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EXISTENCE, UNIQUENESS AND GLOBAL
ASYMPTOTIC STABILITY FOR A CLASS
OF COMPLEX-VALUED NEUTRAL-TYPE NEURAL
NETWORKS WITH TIME DELAYS

Manchun Tan and Desheng Xu

This paper explores the problem of delay-independent and delay-dependent stability for a
class of complex-valued neutral-type neural networks with time delays. Aiming at the neutral-
type neural networks, an appropriate function is constructed to derive the existence of equilib-
rium point. On the basis of homeomorphism theory, Lyapunov functional method and linear
matrix inequality techniques, several LMI-based sufficient conditions on the existence, unique-
ness and global asymptotic stability of equilibrium point for complex-valued neutral-type neural
networks are obtained. Finally, numerical examples are given to illustrate the feasibility and
the effectiveness of the proposed theoretical results.
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1. INTRODUCTION

In the past decades, various classes of neural networks (NNs) such as Hopfield neural
networks, recurrent neural networks, Cohen–Grossberg neural networks, bidirectional
associative memory neural networks have been investigated due to their extensive ap-
plications in associative memory, classification of pattern recognition, engineering opti-
mization, image processing, signal processing and other areas (see [1, 2, 9, 19, 24, 25,
30, 31, 32, 34, 35, 40, 49] and references therein). In the designing of neural networks
for such applications, it is significant to know the existence of equilibrium point and its
stability of the neural networks. Therefore the stability analysis has been a hot topic in
the studies of various NNs [2, 9, 19, 24, 30, 32, 34, 35, 40].

As an extension of real-valued neural networks, the complex-valued neural networks
(CVNNs) have received increasing interests [3, 4, 6, 7, 10, 11, 12, 13, 14, 16, 17, 26, 27,
28, 29, 33, 37, 38, 43, 45, 46, 47, 48]. CVNNs, in which the states, connection weights,
or activation functions are complex-valued, have more complicated properties than the
real-valued NNs and have shown their advantages in real applications, e. g., solving
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the XOR problem and the detection of symmetry problem [7, 10, 17, 26, 28, 43]. In
[14], a complex-valued recurrent neural network with time delays was investigated based
on two classes of complex-valued activation functions, and some sufficient conditions
for the existence of unique equilibrium point, global asymptotic stability and global
exponential stability were derived. In [38], by separating complex-valued neural networks
into real and imaginary parts, forming an equivalent real-valued system, some sufficient
conditions to ascertain the existence, uniqueness and global stability of the equilibrium
point of complex-valued BAM neural networks were provided in terms of linear matrix
inequality. In [47], a class of complex-valued Cohen–Grossberg neural networks with
time delays had been discussed, and some conditions had been derived to ascertain
the existence, uniqueness, and global asymptotic stability of such networks. In [3], the
activation dynamics of the complex-valued neural network with both leakage time delay
and discrete time delay on time scales had been investigated.

It is well known that the time delay is an inherent feature of signal transmission
between neurons, and the existence of time delays may lead to the instability or bad
performance of systems. Two types of time delays are generally considered in nonlinear
system in the literature, i. e., the retarded-type delays and neutral-type delays [15, 44].
Retarded-type NNs that have only time-delays in the states are not good enough to
characterize precisely the complicated dynamic properties of the neural cells in real
world, so neutral-type NNs that involve time delays in the time derivatives of states
have attracted much attention [5, 8, 18, 20, 21, 22, 23, 36, 39, 41, 42].

Different kinds of approaches are employed for investigating the dynamics of neural
networks, such as the Lyapunov function method, nonlinear measure approach, the ma-
trix measure method and so on. For example, in [7], using switched Lyapunov functions
on a complex field, the authors proposed some new stability criteria of complex-valued
impulsive and switching systems, and designed the hybrid impulsive and switching feed-
back controllers for complex-valued chaotic Lu system. In [10], by using the nonlin-
ear measure method, several sufficient criteria were obtained to ascertain the existence,
uniqueness and global stability of the equilibrium point of the addressed complex-valued
neural networks. In [18, 23, 31, 34], authors utilized the matrix measure method in the
stability analysis of neural networks .

Although enormous works have been done on the complex-valued NNs and neutral-
type NNs, respectively, the complex-valued neutral-type NNs have not been investigated
in the literature. Motivated by the above discussion, the dynamic behavior of complex-
valued neutral-type NNs has been addressed in this paper. Compared with the existing
literature about stability of neural networks, the main contributions of this paper can
be summarized as follows. Firstly, in the light of homeomorphism theory, Lyapunov
functional method and linear matrix inequality techniques, several LMI-based sufficient
conditions are proposed to guarantee the existence, uniqueness and global asymptotic
stability of equilibrium point for complex-valued neutral-type neural networks. Secondly,
the boundedness and differentiability of the activation function are no longer required.
Lastly, for the sake of dealing with the effect of the neutral term, we define a significant
mapping H(w) = (I − Ē)−1[−D̄w + Āf̄(w) + B̄ḡ(w) + ū] instead of H(w) = −D̄w +
Āf̄(w) + B̄ḡ(w) + ū which has frequently been considered in the existing literature.

The structure of this paper is summarized as follows. In Section 2, the complex-valued
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neutral-type model is presented, and some preliminaries are briefly outlined. Section
3 proposes the delay-independent and delay-dependent stability criteria for complex-
valued neutral-type neural networks. In Section 4, two numerical examples are given to
demonstrate the feasibility and the effectiveness of the results. Finally, some conclusions
are drawn in Section 5.

Notation: The notation used throughout this paper is fairly standard. R and C show
the set of real numbers and the set of complex numbers, respectively. Rn and Cn show,
respectively, the n-dimensional Euclidean space and the n-dimensional unitary space.
Rn×n and Cn×n are, respectively, the set of all n× n real matrices and the set of all
n× n complex matrices. If A ∈ Rn×n, AT shows the transpose of A; λM (A) and λm(A)
denote the maximum and minimum eigenvalue of a square matrix A, respectively. A >
0 (A ≥ 0) means that A is positive definite (positive semidefinite). Similarly, A < 0 (A
≤ 0) means that A is negative definite (negative semidefinite). z∗ denotes the complex
conjugate transpose of z ∈ Cn. ‖z‖ =

√
z∗z. I is used to denote an identity matrix

with proper dimension. The notation diagonal stands for a block-diagonal matrix. The
symmetric term in a matrix is shown by ∗. Matrices, if not explicitly stated, are assumed
to have compatible dimensions.

2. PROBLEM STATEMENT AND MATHEMATICAL PRELIMINARIES

In this paper, we consider the complex-valued neutral-type neural networks model de-
scribed by the following set of differential equation:

ż(t) = −Dz(t) +Af(z(t)) +Bg(z(t− τ)) + Eż(t− τ) + u, (1)

where z(t) = (z1(t), z2(t), . . . , zn(t)) ∈ Cn is the neural state vector; n corresponds to
the number of neurons in layers; f(z(t)) = (f1(z1(t)), f2(z2(t)), . . . , fn(zn(t)))T ∈ Cn,
g(z(t− τ)) = (g1(z1(t− τ)), g2(z2(t− τ)), . . . , gn(zn(t− τ)))T ∈ Cn are the vector-valued
neuron activation functions; D = diag(d1, d2, . . . , dn) ∈ Rn×n with di > 0 denotes the
interconnection weight matrix; A ∈ Cn×n denotes the strengths of the neuron intercon-
nections within the network; B ∈ Cn×n denotes the strengths of the neuron interconnec-
tions with time delay parameters τ ; E ∈ Cn×n denotes coefficients of the time derivative
of the delayed states; u ∈ Cn is the external input vector.

Let fj(·) , gj(·) ∈ C (j = 1, 2, . . . , n) be complex-valued functions, which satisfy the
following assumption.

Assumption 2.1. For any j ∈ {1, 2, . . . , n}, there exist positive numbers l1, l2, . . . , ln
and m1,m2, . . . ,mn such that

‖fj(z)− fj(z′)‖ ≤ lj ‖z − z′‖ , ‖gj(z)− gj(z′)‖ ≤ mj ‖z − z′‖ , (2)

for ∀z, z′ ∈ C.

In order to study (1), we separate it into its real and imaginary parts and transform
it into a real-valued neural network model. Let A = AR + iAI , B = BR + iBI , E =
ER + iEI , u = uR + iuI . Let z(t) = x(t) + iy(t), where i denotes the imaginary unit,
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that is, i =
√
−1. fj(z(t)) and gj(z(t)) can be expressed respectively by separating into

its real and imaginary part as

fj(z(t)) = fRj (x(t), y(t)) + if Ij (x(t), y(t)),

gj(z(t− τ)) = gRj (x(t− τ), y(t− τ)) + igIj (x(t− τ), y(t− τ)),

where fRj (·, ·): R2 → R; f Ij (·, ·): R2 → R; gRj (·, ·): R2 → R; gIj (·, ·): R2 → R. For
simplicity, we show x = x(t), y = y(t), xτ = x(t − τ), yτ = y(t − τ). Thus, (1) can be
separated into real and imaginary parts:

ẋ = −Dx+ARfR(x, y)−AIf I(x, y)+BRgR(xτ , yτ )−BIgI(xτ , yτ )+ERẋτ−EI ẏτ+uR,

ẏ = −Dy +ARf I(x, y)+AIfR(x, y)+BRgI(xτ , yτ )+BIgR(xτ , yτ )+ERẏτ+EI ẋτ+uI .
(3)

Let

w =

[
x
y

]
, wτ =

[
xτ

yτ

]
, ū =

[
uR

uI

]
,

Ā =

[
AR −AI
AI AR

]
, B̄ =

[
BR −BI
BI BR

]
,

D̄ =

[
D 0
0 D

]
, Ē =

[
ER −EI
EI ER

]
,

f̄(w) =

[
fR(x, y)
f I(x, y)

]
, ḡ(xτ , yτ ) =

[
gR(xτ , yτ )
gI(xτ , yτ )

]
,

then, (3) can be rewritten as

ẇ = −D̄w + Āf̄(w) + B̄ḡ(wτ ) + Ēẇτ + ū. (4)

It is clear from (2) that

(f(z)− f(z′))∗(f(z)− f(z′)) ≤ (z − z′)∗LTL(z − z′), (5)

(g(z)− g(z′))∗(g(z)− g(z′)) ≤ (z − z′)∗MTM(z − z′), (6)

where L = diag(l1, l2, . . . , ln) and M = diag(m1,m2, . . . ,mn). Equation (5) and (6) can
be expressed by separating their real and imaginary parts as

(f̄(w)− f̄(w′))T (f̄(w)− f̄(w′)) ≤ (w − w′)T L̄(w − w′), (7)

(ḡ(w)− ḡ(w′))T (ḡ(w)− ḡ(w′)) ≤ (w − w′)T M̄(w − w′), (8)

where

L̄ =

[
LTL 0

0 LTL

]
, M̄ =

[
MTM 0

0 MTM

]
, w =

[
x
y

]
, w′ =

[
x′

y′

]
.

Notice that the equilibrium point of (1) is also the equilibrium of (4) and the stability
of system (1) is equivalent to the stability of system (4). Therefore, in the sequel, we
focus our study on the real-valued neural networks (4).
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Remark 2.2. Some results require that the activation functions be differentiable or
bounded in the references (e. g., [8, 14, 43]). Such restrictions are removed in this paper.
Namely, both the real and the imaginary parts of the activation functions are no longer
assumed to be differentiable and bounded in this paper.

The following lemmas will play an important role in the proof of the main results.

Lemma 2.3. (Forti and Tesi [9]) If H(w) : R2n → R2n is a continuous map and satisfies
the following conditions:

(1) H(w) : R2n → R2n is injective on R2n,

(2) ‖H(w)‖ → ∞ as ‖w‖ → ∞,

then H(w) is a homeomorphism of R2n.

Lemma 2.4. Suppose −I + ĒT Ē < 0, then I − Ē is a nonsingular matrix (or an
invertible matrix).

P r o o f . By means of contradiction, assume that I − Ē is a singular matrix, then there
exists vector X 6= 0 such that (I − Ē)X = 0. Thus, we get ĒX = X, XT ĒT = XT ,
which lead to

XT ĒT ĒX = XTX.

Then

XT (ĒT Ē − I)X = 0, (X 6= 0)

which yields a contradiction to −I + ĒT Ē < 0. The proof is completed. �

3. MAIN RESULTS

In this section, we present some LMI-based sufficient conditions for the existence, unique-
ness, and globally asymptotical stability of the equilibrium point for system (1).

3.1. Delay-independent stability criteria

Theorem 3.1. Under Assumption 2.1, the neural network (1) has a unique equilibrium
point and it is globally asymptotically stable if there exist scalars εi > 0 (i = 1, 2) and
positive symmetric matrices P and Q such that the following LMIs hold:

Φ =


Φ11 Φ12 Φ13 Φ14

∗ Φ22 Φ23 Φ24

∗ ∗ Φ33 Φ34

∗ ∗ ∗ Φ44

 < 0 (9)

and

∆ = −Q+ ε2M̄ ≤ 0, (10)

where Φ11 = −2PD̄ − D̄2 + ε1L̄ + Q, Φ12 = PĀ, Φ13 = PB̄, Φ14 = PĒ,
Φ22 = −ε1I+ĀT Ā, Φ23 = ĀT B̄, Φ24 = ĀT Ē, Φ33 = −ε2I+B̄T B̄, Φ34 = B̄T Ē,
Φ44 = −I + ĒT Ē.
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P r o o f . Step 1: We prove the existence and uniqueness of equilibrium point of system
(4) by using Lemma 2.3.

By Schur complement[1], from (9), one has Φ44 = −I + ĒT Ē < 0. Then, in the light
of Lemma 2.4, we know that I − Ē is nonsingular.

Consider the following mapping associated with system (4):

H(w) = (I − Ē)−1[−D̄w + Āf̄(w) + B̄ḡ(w) + ū]. (11)

That is

H(w) = −D̄w + Āf̄(w) + B̄ḡ(w) + ĒH(w) + ū. (12)

It is obvious that ŵ = (ŵ1, ŵ2, . . . , ŵ2n)T is an equilibrium point of (4), if ŵ satisfies
the following equation:

H(ŵ) = −D̄(ŵ) + Āf̄(ŵ) + B̄ḡ(ŵ) + ĒH(ŵ) + ū = 0.

Thus, we can directly conclude from Lemma 2.3 that, for the system defined by (4),
there exists a unique equilibrium point for every input vector ū if H(w) is homeomor-
phism of R2n.

First, we prove that the map H(w) is injective. Suppose that there exist w and w′

with w 6= w′. According to (12), we have

H(w)−H(w′) = −D̄(w−w′) + Ā(f̄(w)− f̄(w′)) + B̄(ḡ(w)− ḡ(w′)) + Ē(H(w)−H(w′)).
(13)

Multiplying both sides of (13) by [2(w − w′)TP + 2(w − w′)T D̄+ (H(w)−H(w′))T ],
and we get

[2(w − w′)TP + 2(w − w′)T D̄ + (H(w)−H(w′))T ][H(w)−H(w′)]
= 2(w − w′)TP
× [−D̄(w − w′) + Ā(f̄(w)− f̄(w′)) + B̄(ḡ(w)− ḡ(w′)) + Ē(H(w)−H(w′))]
+ [D̄(w − w′) + Ā(f̄(w)− f̄(w′)) + B̄(ḡ(w)− ḡ(w′)) + Ē(H(w)−H(w′))]T

× [−D̄(w − w′) + Ā(f̄(w)− f̄(w′)) + B̄(ḡ(w)− ḡ(w′)) + Ē(H(w)−H(w′))],

where P is positive symmetric matrix. The above equation is equivalent to:

2(w − w′)T (P + D̄)(H(w)−H(w′))

= −(H(w)−H(w′))T (H(w)−H(w′))

− 2(w − w′)TPD̄(w − w′) + 2(w − w′)TPĀ(f̄(w)− f̄(w′))

+ 2(w − w′)TPB̄(ḡ(w)− ḡ(w′)) + 2(w − w′)TPĒ(H(w)−H(w′))

− (w − w′)T D̄2(w − w′) + (w − w′)T D̄Ā(f̄(w)− f̄(w′))

+ (w − w′)T D̄B̄(ḡ(w′)− ḡ(w′)) + (w − w′)T D̄Ē(H(w)−H(w′))

− (f̄(w)− f̄(w′))T ĀT D̄(w − w′) + (f̄(w)− f̄(w′))T ĀT Ā(f̄(w)− f̄(w′))
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+ (f̄(w)− f̄(w′))T ĀT B̄(ḡ(w)− ḡ(w′)) + (f̄(w)− f̄(w′))T ĀT Ē(H(w)−H(w′))

− (ḡ(w)− ḡ(w′))T B̄T D̄(w − w′) + (ḡ(w)− ḡ(w′))T B̄T Ā(f̄(w)− f̄(w′))

+ (ḡ(w)− ḡ(w′))T B̄T B̄(ḡ(w)− ḡ(w′)) + (ḡ(w)− ḡ(w′))T B̄T Ē(H(w)−H(w′))

− (H(w)−H(w′))T ĒT D̄(w − w′) + (H(w)−H(w′))T ĒT Ā(f̄(w)− f̄(w′))

+ (H(w)−H(w′))T ĒT B̄(ḡ(w)− ḡ(w′)) + (H(w)−H(w′))T ĒT Ē(H(w)−H(w′)).
(14)

We note the following equalities:

(w − w′)T D̄Ā(f̄(w)− f̄(w′)) = (f̄(w)− f̄(w′))T ĀT D̄(w − w′),
(w − w′)T D̄B̄(ḡ(w)− ḡ(w′)) = (ḡ(w)− ḡ(w′))T B̄T D̄(w − w′),
(w − w′)T D̄Ē(H(w)−H(w′)) = (H(w)−H(w′))T ĒT D̄(w − w′),
(ḡ(w)− ḡ(w′))T B̄T Ā(f̄(w)− f̄(w′)) = (f̄(w)− f̄(w′))T ĀT B̄(ḡ(w)− ḡ(w′)),

(H(w)−H(w′))T ĒT Ā(f̄(w)− f̄(w′)) = (f̄(w)− f̄(w′))T ĀT Ē(H(w)−H(w′)),

(H(w)−H(w′))T ĒT B̄(ḡ(w)− ḡ(w′)) = (ḡ(w)− ḡ(w′))T B̄T Ē(H(w)−H(w′)).

Using the above equalities in (14), we get

2(w − w′)T (P + D̄)(H(w)−H(w′))

= −(H(w)−H(w′))T (H(w)−H(w′))

− (w − w′)T (2PD̄ + D̄2)(w − w′)
+ 2(w − w′)TPĀ(f̄(w)− f̄(w′))

+ 2(w − w′)TPB̄(ḡ(w)− ḡ(w′))

+ 2(w − w′)TPĒ(H(w)−H(w′))

+ (f̄(w)− f̄(w′))T ĀT Ā(f̄(w)− f̄(w′))

+ (ḡ(w)− ḡ(w′))T B̄T B̄(ḡ(w)− ḡ(w′))

+ (H(w)−H(w′))T ĒT Ē(H(w)−H(w′))

+ 2(f̄(w)− f̄(w′))T ĀT B̄(ḡ(w)− ḡ(w′))

+ 2(f̄(w)− f̄(w′))T ĀT Ē(H(w′)−H(w′))

+ 2(ḡ(w)− ḡ(w′))T B̄T Ē(H(w)−H(w′)). (15)

Eqs. (7) – (8) guarantee that the following inequalities are true

ε1

[
(w − w′)T L̄(w − w′)− (f̄(w)− f̄(w′))

T
(f̄(w)− f̄(w′))

]
≥ 0,

ε2

[
(w − w′)T M̄(w − w′)− (ḡ(w)− ḡ(w′))

T
(ḡ(w)− ḡ(w′))

]
≥ 0. (16)
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Combining (16) with (15), we obtain

2(w − w′)T (P + D̄)(H(w)−H(w′))

≤ (w − w′)T (−2PD̄ − D̄2 + ε1L̄+ ε2M̄)(w − w′)
+ (f̄(w)− f̄(w′))T (−ε1I + ĀT Ā)(f̄(w)− f̄(w′))

+ (ḡ(w)− ḡ(w′))T (−ε2I + B̄T B̄)(ḡ(w)− ḡ(w′))

+ (H(w)−H(w′))T (−I + ĒT Ē)(H(w)−H(w′))

+ 2(w − w′)TPĀ(f̄(w)− f̄(w′))

+ 2(w − w′)TPB̄(ḡ(w)− ḡ(w′))

+ 2(w − w′)TPĒ(H(w)−H(w′))

+ 2(f̄(w)− f̄(w′))T ĀT B̄(ḡ(w)− ḡ(w′))

+ 2(f̄(w)− f̄(w′))T ĀT Ē(H(w)−H(w′))

+ 2(ḡ(w)− ḡ(w′))T B̄T Ē(H(w)−H(w′))

= ξT (t)Ωξ(t), (17)

where ξT (t) =
[
(w − w′)T , (f̄(w)− f̄(w′))

T
, (ḡ(w)− ḡ(w′))

T
, (H(w)−H(w′))

T
]

and

Ω =


Ω11 Ω12 Ω13 Ω14

∗ Ω22 Ω23 Ω24

∗ ∗ Ω33 Ω34

∗ ∗ ∗ Ω44

 ,
where Ω11 = −2PD̄ − D̄2 + ε1L̄+ ε2M̄ , Ω12 = PĀ, Ω13 = PB̄, Ω14 = PĒ, Ω22

= −ε1I + ĀT Ā, Ω23 = ĀT B̄, Ω24 = ĀT Ē, Ω33 = −ε2I + B̄T B̄, Ω34 = B̄T Ē,
Ω44 = −I + ĒT Ē.

Since Φ < 0 holds, noting the relationship between Ωij and Φij (i, j = 1, 2, 3, 4), one
can derive

XT
1 (Ω11 +Q− ε2M̄)X1 + (XT

2 Ω21 +XT
3 Ω31 +XT

4 Ω41)X1

+ (XT
1 Ω12 +XT

2 Ω22 +XT
3 Ω32 +XT

4 Ω42)X2

+ (XT
1 Ω13 +XT

2 Ω23 +XT
3 Ω33 +XT

4 Ω43)X3

+ (XT
1 Ω14 +XT

2 Ω24 +XT
3 Ω34 +XT

4 Ω44)X4 < 0,

for ∀X = (XT
1 , X

T
2 , X

T
3 , X

T
4 )T and X 6= 0.

By virtue of (10), we get

(XT
1 Ω11 +XT

2 Ω21 +XT
3 Ω31 +XT

4 Ω41)X1

+ (XT
1 Ω12 +XT

2 Ω22 +XT
3 Ω32 +XT

4 Ω42)X2

+ (XT
1 Ω13 +XT

2 Ω23 +XT
3 Ω33 +XT

4 Ω43)X3

+ (XT
1 Ω14 +XT

2 Ω24 +XT
3 Ω34 +XT

4 Ω44)X4 < XT
1 (−Q+ ε2M̄)X1 ≤ 0.
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That is, XTΩX < 0 holds for ∀X 6= 0. Hence, we get

Ω < 0. (18)

Equation (17), (18) and w 6= w′ guarantee that the following inequality holds

2(w − w′)T (P + D̄)(H(w)−H(w′)) < 0,

from which we conclude that H(w) 6= H(w′) for all w 6= w′. That is, the map H(w) is
injective.

Next we prove that ‖H(w)‖ → ∞ as ‖w‖ → ∞. Letting w′ = 0 and γ0 = wT , then
from (17) we deduce that

−2wT (P + D̄)(H(w)−H(0)) ≥ λm(−Ω)‖γ0‖2.

Using Schwartz inequality, we have

2 ‖w‖
∥∥P + D̄

∥∥ (‖H(w)‖+ ‖H(0)‖) ≥ ‖λm(−Ω)‖ ‖w‖2,

i. e.,

2(‖H(w)‖+ ‖H(0)‖) ≥ ‖λm(−Ω)‖∥∥P + D̄
∥∥ ‖w‖ .

That is to say ‖H(w)‖ → ∞ as ‖w‖ → ∞. By Lemma 2.3, the map H(w) is a
homeomorphism of R2n. Hence there exists a unique point ŵ such that H(ŵ) = 0, that
is, (4) has a unique equilibrium point ŵ.

Step 2: We prove that the unique equilibrium point of system (1) or (4) is globally
asymptotically stable. Since there exists a unique equilibrium point ŵ for (4), by the
transformation w̃ = w − ŵ, we can get

˙̃w = −D̄w̃ + Āf̃(w̃) + B̄g̃(w̃τ ) + Ē ˙̃wτ , (19)

where f̃(w̃) = f̄(w̃ + ŵ) − f̄(ŵ) and g̃(w̃τ ) = ḡ(w̃τ + ŵ) − ḡ(ŵ). It is clear that the
stability of the equilibrium point of (4) is equivalent to the stability of the origin of (19).

We construct the following Lyapunov functional:

V (w̃) = w̃TPw̃ + w̃T D̄w̃ +

∫ t

t−τ
˙̃wT (s) ˙̃w(s) ds+

∫ t

t−τ
w̃T (s)Qw̃(s) ds.

The time derivative of V (w̃) along the trajectory of (19) yields

V̇ (w̃) = 2w̃TP ˙̃w + 2 ˙̃wT D̄w̃ + ˙̃wT ˙̃w − ˙̃wτT ˙̃wτ + w̃TQw̃ − w̃τTQw̃τ

= 2w̃TP ˙̃w + ˙̃wT (2D̄w̃ + ˙̃w)− ˙̃wτT ˙̃w + w̃TQw̃ − w̃τTQw̃τ

= 2w̃TP (−D̄w̃ + Āf̃(w̃) + B̄g̃(w̃τ ) + Ē ˙̃wτ )

+ (−D̄w̃ + Āf̃(w̃) + B̄g̃(w̃τ ) + Ē ˙̃wτ )T × (D̄w̃ + Āf̃(w̃) + B̄g̃(w̃τ ) + Ē ˙̃wτ )

− ˙̃wτT ˙̃wτ + w̃TQw̃ − w̃τTQw̃τ ,
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which gives

V̇ (w̃) = −2w̃TPD̄w̃ + 2w̃TPĀf̃(w̃) + 2w̃TPB̄g̃(w̃τ ) + 2w̃TPĒ ˙̃wτ

− w̃T D̄2w̃ − w̃T D̄Āf̃(w̃)− w̃T D̄B̄g̃(w̃τ )− w̃T D̄Ē ˙̃wτ

+ f̃T (w̃)ĀT D̄w̃ + f̃T (w̃)ĀT Āf̃(w̃) + f̃T (w̃)ĀT B̄g̃(w̃τ ) + f̃T (w̃)ĀT Ē ˙̃wτ

+ g̃T (w̃τ )B̄T D̄w̃ + g̃T (w̃τ )B̄T Āf̃(w̃) + g̃T (w̃τ )B̄T B̄g̃(w̃τ ) + g̃T (w̃τ )B̄T Ē ˙̃wτ

+ ˙̃wτT ĒT D̄w̃ + ˙̃wτT ĒT Āf̃(w̃) + ˙̃wτT ĒT B̄g̃(w̃τ ) + ˙̃wτT ĒT Ē ˙̃wτ

− ˙̃wτT ˙̃wτ + w̃TQw̃ − w̃τTQw̃τ . (20)

We note that the following equalities hold:

w̃T D̄Āf̃(w̃) = f̃T (w̃)ĀT D̄w̃,

w̃T D̄B̄g̃(w̃τ ) = g̃T (w̃τ )B̄T D̄w̃,

w̃T D̄Ē ˙̃wτ = ˙̃wτT ĒT D̄w̃,

f̃T (w̃)ĀT B̄g̃(w̃τ ) = g̃T (w̃τ )B̄T Āf̃(w̃),

f̃T (w̃)ĀT Ē ˙̃wτ = ˙̃wτT ĒT Āf̃(w̃),

g̃T (w̃τ )B̄T Ē ˙̃wτ = ˙̃wτT ĒT B̄g̃(w̃τ ). (21)

Hence, (20) together with (21) gives

V̇ (w̃) = −2w̃TPD̄w̃ + 2w̃TPĀf̃(w̃) + 2w̃TPB̄g̃(w̃τ ) + 2w̃TPĒ ˙̃wτ

− w̃T D̄2w̃ + f̃T (w̃)ĀT Āf̃(w̃) + g̃T (w̃τ )B̄T B̄g̃(w̃τ ) + ˙̃wτT ĒT Ē ˙̃wτ

+ 2f̃T (w̃)ĀT B̄g̃(w̃τ ) + 2f̃T (w̃)ĀT Ē ˙̃wτ + 2g̃T (w̃τ )B̄T Ē ˙̃wτ

− ˙̃wτT ˙̃wτ + w̃TQw̃ − w̃τTQw̃τ . (22)

Eqs. (7) – (8) guarantee that the following inequalities are true

ε1(w̃T L̄w̃ − f̃T (w̃)f̃(w̃)) ≥ 0,

ε2(w̃τT M̄w̃τ − g̃T (w̃τ )g̃(w̃τ )) ≥ 0. (23)

Using (23) in (22), we obtain

V̇ (w̃) ≤ ηT (t)Φη(t) + w̃τT∆w̃τ , (24)

where ηT (t) =
[
w̃T , f̃T (w̃), g̃T (w̃τ ), ˙̃wτT

]
and Φ, ∆ are given in (9) and (10), respec-

tively.
Thus, inequalities (9), (10) and (24) imply that V̇ (w̃) is negative definite, and the ori-

gin of system (19), or equivalently the equilibrium point of (4) is globally asymptotically
stable. This completes the proof. �

If we select Q = ε2M̄ , then from Theorem 3.1, we have the following corollary:
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Corollary 3.2. Under Assumption 2.1, the neural network (1) has a unique equilibrium
point and it is globally asymptotically stable if there exist scalars εi > 0 (i = 1, 2) and
positive symmetric matrix P such that the following LMIs hold:

Ω =


Ω11 Ω12 Ω13 Ω14

∗ Ω22 Ω23 Ω24

∗ ∗ Ω33 Ω34

∗ ∗ ∗ Ω44

 < 0, (25)

where Ω11 = −2PD̄ − D̄2 + ε1L̄ + ε2M̄ , Ω12 = PĀ, Ω13 = PB̄, Ω14 = PĒ,
Ω22 = −ε1I+ĀT Ā, Ω23 = ĀT B̄, Ω24 = ĀT Ē, Ω33 = −ε2I+B̄T B̄, Ω34 = B̄T Ē,
Ω44 = −I + ĒT Ē.

Remark 3.3. The study of complex-valued neutral-type neural networks is more com-
plicated than the usual recurrent neural networks because of its neutral term. Thus,
how to deal with the effect of the neutral term on complex-valued neutral-type neural
networks is a difficult problem. Aiming at the neutral term, by using Lemma 2.4 we
define and employ a very important mapping (11), i. e., H(w) = (I − Ē)−1[−D̄w +
Āf̄(w)+ B̄ḡ(w)+ ū] instead of H(w) = −D̄w+ Āf̄(w)+ B̄ḡ(w)+ ū which has frequently
been considered in the existing literature (e. g., [34, 38, 47]).

3.2. Delay-dependent stability criteria

Theorem 3.4. Under Assumption 2.1, the equilibrium point of system (1) is globally
asymptotically stable if there exist four positive symmetric matrices P , Q, R and Λ, and
three scalars γ1 > 0, γ2 > 0 and γ3 > 0, and some constant matrices Sij (i = 1, 2, · · · , 6,
j = 1, 2, · · · , 6), with appropriate dimensions

S =


S11 S12 S13 S14 S15 S16

∗ S22 S23 S24 S25 S26

∗ ∗ S33 S34 S35 S36

∗ ∗ ∗ S44 S45 S46

∗ ∗ ∗ ∗ S55 S56

∗ ∗ ∗ ∗ ∗ S66

 > 0,

and some free matrices Ni (i = 1, 2, . . . , 6) such that

Ξ =


Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ16

∗ Ξ22 Ξ23 Ξ24 Ξ25 Ξ26

∗ ∗ Ξ33 Ξ34 Ξ35 Ξ36

∗ ∗ ∗ Ξ44 Ξ45 Ξ46

∗ ∗ ∗ ∗ Ξ55 Ξ56

∗ ∗ ∗ ∗ ∗ Ξ66

 < 0 (26)
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and

Π =



S11 S12 S13 S14 S15 S16 N1

∗ S22 S23 S24 S25 S26 N2

∗ ∗ S33 S34 S35 S36 N3

∗ ∗ ∗ S44 S45 S46 N4

∗ ∗ ∗ ∗ S55 S56 N5

∗ ∗ ∗ ∗ ∗ S66 N6

∗ ∗ ∗ ∗ ∗ ∗ R


> 0 (27)

hold, where Ξ11 = −2PD̄−D̄2+Q+γ1L̄+τD̄RD̄+N1+NT
1 +τS11, Ξ12 = −N1+NT

2 +
τS12, Ξ13 = PĀ− τD̄RĀ+NT

3 + τS13, Ξ14 = NT
4 + τS14, Ξ15 = PB̄− τD̄RB̄+

NT
5 +τS15, Ξ16 = PĒ−τD̄RĒ+NT

6 +τS16, Ξ22 = −Q+γ2L̄+γ3M̄−NT
2 −N2+τS22,

Ξ23 = −NT
3 + τS23, Ξ24 = −NT

4 + τS24, Ξ25 = −NT
5 + τS25, Ξ26 = −NT

6 + τS26,
Ξ33 = ĀT Ā+ τĀTRĀ+ τS33 + Λ− γ1I, Ξ34 = τS34, Ξ35 = ĀT B̄+ τĀTRB̄+ τS35,
Ξ36 = ĀT Ē + τĀTRĒ + τS36, Ξ44 = τS44 − Λ − γ2I, Ξ45 = τS45, Ξ46 = τS46,
Ξ55 = B̄T B̄ + τB̄TRB̄ + τS55 − γ3I, Ξ56 = B̄T Ē + τB̄TRĒ + τS56, Ξ66 = −I +
ĒT Ē + τĒTRĒ + τS66.

P r o o f . We define the following positive definite Lyapunov functional:

V (w̃) = V1(w̃) + V2(w̃) + V3(w̃) + V4(w̃) + V5(w̃) + V6(w̃),

where

V1(w̃) = w̃TPw̃,

V2(w̃) = w̃T D̄w̃,

V3(w̃) =

∫ t

t−τ
˙̃wT (s) ˙̃w(s) ds,

V4(w̃) =

∫ t

t−τ
w̃T (s)Qw̃(s) ds,

V5(w̃) =

∫ 0

−τ

∫ t

t+θ

˙̃wT (s)R ˙̃w(s) dsdθ,

V6(w̃) =

∫ t

t−τ
f̃T (w̃(s))Λf̃(w̃(s)) ds.

Deriving the derivative of V (w̃) along the trajectory of (19), we can obtain:

V̇ (w̃) = 2w̃TP ˙̃w + 2 ˙̃wT D̄w̃ + ˙̃wT ˙̃w − ˙̃wτT ˙̃wτ + w̃TQw̃ − w̃τTQw̃τ

+τ ˙̃wTR ˙̃w −
∫ t

t−τ
˙̃wT (s)R ˙̃w(s) ds+ f̃T (w̃)Λf̃(w̃)− f̃T (w̃τ )Λf̃(w̃τ ). (28)

Using the following zero equation:

w̃(t)− w̃(t− τ)−
∫ t

t−τ
˙̃w(s) ds = 0.
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Then for any constant matrices Ni (i = 1, 2, . . . , 5) with appropriate dimensions, we
obtain:

2[w̃TN1 + w̃τTN2 + f̃T (w̃)N3 + f̃T (w̃τ )N4 + g̃T (w̃τ )N5 + ˙̃wτTN6]

×[w̃ − w̃τ −
∫ t

t−τ
˙̃w(s) ds] = 0. (29)

On the other hand, for any constant matrices Sij (i = 1, 2, . . . , 6; j = 1, 2, . . . , 6) with
appropriate dimensions, the following equation holds:

ϕT (t)Ψϕ(t) = 0, (30)

where ϕT (t) = [w̃T , w̃τT , f̃T (w̃), f̃T (w̃τ ), g̃T (w̃τ ), ˙̃wτT ] and

Ψ=


τ(S11−S11) τ(S12−S12) τ(S13−S13) τ(S14−S14) τ(S15−S15) τ(S16−S16)
τ(S21−S21) τ(S22−S22) τ(S23−S23) τ(S24−S24) τ(S25−S25) τ(S26−S26)
τ(S31−S31) τ(S32−S32) τ(S33−S33) τ(S34−S34) τ(S35−S35) τ(S36−S36)
τ(S41−S41) τ(S42−S42) τ(S43−S43) τ(S44−S44) τ(S45−S45) τ(S46−S46)
τ(S51−S51) τ(S52−S52) τ(S53−S53) τ(S54−S54) τ(S55−S55) τ(S56−S56)
τ(S61−S61) τ(S62−S62) τ(S63−S63) τ(S64−S64) τ(S65−S65) τ(S66−S66)

 .

Eqs. (7) – (8) guarantee that the following inequalities are true

γ1(w̃T L̄w̃ − f̃T (w̃)f̃(w̃)) ≥ 0,

γ2(w̃τT L̄w̃τ − f̃T (w̃τ )f̃(w̃τ )) ≥ 0,

γ3(w̃τT M̄w̃τ − g̃T (w̃τ )g̃(w̃τ )) ≥ 0. (31)

Submitting (19) and (21) to the right side of (28) and adding the left terms of (29) –
(31), we can get the following inequality:

V̇ (w̃) ≤ φT (t)Ξφ(t)−
∫ t

t−τ
ζT (t, s)Πζ(t, s) ds,

where φT (t) = [w̃T , w̃τT , f̃T (w̃), f̃T (w̃τ ), g̃T (w̃τ ), ˙̃wτT ] and ζT (t, s) = [φT (t), ˙̃wT (s)].
Thus, we have V̇ (w̃) < 0 if the conditions (26) and (27) hold. It follows that the

system (4) is globally stable, which means the equilibrium of system (1) is globally
stable. This completes the proof. �

Remark 3.5. To the best of our knowledge, there are no stability results on complex-
valued neutral-type neural networks with time delays in the existing literature. We just
require that the activation functions satisfy the Lipschitz condition in this paper, so
there is much room for further investigation.

4. NUMERICAL EXAMPLES

In this section, two numerical examples are provided to illustrate the effectiveness of the
developed method for complex-valued neutral-type neural networks with time delays.
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Example 4.1. Consider the system (1) that has two neurons, in which the parameters
and nonlinear complex-valued functions are given as follows:

D =

[
80 0
0 60

]
, A =

[
05 + 0.5i 1− i
2− 3i 2 + i

]
,

B =

[
0.6− i 1 + 0.8i
2 + 2i 2− 2i

]
, E =

[
0.1 + 0.3i 0.2 + 0.1i
0.3− 0.4i −0.5 + 0.2i

]
,

τ = 0.1, u =

[
8− 5i
−1 + 3i

]
,

for zj = xj + iyj ∈ C, with xj , yj ∈ R. The activation functions are given as follows:

fj(zj) =
1− e−xj

1 + e−xj
+ i

1

1 + e−yj
,

gj(zj) =
1− e−xj

1 + e−xj
+ i

1

1 + e−yj
,

and we can choose

L =

[
2 0
0 2

]
, M =

[
2 0
0 2

]
.

Using Matlab LMI toolbox to solve (9) and (10), we can obtain the feasible solutions:
ε1 = 525.5086, ε2 = 536.8626 and

P =


30.4912 9.4503 −0.0000 2.3023
9.4503 41.6187 −2.3023 0.0000
−0.0000 −2.3023 30.4912 9.4503
2.3023 0.0000 9.4503 41.6187

,

Q = 103 ×


5.0570 0.5587 0.0000 0.1342
0.5587 2.9856 −0.1342 −0.0000
0.0000 −0.1342 5.0570 0.5587
0.1342 −0.0000 0.5587 2.9856

.

According to Theorem 3.1, the neutral-type neural network (1) has a unique equi-
librium point, which is asymptotically stable. Figure 1 shows the real and imaginary
parts of the states for neural network (1), where the initial conditions are taken as
z1(0) = 8.8 + 9.5i and z2(0) = −6.3− 4.5i.

Example 4.2. Consider the system (1) that has two neurons, in which the parameters
and nonlinear complex-valued functions are given as follows:

D =

[
25 0
0 40

]
, A =

[
1 + i −2− 2i
0.5 + 0.8i 2 + i

]
,

B =

[
0.9 + 1.5i 1 + i
−2 + 2i 2− 2i

]
, E =

[
0.2 + 0.2i 0.1 + 0.3i
0.4− 0.5i −0.3 + 0.1i

]
,

τ = 0.3, u =

[
10− 8i
−1 + 2i

]
,
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Fig. 1. Curves of the real and imaginary part of z1 and z2 in

Example 4.1.

for zj = xj + iyj ∈ C, with xj , yj ∈ R. The activation functions are given as follows:

fj(zj) =
1− e−xj

1 + e−xj
+ i 1

1+e−yj
,

gj(zj) =
1− e−xj

1 + e−xj
+ i 1

1+e−yj
,

and we can choose

L =

[
2 0
0 2

]
, M =

[
2 0
0 2

]
.

Using Matlab LMI toolbox to solve (26) and (27), we can obtain the feasible solu-
tions: γ1 = 268.4961, γ2 = 8.9309, γ3 = 98.8004 and

P =


43.1511 1.0213 0.0000 1.7542
1.0213 5.0207 −1.7542 0.0000
0.0000 −1.7542 43.1511 1.0213
1.7542 0.0000 1.0213 5.0207

,

Q =


555.3960 7.5999 0.0000 12.4358
7.5999 569.4956 −12.4358 0.0000
0.0000 −12.4358 555.3960 7.5999
12.4358 0.0000 7.5999 569.4956

,



Global asymptotic stability of complex-valued neutral-type neural networks with time delays 859

R =


1.5140 0.0531 0.0000 0.0925
0.0531 0.0891 −0.0925 0.0000
0.0000 −0.0925 1.5140 0.0531
0.0925 0.0000 0.0531 0.0891

,

Λ =


120.3967 8.5685 −0.0000 0.9818
8.5685 97.1789 −0.9818 −0.0000
−0.0000 −0.9818 120.3967 8.5685
0.9818 −0.0000 8.5685 97.1789

 .
The conditions in Theorem 3.4 are satisfied. By Theorem 3.4 we can conclude that

the equilibrium point of system (1) is globally asymptotically stable. Figure 2 shows the
real and imaginary parts of the states for neural network (1), where the initial conditions
are taken as z1(0) = 9.6 + 10.2i and z2(0) = 8.4− 11.3i.
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Fig. 2. Curves of the real and imaginary part of z1 and z2 in

Example 4.2.

Remark 4.3. The boundedness and differentiability of the activation function are re-
moved in this paper. Hence, the results in [8, 14, 43] cannot be utilized to assure the
global asymptotic stability of neural network (1).

Remark 4.4. Due to the existence of neutral term, the LMI-based conditions in The-
orem 3.1 and Theorem 3.4 are different from those in [6, 14, 45, 46]. Thus, for the
parameters given in Examples 4.1 and 4.2, the global asymptotic stability of system (1)
cannot be verified by the results in [6, 14, 45, 46].
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5. CONCLUSIONS

To deal with the neutral term in the right side of neural network (1), a proper function
(11) is constructed to prove the existence of equilibrium. By separating complex-valued
neural networks into its real and imaginary parts in this paper, some criteria that guar-
antee the existence, uniqueness and global asymptotic stability of equilibrium point for
the complex-valued neutral-type neural networks are obtained, without assuming that
the activate functions are bounded or differentiable. The effectiveness of the obtained
theoretical results is verified by two numerical examples.
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