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This paper introduces a new variant of Petri net controlled grammars, namely a concurrently
controlled grammar, where the control over the application of the productions of a grammar
is realized by a Petri net with different parallel firing strategies. The generative capacity of
these grammars is investigated with respect to transition labeling strategies, definitions of final
marking sets and parallel transition firing modes. It is shown that the labeling strategies do
not effect the computational power whereas the maximal firing modes increase the power of
concurrently controlled grammars with erasing rules up to Turing machines.
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1. INTRODUCTION

Petri nets [26], “dynamic” bipartite directed graphs with two sets of nodes, called places
and transitions, provide an elegant and powerful mathematical formalism for modelling
concurrent systems and their behaviour. Since Petri nets successfully describe and anal-
yse the flow of information and the control of action in such systems, they can be very
suitable tools for studying the properties of formal languages. Initially, used as language
generating/accepting tools [14, 15, 17, 18, 20, 35, 36], eventually, Petri Nets have been
widely applied as regulation mechanisms for grammar systems [1], automata [2, 11, 12,
13, 19, 37, 38], and grammars [3, 4, 5, 6, 7, 8, 9, 10, 16, 22, 27, 28, 29, 30, 31, 32, 33, 34].
The concept of maximal parallelism in Petri nets is studied in [2]. In [11, 13] authors
investigate another different viewpoints on the parallel firing of transitions in Petri nets.
They introduce Turing Machines with Petri nets as finite control (called Concurrent Tur-
ing Machines), where each token within a marking is associated with an individual read
and write head on a tape of Concurrent Turing Machine. In [13] researchers define and
study the variant of the Concurrent Finite Automaton (CFA), where finite automata
are generalized by using Petri nets as control. Some modes of firing transitions in Petri
nets are compared and investigated in [21]. A generalization of regularly controlled
grammars (called as Petri net controlled grammar) is considered in [4, 9]: instead of a
finite automaton a Petri net is associated with a context-free grammar and it is required
that the sequence of applied rules corresponds to an occurrence sequence of the Petri
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net, i. e., to sequences of transitions which can be fired in succession. Several variants
of Petri net controlled grammars have been introduced and investigated: In [5, 6, 10]
authors introduce k-Petri net controlled grammars and study their properties including
generative power, closure properties, infinite hierarchies. In [7, 8] researchers investigate
grammars controlled by the structural subclasses of Petri nets, namely state machines,
marked graphs, causal nets, free-choice nets, asymmetric choice nets and ordinary nets.
They prove that the family of languages generated by (arbitrary) Petri net controlled
grammars coincide with the family of languages generated by grammars controlled by
free-choice nets. The continuation of the research on Petri net controlled grammars by
restricting to (context-free, extended or arbitrary) Petri nets with place capacities have
been investigated in [28, 29, 30]. A Petri net with place capacity regulates the defining
grammar by permitting only those derivations where the number of each nonterminal
in each sentential form is bounded by its capacity. It was shown that several families
of languages generated by grammars controlled by extended cf Petri nets with place
capacities coincide with the family of matrix languages of finite index. In [23, 24, 25]
authors introduce and study the conception of context free concurrent grammars, where
grammars are controlled by context free Petri nets under parallel firing strategies, i. e.,
the transitions of a Petri net fire simultaneously in different modes.

In this paper, we introduce new variants of Petri net controlled grammars, called
concurrently controlled grammars, where we use p/t Petri nets under different parallel
firing strategies, and study their generative powers. We consider concurrently controlled
grammars with various firing modes (multistep, maximal multistep, labeled multistep),
labeling strategies (free labeling, arbitrary labeling, extended labeling) and definitions of
final marking sets (t-type, r-type), which result in different classes of languages generated
by such grammars. We show that the computational power of concurrently controlled
grammars is at least as powerful as their sequential counterparts, on the other hand, the
generative power can be increased up to the power of Turing Machines under a specific
firing mode and labeling strategy. This work is a new approach in studying theoretical
models for concurrent and parallel computation.

2. PRELIMINARIES

Let N be the set of all non-negative integers and Nk be the set of all vectors of k non-
negative integers. The cardinality of a set X is denoted by |X|.

2.1. Grammars and languages

Let Σ be an alphabet which is a finite nonempty set of symbols. A string over the
alphabet Σ is a finite sequence of symbols from Σ. The empty string is denoted by λ.
The set of all strings over the alphabet Σ is denoted by Σ∗. A subset of Σ∗ is called
a language. The length of a string w, denoted by |w|, is the number of occurrences of
symbols in w. The number of occurrences of a symbol a in a string w is denoted by |w|a.

A context-free grammar is a quadruple G = (V,Σ, S,R) where V and Σ are the
disjoint finite sets of nonterminal and terminal symbols, respectively, S ∈ V is the start
symbol and R ⊆ V × (V ∪Σ)∗ is a finite set of (production) rules. Usually, a rule (A, x)
is written as A → x. A and x are respectively called the left and right sides of the
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production. A rule of the form A→ λ is called an erasing rule. A grammar G is called
λ-free if all the productions of R are non-erasing, or S → λ is the only erasing rule and
S does not appear on the right side of any production.

For x ∈ (V ∪Σ)∗ and y ∈ (V ∪Σ)∗, we write x⇒ y, iff there is a rule r = A→ β ∈ R
such that x = x1Ax2 and y = x1βx2. The reflexive and transitive closure of ⇒ is
denoted by ⇒∗. A derivation using the sequence of rules π = r1r2 · · · rn is denoted by
π

==⇒ or
r1r2···rn======⇒.

The language generated by G is defined by L(G) = {w ∈ Σ∗ | S ⇒∗ w}. The family
of context-free languages is denoted by CF.

2.2. Multisets

A multiset over an alphabet Σ is a mapping µ : Σ → N. The set Σ is called the
basic set of a multiset µ and the elements of Σ is called the basic elements of a mul-
tiset µ. A multiset µ over an alphabet Σ = {a1, a2, . . . , an} can be denoted by µ =
(µ(a1)a1, µ(a2)a2, . . . , µ(an)an) where µ(ai), 1 ≤ i ≤ n, is the multiplicity of ai, or as
a vector µ = (µ(a1), µ(a2), . . . , µ(an)),

The empty multiset is denoted by φ, that is φ(a) = 0 for all a ∈ Σ. The set of all
multisets over Σ is denoted by Σ⊕.

For two multisets µ1, µ2 ∈ Σ⊕, we define

— the inclusion by µ1 v µ2 if and only if µ1(a) ≤ µ2(a) for all a ∈ Σ;

— the sum by (µ1 ⊕ µ2)(a) = µ1(a) + µ2(a) for each a ∈ Σ;

— the difference by (µ1 	 µ2)(a) = max{0, µ1(a)− µ2(a)} for each a ∈ Σ.

2.3. Petri nets

A Petri net (PN for short) is a quadruple (P, T, ξ1, ξ2) where P and T are finite disjoint
sets of places and transitions, respectively, mappings ξ1, ξ2 : T⊕ → P⊕ are homo-
morphisms where ξ1(t) and ξ2(t) define pre- and post- multisets of transition t ∈ T ,
respectively. A multiset µ ∈ P⊕ is called a marking.

A labeled Petri net is a tuple K = (Σ, P, T, ξ1, ξ2, γ, µ0,M) where Σ is an alphabet,
(P, T, ξ1, ξ2) is a Petri net, γ : T → Σ∪ {λ} is a transition labeling function, µ0 ∈ P⊕ is
the initial marking, and M ⊆ P⊕ is a finite set of final markings.

A transition t ∈ T is called λ-transition if and only if γ(t) = λ. A transition labeling
function γ is called λ-free if no transition is labeled with the empty string, i. e., γ(t) 6= λ
for all t ∈ T , and arbitrary if no restriction is posed on it.

An occurrence relation
t−→ over Σ∗ × P⊕ is defined by (x, µ1)

t−→ (y, µ2) if and only if

y = xγ(t), ξ1(t) v µ1 and µ2 = (µ1 	 ξ1(t))⊕ ξ2(t)

where x, y ∈ Σ∗ and µ1, µ2 ∈ P⊕.
An occurrence sequence from (x0, µ0) to (xk, µk) is a finite sequence of transitions

t1t2 · · · tk ∈ T ∗, ti ∈ T , 1 ≤ i ≤ k, such that

(x0, µ0)
t1−→ (x1, µ1)

t2−→ · · · tk−→ (xk, µk).
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In short this sequence can be written as (x0, µ0)
t1t2···tk−−−−−→ (xk, µk) or (x0, µ0)

τ−→
(xk, µk) where τ = t1t2 · · · tk.

The language of a labeled Petri net K with respect to a transition labeling function
γ and a final marking set M is defined by

L(K) = {w ∈ Σ∗ | (λ, µ0)
τ−→ (w, µ) where τ ∈ T ∗ and µ ∈M}.

2.4. Petri net controlled grammars

Definition 2.1. A Petri net controlled grammar (Petri net grammar, for short) is a
tuple G = (V,Σ, S,R,K) where (V,Σ, S,R) is a context-free grammar, and
K = (R,P, T, ξ1, ξ2, γ, µ0,M) is a labeled Petri net.

Definition 2.2. A Petri net controlled grammar G is called (1) λ-free (denoted by −λ)
if γ is λ-free, (2) arbitrary (denoted by λ) if γ is arbitrary, (3) r-type (denoted by r) if
M = P⊕, and (4) t-type (denoted by t) if M is a finite set.

We use the notation (x, y)-Petri net grammar where x ∈ {−λ, λ} shows the type of
a labeling function and y ∈ {r, t} shows the type of a set of final markings.

Definition 2.3. A derivation step is a binary relation
t

=⇒ over (V ∪ Σ)∗ × P⊕ defined

by (w1, µ1)
t

=⇒ (w2, µ2) if and only if ξ1(t) v µ1, µ2 = (µ1 	 ξ1(t)) ⊕ ξ2(t) and one of
the following conditions holds

(1) γ(t) = A→ β ∈ R and there are strings x1, x2 ∈ (V ∪ Σ)∗ such that w1 = x1Ax2

and w2 = x1βx2,

(2) γ(t) = λ and w1 = w2.

Definition 2.4. A derivation from (w, µ) to (w′, µ′) is a sequence of derivation steps

(w0, µ0)
t1==⇒ (w1, µ1)

t2==⇒ · · · tk==⇒ (wk, µk)

where w0 = w, wk = w′, µ0 = µ, µk = µ′, and t1t2 · · · tk ∈ T ∗.
For short this sequence can be written as (w, µ)

t1t2···tk======⇒ (w′, µ′) or (w, µ)
τ

==⇒
(w′, µ′) where τ = t1t2 · · · tk.

Definition 2.5. The language generated by a Petri net controlled grammar G is defined
by

L(G) = {w ∈ Σ∗ | (S, µ0)
τ

==⇒ (w, µ) where τ ∈ T ∗ and µ ∈M}.

We denote by PN(x, y) and PNλ(x, y) the families of languages generated by (x, y)-PN
grammars without and with erasing rules, respectively, where x ∈ {−λ, λ} and y ∈ {r, t}.

The relations of these families of languages with respect to MAT and MATλ, the
families of matrix languages, is depicted in the following theorem.

Theorem 2.6. (Zetzsche [37]) For x ∈ {−λ, λ},

MAT ⊆ PN(x, r) ⊆ PN(x, t) = PNλ(x, t) = MATλ.
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2.5. Multisteps

We recall some notions and notations related to “multistep” in Petri nets.

Let K = (Σ, P, T, ξ1, ξ2, γ, µ0,M) be a labeled Petri net, and let Tx = {t | γ(t) = x},
for some x ∈ Σ. A multiset τ ∈ (Tx)⊕ is called a labeled multistep (simply multistep).

For strings w1, w2 ∈ Σ∗, markings µ1, µ2 ∈ P⊕ and a multistep τ ∈ (Tx)⊕, a multistep

occurrence is defined by (w1, µ1)
τ−−→m (w2, µ2) if and only if

w2 = w1x and ξ1(τ) v µ1, µ2 = (µ1 	 ξ1(τ))⊕ ξ2(τ).

A multistep τ is called

• maximal in µ1 if and only if, for all τ ′ ∈ (Tx)⊕, τ v τ ′ and ξ1(τ ′) v µ1 imply
τ ′ = τ ,

• a step if τ is a multiset, where its each element has a multiplicity of one, i. e.,
τ ⊆ Tx,

• a maximal step in µ1 if and only if, for all τ ′ ⊆ Tx, τ v τ ′ and ξ1(τ ′) v µ1 imply
τ ′ = τ .

A step (maximal multistep, maximal step) occurrence is denoted by
τ−−→s (

τ−−→m̂ and
τ−−→ŝ, respectively). The reflexive transitive closure of −→ρ is denoted by

∗−−→ρ.

The languages of a labeled Petri net K with steps, multisteps, maximal steps and
maximal multisteps are defined by

Lρ(K) = {w ∈ Σ∗ | (λ, µ0)
∗−−→ρ (w, µ) where µ ∈M}, ρ ∈ {s,m, ŝ, m̂}.

A language Lρ(K) is called λ-free if γ(t) 6= λ for all t ∈ T . The family of (λ-free)
languages of type ρ ∈ {s,m, ŝ, m̂} is denoted by Lλρ (Lρ).

The main relations of these languages families are demonstrated in the following
theorem (for details, see [21]):

Theorem 2.7.

(1) Ls ⊂ Lm ⊂ Lm̂ ⊂ CS ⊂ RE = Lλŝ = Lλm̂,

(2) Ls ⊂ Lŝ ⊂ Lm̂,

(3) Lm ⊆ Lλs = Lλm ⊂ RE,

where CS and RE are respectively the families of context-sensitive and recursively
enumerable languages.
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3. CONCURRENT GRAMMARS

Definition 3.1. Let G = (V,Σ, S,R,K) be a Petri net grammar where
K = (R,P, T, ξ1, ξ2, γ, µ0,M). For r = A → β ∈ R, let Tr = {t ∈ T | γ(t) = r}, and
let Tλ = {t ∈ T | γ(t) = λ}. We say that (w1, µ1) ∈ (V ∪ Σ)∗ × P⊕ directly derives

(w2, µ2) ∈ (V ∪ Σ)∗ × P⊕ with a multistep τ , written as (w1, µ1)
τ

==⇒ρ (w2, µ2), if and
only if ξ1(τ) v µ1, µ2 = (µ1 	 ξ1(τ))⊕ ξ2(τ) and one of the following conditions holds

(1) τ ∈ (Tr)
⊕ and there are strings x1, x2 ∈ (V ∪ Σ)∗ such that w1 = x1Ax2 and

w2 = x1βx2,

(2) τ ∈ (Tλ)⊕ and w1 = w2.

Then a relation
τ

==⇒ρ is called a derivation step in ρ-mode where ρ ∈ {s,m, ŝ, m̂}.

Definition 3.2. A Petri net grammar G with derivations in any ρ-mode, ρ ∈ {s,m, ŝ, m̂},
is called a concurrent grammar.

We use a clearer notation (x, y, ρ)-concurrent grammar where x ∈ {−λ, λ} shows
the type of a labeling function, y ∈ {r, t} the type of a set of final markings, and
ρ ∈ {m, s, ŝ, m̂} the derivation mode.

Definition 3.3. The language generated by a concurrent grammar G in ρ-mode, ρ ∈
{m, s, ŝ, m̂}, is defined as

Lρ(G) = {w ∈ Σ∗ | (S, µ0)
τ1τ2···τk======⇒ρ (w, µ), where τi ∈ (Txi

)⊕,

xi ∈ R ∪ {λ}, 1 ≤ i ≤ k, and µ ∈M}.

The language generated by a concurrent grammar is called a concurrent language.

We denote by PN(x, y, ρ) and PNλ(x, y, ρ) the families of languages generated by
(x, y, ρ)-concurrent grammars without and with erasing rules, respectively. We also use

bracket notation PN[λ](x, y, ρ) in order to say that a statement holds both in case with
erasing rules and in case without erasing rules.

Further, we define a normal form for concurrent grammars which is needed in sequel.

Definition 3.4. A concurrent grammar G is said to be in nonterminal normal form if
all productions are of the form

• A→ β where β ∈ V ∗ or

• A→ a where a ∈ Σ.

Lemma 3.5. For every concurrent grammar G there exists an equivalent concurrent
grammar G′ in nonterminal normal form.
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P r o o f . Such a normal form can be easily constructed from arbitrary concurrent gram-
mar by replacing each terminal a on the right side of each production with a nonterminal
Za, and introducing the production Za → a. The labeled Petri net is modified accord-
ingly: the transitions of the labeled Petri net will preserve the corresponding modified
productions, and we add new transitions and the connecting place for all productions
Za → a.

Let G = (V,Σ, S,R,K) be an (x, y, ρ)-concurrent grammar with
K = (R,P, T, ξ1, ξ2, γ, µ0,M) where x ∈ {−λ, λ}, y ∈ {r, t}, and ρ ∈ {m, s, ŝ, m̂}.

Let ZΣ = {Za | a ∈ Σ} be a set of new nonterminals. We define a coding h :
(V ∪ Σ) → (V ∪ ZΣ) as h(A) = A for all A ∈ V and h(a) = Za for all a ∈ Σ. Then
the grammar G′ = (V ′,Σ, S′, R′,K ′) with K ′ = (R′, P ′, T ′, ξ′1, ξ

′
2, γ
′, µ′0,M

′) is defined
as follows:

• V ′ = V ∪ ZΣ ∪ {S′} where S′ /∈ V ∪ ZΣ,

• R′ = {A→ h(β) | A→ β ∈ R} ∪ {Za → a | a ∈ Σ} ∪ {S′ → S},

• P ′ = P ∪ {p0, p1},

• T ′ = T ∪ {t0} ∪ {ta | a ∈ Σ},

• M ′ = P ′⊕, (if M is finite, M ′ = {νµ|µ ∈M},

• for all t ∈ T ′,

ξ′1(t) =





ξ1(t) if t ∈ T,
{p0} if t = t0,

{p1} if t = ta for all a ∈ Σ,

• for all t ∈ T ′,

ξ′2(t) =





ξ2(t) if t ∈ T,
P0 if t = t0,

{p1} if t = ta for all a ∈ Σ,

where P0 = µ0 ⊕ p1,

• for all p ∈ P ′,

µ′0(p) =

{
0 if p ∈ P ∪ {p1},
1 if p = p0,

• for all p ∈ P ′, and for each νµ ∈M ′ where µ ∈M ,

νµ(p) =





µ(p) if p ∈ P,
0 if p = p0,

1 if p = p1.
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Any derivation of a string w in G can be easily simulated by a derivation of G′:
the derivation starts with S′ → S, and a sentential form produced by A → β ∈ R
is replaced with the sentential form produced by A → h(β). Then, h(w) is resulted.
Further, productions of the form Za → a are applied. By construction, since, at a time,
only one ta can be fired, the firing mode is not affected. Thus, L(G) ⊆ L(G′). The
inverse inclusion is also can be shown by using similar arguments. �

4. RESULTS

In this section, we study the effects of the labeling strategy and the definitions of final
marking sets to the generative power of concurrent grammars. Moreover, we discuss the
effect of firing modes to the generative capacity of concurrent grammars, and establish
the relations among different families of concurrent languages.

4.1. The power of labelings

In this subsection, we study the effects of the labeling strategy to the generative power
of concurrent grammars. From the definition, the next lemma follows immediately.

Lemma 4.1. For all y ∈ {r, t} and ρ ∈ {m, s, ŝ, m̂},

PN[λ](−λ, y, ρ) ⊆ PN[λ](λ, y, ρ).

Next, we show that the inverse inclusion also holds.

Lemma 4.2. For all y ∈ {r, t} and ρ ∈ {m, s, ŝ, m̂},

PN[λ](λ, y, ρ) ⊆ PN[λ](−λ, y, ρ).

P r o o f . Let G = (V,Σ, S,R,K) be a (λ, y, ρ)-concurrent grammar, where
K = (R,P, T, ξ1, ξ2, γ, µ0,M). Following the proof of Lemma 3.5, first, we construct an
equivalent (−λ, y, ρ)-concurrent grammar G′ = (V ′,Σ, S′, R′,K ′) with
K ′ = (R′, P ′, T ′, ξ′1, ξ

′
2, γ
′, µ′0,M

′).

The idea of the definition of the equivalent (−λ, y, ρ)-concurrent grammar G′′ =
(V ′,Σ, S′, R′′,K ′′) where K ′′ = (R′′, P ′, T ′′, ξ′′1 , ξ

′′
2 , γ
′′, µ′0,M

′) has the same construction
as K ′ except additional copies of λ-transitions with the incoming and outgoing edges.
Let Tλ = {t ∈ T | γ(t) = λ}. For each λ-transition t ∈ Tλ, we introduce |V ∪ Σ|
“copies” tA for all A ∈ V , ta for all a ∈ Σ, whose labels correspondingly A → A and
Ta → Ta. Each copy of t ∈ Tλ has the same input and output places as t. The modified
components of G′′ are defined as follows:

• R′′ = R′ ∪ {A→ A | A ∈ V ′} | a ∈ Σ},

• T ′′ = T ′ ∪ {tλ,A | t ∈ Tλ and A ∈ V } ∪ {tλ,a | t ∈ Tλ and a ∈ Σ},

• for all t ∈ T ′′ and i = 1, 2,

ξ′′i (t) =





ξ′i(t) if t ∈ T ′ − Tλ,
ξ′i(tλ) if t = tλ,A and tλ ∈ Tλ,
ξ′i(tλ) if t = tλ,a and tλ ∈ Tλ,
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• for all t ∈ T ′′,

γ′′(t) =





γ(t) if t ∈ T ′ − Tλ,
A→ A if t = tλ,A for all A ∈ V,
Ta → Ta if t = tλ,a for all a ∈ Σ.

In every time when non-λ-transitions in K ′ are fired, the identical transitions are
also fired in K ′′, which result in a sentential form containing some nonterminals A from
(V ∪ TΣ). If, further, some λ-transitions are fired in K ′, then, in K ′′, we choose those
copies of these λ-transitions whose labels are A → A. In derivations, where used the
productions S → λ, we cannot replace λ-transitions by transitions labeled A → A (or
Ta → Ta), because a production S → S is not allowed in a non-erasing grammar. In
this case we remove the production S → λ from the original grammar, then apply the
above construction. If the original grammar can generate λ, then constructed grammar
can be easily modified by adding λ to the language. Thus, it is not difficult to see that
L(G) = L(G′) = L(G′′). �

Remark 4.3. We notice that it is undecidable whether a language PN(λ, m̂, t) contains
λ. Since the equality RE = Lλm̂ from [21] is effective, it is not decidable whether a ∈ L for
a given L ∈ Lλm̂. Moreover, it is decidable weather a language in PN(−λ, m̂, t) contains
λ. This amounts to deciding the membership problem for a language in Lm̂, which is
decidable. Thus, it is not possible to effectively translate a PN(λ, m̂, t)-grammar into
an equivalent PN(−λ, m̂, t) -grammar.

From the Lemma 4.1 and Lemma 4.2, we obtain the following result

Theorem 4.4. The labeling strategy does not effect to the generative capacity of con-
current grammars, i. e., for all y ∈ {r, t} and ρ ∈ {m, s, ŝ, m̂},

PN(−λ, y, ρ) = PN(λ, y, ρ) ⊆ PNλ(−λ, y, ρ) = PNλ(λ, y, ρ).

4.2. The power of final markings

In this subsection, we study the effect of the definitions of final marking sets to the
generative power.

Lemma 4.5. For all x ∈ {−λ, λ} and ρ ∈ {m, s, ŝ, m̂},

PN[λ](x, r, ρ) ⊆ PN[λ](x, t, ρ).

P r o o f . Let G = (V,Σ, S,R,K) with K = (R,P, T, ξ1, ξ2, γ, µ0,M) be an (x, r, ρ)-
concurrent grammar where x ∈ {−λ, λ} and ρ ∈ {m, s, ŝ, m̂}. Following the proof
of Lemma 4.2, first, we construct an equivalent (−λ, r, ρ)-concurrent grammar G′ =
(V ′,Σ, S′, R′,K ′) with a labeled Petri net K ′ = (R′, P ′, T ′, ξ′1, ξ

′
2, γ
′, µ′0,M

′), which is in
nonterminal normal form.

We define the (−λ, t, ρ)-concurrent grammar G′′ = (V ′,Σ, S′, R′,K ′′) with K ′′ =
(R′, P ′, T ′′, ξ′′1 , ξ

′′
2 , γ
′′, µ′0,M

′′) such that Lρ(G) = Lρ(G′) = Lρ(G′′). For each p ∈ P ′, we
construct the set Tp,Σ′ and Tp,V ′ , where Tp,Σ′ = {tp,a | a ∈ Σ′} and Tp,V ′ = {tp,A | A ∈
V ′}
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• T ′′ extended from T ′ by adding, for each place p ∈ P ′, set of transitions Tp,Σ′ and
Tp,V ′ , i. e., T ′′ = T ′ ∪ Tp,Σ′ ∪ Tp,V ′ . For any firing mode ρ, the transitions tp,a and
tp,A remove the remaining tokens from the places.

• Each tp,a and tp,A , p ∈ P ′, has a single input place p and does not have any output
places, i. e., ξ′′1 (tp,a) = ξ′′1 (tp,A) = {p} for all p ∈ P ′ and ξ′′2 (tp,a) = ξ′′2 (tp,A) = φ.

• γ′′(tp,a) = Ta → Ta and γ′′(tp,A) = TA → TA, p ∈ P .

• M ′′ consists of the empty marking φ, i. e., M ′′ = {φ}.

As we mentioned in the proof of the Lemma 4.2, if in derivations, where used the
productions S → λ, we cannot replace λ-transitions by transitions labeled S → S (or
Ta → Ta). Therefore, in this case we remove the production S → λ from the original
grammar, then apply the above construction. If the original grammar can generate λ,
then constructed grammar can be easily modified by adding λ to the language. �

The next theorem illustrates that for any t-type concurrent grammar with erasing
rules always, there is its “canonical” form whose control labeled Petri net has one token
in the initial marking and no tokens in the final marking.

Theorem 4.6. Every language L ∈ PNλ(x, t, ρ), x ∈ {−λ, λ}, ρ ∈ {m, s, ŝ, m̂} can be
generated by an (x, t, ρ)-concurrent grammar G = (V,Σ, S,R,K) with
K = (R,P, T, ξ1, ξ2, γ, µ0,M) such that |µ0| = 1 and M = {φ}.

P r o o f . Let G = (V ′,Σ, S′, R′,K ′) with K ′ = (R′, P ′, T ′, ξ′1, ξ
′
2, γ
′, µ′0,M

′) be an
(x, t, ρ)-concurrent grammar generating the language L. Let M ′ = {µ1, µ2, . . . , µk},
k ≥ 1. We define the sets of the new elements

• VS = {S} ∪ {Xi | 1 ≤ i ≤ k},

• RS = {S → S′Xi | 1 ≤ i ≤ k} and RM = {Xi → λ | 1 ≤ i ≤ k},

• TS = {t0,i | 1 ≤ i ≤ k} and TM = {t1,i | 1 ≤ i ≤ k},

and set the components of the equivalent grammar G = (V,Σ, S,R,K) with K =
(R,P, T, ξ1, ξ2, γ, µ0,M) as follows:

• P = P ′ ∪ {p0} and T = T ′ ∪ TS ∪ TM ,

• for all t ∈ T ,

ξ1(t) =





ξ′1(t) if t ∈ T ′,
{p0} if t ∈ TS ,
µi if t = t1,i ∈ TM , 1 ≤ i ≤ k,

• for all t ∈ T ,

ξ2(t) =





ξ′2(t) if t ∈ T ′,
µ0 if t ∈ TS ,
{φ} if t ∈ TM ,
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• for all t ∈ T ,

γ(t) =





γ′(t) if t ∈ T ′,
S → S′Xi if t = t0,i ∈ TS , 1 ≤ i ≤ k,
Xi → λ if t = t1,i ∈ TM , 1 ≤ i ≤ k,

• µ0(p0) = 1 and µ0(p) = 0 for all p ∈ P − {p0},

• M = {φ}, i. e., φ(p) = 0 for all p ∈ P .

�

4.3. Comparison of concurrently controlled grammars with Petri net
controlled grammars

In this subsection, we study relation between the family of languages generated by
concurrent grammars and the family of languages generated by Petri net grammars.
From the definition, the following inclusions follow immediately.

Lemma 4.7. For all x ∈ {−λ, λ}, y ∈ {r, t} and ρ ∈ {m, s, ŝ, m̂},

PN(x, y, ρ) ⊆ PNλ(x, y, ρ).

Next lemma shows the relation between Petri net grammars and concurrent gram-
mars.

Lemma 4.8. For all x ∈ {−λ, λ}, y ∈ {r, t} and ρ ∈ {m, s, ŝ, m̂},

PN[λ](x, y) ⊆ PN[λ](x, y, ρ).

P r o o f . Let G = (V,Σ, S,R,K) with K = (R,P, T, ξ1, ξ2, γ, µ0,M) be an (x, y)-Petri
net grammar (with or without erasing rules), where x ∈ {−λ, λ} and y ∈ {r, t}. We
construct an equivalent (x, y, ρ)-concurrent grammar G′ = (V,Σ, S,R,K ′) with K =
(R,P ′, T, ξ′1, ξ

′
2, γ, µ

′
0,M

′) by adding a new place p0 with incoming and outgoing edges
from and to each transition of T , where M ′ = P ′⊕. The initial and each final marking is
extended with by one token in p0. This place controls that at a time, only one transition
of K ′ can be firable in any firing mode ρ ∈ {m, s, ŝ, m̂}. Formally, P ′ = P ∪{p0}, for all
t ∈ T , ξ′i(t) = ξi(t)⊕{p0}, i = 1, 2, for all p ∈ P , µ′0(p) = µ0(p) and µ′0(p0) = 1, for each
µ ∈M , νµ ∈M ′ is defined as νµ(p) = µ(p) and νµ(p0) = 1. Thus, L(G) = Lρ(G′). �

From the Lemma 4.8 and Theorem 2.6, we obtain the lower bound for the families of
concurrent languages:

Corollary 4.9. For all x ∈ {−λ, λ}, y ∈ {r, t} and ρ ∈ {m, s, ŝ, m̂},

MAT[λ] ⊆ PN[λ](x, y, ρ).
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The following lemma shows that the family of languages generated by concurrent
grammars in step mode coincide with the family of languages generated by Petri net
grammars.

Lemma 4.10. For all x ∈ {−λ, λ} and y ∈ {r, t},

PN[λ](x, y, s) = PN[λ](x, y).

P r o o f . Let G = (V,Σ, S,R,K) with K = (R,P, T, ξ1, ξ2, γ, µ0,M) be an (x, y, s)-
concurrent grammar (with or without erasing rules) where x ∈ {−λ, λ} and y ∈ {r, t}.
In an equivalent Petri net grammar G′, the control Petri net K ′ is expected to simulate
every possible multiset τ ⊆ Tx, x ∈ R ∪ {λ}, with a new single transition tτ with the
same label x. Let G′ = (V,Σ, S,R,K ′) with K ′ = (R,P, T ′, ξ′1, ξ

′
2, γ
′, µ0,M). We set

T ′ = T ∪ {tτ | for all τ ⊆ Tx and for all x ∈ R ∪ {λ}},

and we also define

• for all t ∈ T , ξ′i(t) = ξi(t), and the multisets

ξ′i(tτ ) =
⊕

t∈τ
ξi(t) and x ∈ R ∪ {λ}}

where i = 1, 2,

• for all t ∈ T , γ′(t) = γ(t) and, for all τ ⊆ Tx, x ∈ R ∪ {λ}, γ′(tτ ) = x.

Further, it is not difficult to see that Ls(G) = L(G′). �

4.4. Comparison of the various firing modes

In this subsection we compare the various firing modes. By using the fact L[λ]
s ⊆ L[λ]

ŝ

and L[λ]
m ⊆ L[λ]

m̂ , which is mentioned in Theorem 2.7, one can show that

Lemma 4.11. For all x ∈ {−λ, λ} and y ∈ {r, t},

PN[λ](x, y, s) ⊆ PN[λ](x, y, ŝ) and PN[λ](x, y,m) ⊆ PN[λ](x, y, m̂).

The next lemma shows that concurrent grammars in step and maximal step modes
can be simulated by concurrent grammars in multistep and maximal multistep modes,
respectively.

This lemma follows directly from the fact L[λ]
s ⊆ L[λ]

m and L[λ]
ŝ ⊆ L[λ]

m̂ , which is
mentioned in Theorem 2.7.

Lemma 4.12. For all x ∈ {−λ, λ} and y ∈ {r, t},

PN[λ](x, y, s) ⊆ PN[λ](x, y,m) and PN[λ](x, y, ŝ) ⊆ PN[λ](x, y, m̂).
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4.5. Comparison of concurrently controlled grammars with Petri nets with
labeled steps

The following lemma shows that all Petri net languages of all variants of multisteps can
be generated by t-type concurrent grammars with erasing rules.

Lemma 4.13. For ρ ∈ {s,m, ŝ, m̂},

L[λ]
ρ ⊆ PNλ(λ, t, ρ).

P r o o f . Let K = (Σ, P, T, ξ1, ξ2, γ, µ0,M) be a labeled Petri net where M is a finite set.
For ρ ∈ {s,m, ŝ, m̂}, we construct the (λ, t, ρ)-concurrent grammar G = (V,Σ, S,R,K ′)
with K ′ = (R,P ′, T, ξ′1, ξ

′
2, γ
′, µ′0,M

′) such that Lρ(K) = Lρ(G). We construct K ′ from
K by adding two new places p0 and p1, two transitions t0 and t1. We also add the arc
from p0 to t0, from p1 to t1, and from t0 to p1 and the arcs with the weights µ0(p) to
the places p of K where µ0(p) > 0. The labels of t0 and t1 are S → S and S → λ,
respectively. Each label x ∈ Σ ∪ {λ} assigned to a transition of K is replaced with
the label S → xS in K ′. The initial marking µ′0 has only one token in p0. Each final
marking in M ′ is defined from some final marking in M , which has the same number of
tokens in the places of K, and additionally, there are no tokens in p0 and p1. It is not
difficult to observe that for any prefix u of a terminal string of K, there is a sentential
form uS generated by G and vice versa. On the one hand, we can obtain the terminal
string w in L(G) if reach some final marking in K, where we have the sentential form
wS, and then erase S, which results in a final marking of K ′. The string w is also a
string of L(K). On the other hand, every terminal string of L(K) can be easily obtained
by direct simulation it in G. Thus, Lρ(K) = Lρ(G). �

Combining the results of Lemma 4.13 and Theorem 6 in [21], where it was shown
Lλŝ = Lλm̂ = RE, we obtain

Theorem 4.14.

CS ⊂ PNλ(λ, t, ŝ) = PNλ(λ, t, m̂) = RE.

5. CONCLUSION

In this paper, we have proposed new variants of the parallel computation using p/t Petri
nets under parallel firing strategies, called concurrently controlled grammars, which are
natural formal models for concurrent, asynchronous, distributed, parallel, nondetermin-
istic and stochastic systems.

We have defined concurrently controlled grammars in step, multistep, maximal step,
maximal multistep modes, with arbitrary and λ-free labeling, and r- and t-type final
markings. We have investigated the computational power of the introduced concurrently
controlled grammars. Figure 1 illustrates the relations of the families of languages gen-
erated by Petri net controlled grammars under sequential and parallel firing strategies.

Since this work is a preliminary research, relationships among the language fam-
ilies have not been established completely. For instance, the relationship between
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MAT

MATλ = PN[λ](x, t)=

=PN[λ](x, t, s) = PNλ(x, r, s)

PN(x, r) = PN(x, r, s)

PN(x, r, ŝ)

PNλ(x, r,m)

PN(x, r,m)

PN(x, t, m̂)

PN(x, t, ŝ) PN(x, r, m̂)PN(x, t,m)

PNλ(x, r, ŝ)

PNλ(x, t,m) PNλ(x, r, m̂)

RE = PNλ(x, t, ŝ) = PNλ(x, t, m̂)

Fig. 1. The hierarchy of language families generated by (sequential

and concurrent) Petri net controlled grammars (the lines denote

inclusions of the lower families into the upper families).

PN[λ](x, y, ŝ) and PN[λ](x, y,m) is unclear and it needs further investigations. The
strictness of the inclusions

PN(x, y, ρ) ⊆ PNλ(x, y, ρ) and PN[λ](x, y) ⊆ PN[λ](x, y, ρ)

remains open, as well. Further, it remains to investigate concurrently controlled gram-
mars in nonterminal labeling mode, with free labeling strategy and other definitions of
final marking sets.
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