol.2007.08.001
  17. X. Li and G. Chen: Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint. IEEE Trans. Circuits and Systems I: Fundamental Theory Appl. 50 (2003), 11, 1381-1390.   DOI:10.1109/tcsi.2003.818611
  18. X. Li, X. Wang and G. Chen: Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuits Systems I: Regular Papers 51 (2004), 10, 2074-2087.   DOI:10.1109/tcsi.2004.835655
  19. E. Lorenz: Deterministic nonperiodic flow. J. Atmospher. Sci. 20 (1963), 2, 130-141.   DOI:10.1175/1520-0469(1963)020<0130:dnf>;2
  20. M. Pourmahmood, S. Khanmohammadi and G. Alizadeh: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Modell. 35 (2011), 3080-3091.   DOI:10.1016/j.apm.2010.12.020
  21. R. Roy, T. Murphy, T. Maier, Z. Gills and E. Hunt: Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. Phys. Rev. Lett. 68 (1992), 9, 1259-1262.   DOI:10.1103/physrevlett.68.1259
  22. E. N. Sanchez and D. I. Rodriguez: Inverse optimal pinning control for complex networks of chaotic systems. Int. Bifurcation Chaos 25, (2015), 02, 1550031.   DOI:10.1142/s0218127415500315
  23. H. Sira-Ramírez: Sliding Mode Control: The Delta-Sigma Modulation Approach. Birkhauser, Basel 2015.   DOI:10.1007/978-3-319-17257-6
  24. J. Sun, Y. Shen, X. Wang and J. Chen: Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control. Nonlinear Dynamics 76 (2014), 1, 383-397.   DOI:10.1007/s11071-013-1133-z
  25. H. Su and W. Xiaofan: Pinning Control of Complex Networked Systems: Synchronization, Consensus and Flocking of Networked Systems via Pinning. Springer-Verlag, Berlin 2013.   CrossRef
  26. V. I. Utkin and H. Lee: Chattering problem in sliding mode control systems. In: Variable Structure Systems. VSS'06. International Workshop on Variable Structure Systems, (2006), pp. 346-350.   DOI:10.1109/vss.2006.1644542
  27. V. I. Utkin: Sliding Modes and their Application in Variable Structure Systems. Mir Publishers, Moscow 1978.   CrossRef
  28. V. I. Utkin: Sliding Modes in Control and Optimization. Springer-Verlag, Berlin 2013.   CrossRef
  29. D. Watts, J. Duncan and S. Strogatz: Collective dynamics of 'small-world' networks. Nature 393 (1998), 6684, 440-442.   DOI:10.1038/30918
  30. X. Wang and G. Cheng: Pinning control of scale-free dynamical networks. Physica A: Statist. Mech. Appl. 310 (2002), 3, 521-531.   DOI:10.1016/s0378-4371(02)00772-0
  31. S. Vaidyanathan and S. Sampath: Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. In: Advances in Digital Image Processing and Information Technology, Springer 2011, pp. 156-164.   DOI:10.1007/978-3-642-24055-3\_16
  32. H. Yau: Design of adaptive sliding mode controller for chaos synchronization with uncertainties. Chaos, Solitons Fractals 22 (2004), 341-347.   DOI:10.1016/j.chaos.2004.02.004
  33. W. Yu, G. Chen and J. Lü: On pinning synchronization of complex dynamical networks. Automatica 45 (2009), 2, 429-435.   DOI:10.1016/j.automatica.2008.07.016
  34. M. Zhang, M. Xu and M. Han: Finite-time combination synchronization of uncertain complex networks by sliding mode control. Inform. Cybernet. Comput. Social Systems (ICCSS), (2017), 406-411.   DOI:10.1109/iccss.2017.8091448