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SOLVING A CLASS OF HAMILTON–JACOBI–BELLMAN
EQUATIONS USING PSEUDOSPECTRAL METHODS

Mohsen Mehrali-Varjani, M. Shamsi and Alaeddin Malek

This paper presents a numerical approach to solve the Hamilton–Jacobi–Bellman (HJB)
problem which appears in feedback solution of the optimal control problems. In this method,
first, by using Chebyshev pseudospectral spatial discretization, the HJB problem is converted to
a system of ordinary differential equations with terminal conditions. Second, the time-marching
Runge–Kutta method is used to solve the corresponding system of differential equations. Then,
an approximate solution for the HJB problem is computed. In addition, to get more efficient
and accurate method, the domain decomposition strategy is proposed with the pseudospectral
spatial discretization. Five numerical examples are presented to demonstrate the efficiency and
accuracy of the proposed hybrid method.
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1. INTRODUCTION

Here, a Hamilton–Jacobi–Bellman (HJB) problem is a first order partial differential
equation together with a terminal condition which arises in the solving of optimal control
problems [20, 21, 22, 42]. In this way, the HJB problem will be derived from a Bolza type
minimization problem when the solution to HJB problem is called value function [19].
The feedback form of the optimal control function is evaluated by means of the value
function. This kind of the optimal control function is a decision rule which expresses
the optimal control solution as a function of the current time and the current state.
Of course, there exist other methods such as Pontryagin minimum principle and direct
methods to solve the optimal control problems. However, the HJB method is very helpful
because, firstly, it provides the feedback form of the solution which is much preferred in
many engineering applications [24]. Secondly, in HJB method, the global solution of the
optimal control problem can be evaluated, even for nonconvex optimal problems. Despite
above utilities, in general, deriving an analytical solution or computing a numerical
solution for HJB problem is difficult, especially when one deals with large scale problems.
Accordingly, despite the advances in development of numerical methods to solve partial
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differential equations, a numerical solution for HJB problem has remained a challenge
[19].

These computational complexities have led many research efforts towards achieving a
suitably designed technique to solve HJB problem. In the year 2000, an upwind explicit
finite difference method for the approximation of viscosity solutions to HJB is presented
by Wang et al. [39]. Stability of the method under some mild conditions is proved. Six
years later, Huang et al. [16] proposed a collocation method as a semi-meshless dis-
cretization scheme based on radial basis functions for approximating viscosity solutions
of the HJB. In the year 2010, HJB method is used to provide an initial guess for the
indirect methods, which is based on the Pontryagin minimum principle [8]. Advantage
of this technique to other initialization schemes is that to find an initial guess close to
global minimum. In the year 2013, Swaidan and Hussin introduced an efficient algorithm
to approximate HJB solution for nonlinear optimal control problems with quadratic cost
functions [36]. Recently, the first asymptotically optimal feedback planning algorithm
for nonholonomic systems and additive cost function presented by Yershov and Frazzoli
[41]. In the year 2016, Reisinger and Forsyth [29] introduced a piecewise constant policy
approximation to Hamilton–Jacobi–Bellman problem. Rakhshan et al. [28] solved a
class of fractional optimal control problems using the Hamilton–Jacobi–Bellman equa-
tion. Some other various methods introduced to solve HJB problem (for example see
[2, 9, 15, 40]).

On the other hand, Pseudospectral methods are a class of numerical methods which
were introduced in 1970s [6, 7, 26]. Their application for solving engineering problems
has become popular due to their computational feasibility and efficiency [12, 27, 31, 32,
34, 35]. In the pseudospectral method, the unknown solution is expanded as a global
polynomial interpolant based on some suitable collocation points. Here, derivatives
are approximated by discrete derivative operator (the differentiation matrix). Thus,
designing of differentiation matrices and how to interpolate the unknown solution are
the key tools in the pseudospectral method. It is a well-established fact that a proper
choice of collocation points is crucial in terms of accuracy and computational stability of
the interpolation and pseudospectral methods [5, 10]. As a typically good choice of such
collocation points, we can refer to the well-known Chebyshev points, which lies on and
are accumulated near the endpoints. The pseudospectral method based on Chebyshev
points is referred to Chebyshev pseudospectral method and widely used successfully in
numerical solution of practical problems [4, 11, 14, 17, 18, 30, 38]. This motivates us to
apply the Chebyshev pseudospectral methods for solving the HJB problem.

In this paper, we present a new hybrid method based on the Chebyshev pseudospec-
tral technique to solve the HJB problem. Note that, after applying discretization tech-
nique, we approximate the value function as a weighted sum of smooth basis functions,
which are Lagrange polynomials. By applying spatial discretization, the HJB problem
reduces to an ordinary differential equation with terminal condition. Now we collocate at
Chebyshev–Gauss–Lobatto points. We solve the resulting system by the Runge–Kutta
time marching method. This part of the approach is similar to the method of lines.
Furthermore, to improve accuracy and efficiency, a multidomain strategy combines with
the proposed hybrid method. To the best knowledge of the authors, this type of hybrid
method has not been applied to the HJB problems.
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The rest of the paper is organized as follows. In Section 2, problem formulation is
presented. In Section 3, pseudospectral method and in Section 4, the hybrid method
for solving the HJB problem is presented. In Section 5, by some typical examples, the
effectiveness and performance of the proposed method for one and two dimensional linear
and high nonlinear problems are reported.

2. PROBLEM FORMULATION

We consider the following optimal control problem of the Bolza type

min
u∈U

J(s,x, u) =

∫ tf

s

L(t,y(t), u(t)) dt+ h(y(tf )) (1a)

s.t. ẏ(t) = f (t,y(t), u(t)) , t ∈ (s, tf ], (1b)

y(s) = x, (1c)

where u : R → R is the control function, p is a positive integer number, y : R → Rp is
the state function, L(·) is the running cost, h(y(tf )) is the terminal cost, f : Rp → Rp
is the vector-valued transition function, s is the initial time, x in the initial state, tf is
the final time, (s,x) ∈ [0, tf )× Rp and U is the set of admissible controls. We consider
the value function v defined by

v(s,x) = inf
u∈U

J(s,x, u). (2)

The value function v satisfies the following HJB problem [19]

−vs + sup
u∈U

(−vx · f (s,x, u)− L(s,x, u)) = 0, (3)

v(tf ,x) = h(x), (4)

where the notation “·” stands for the inner product. This problem consists of the HJB
partial differential equation (3) and the terminal condition (4).
To solve (3) and (4) simultaneously, in general, there are two types of approaches:

Type (i) Approach (Analytical): Here, one aims to derive a control function u as
a Closed-Analytical-form-Solution with respect to the value function v. If the value
function v is evaluated, then we say that the optimal control u∗ is in the following form

u∗ = argsup
u∈U

−vx · f (s,x, u)− L(s,x, u). (5)

Type (ii) Approach (Numerical): There are several different numerical approaches
that are beyond the scope of this paper. Here, we describe of course precisely the
numerical technique that we use in this paper. First, we calculate u* by using a max-
imization solver for algebraic equation (3). In this sense the algebraic equation (3)
together with condition (4) interprets as the ODE problem. After using the Chebyshev–
Gauss–Lobatto points one expresses the problem as the canonical and matrix form.
In this matrix form, the unknown coefficients are Lagrange multipliers of the approx-
imated value function. Now, by the help of Runge–Kutta technique one will calculate
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the Lagrange multiplier coefficients. This leads to the spectral accuracy property for the
proposed hybrid method, since here indeed we make a benefit of that related residual
vanishes over the collocation points (The HJB problem that consists of Lagrange func-
tions, at Chebyshev–Gauss–Lobatto points) over the corresponding finite dimensional
space [6].

For both Types (i) and (ii), the first question is, how does one claim that u* is a
feedback solution, and the second is, what is the superiority of current hybrid method
when one uses numerical approach?
To answer the first question, let solve the HJB problem (3) – (4) analytically (Type (i))
or numerically (Type (ii)), since by (5) the optimal control is a function of the state and
time, u∗ may be written in the following form

u∗(t) = g (t,x(t)) . (6)

The above solution is called the feedback form of optimal control and is desirable in
practical applications [3]. One advantage of such a formulation lies in the fact that
even when a trajectory is diverted from its optimal path, we still have a new optimal
strategy with different initial conditions without having to resolve the problem from the
beginning. In short, the feedback form of the optimal control has advantages in many
engineering applications and to obtain it, we need to solve HJB equation. In the next
section, a novel approach, based on the Chebyshev pseudospectral method, is introduced
and we show how the pseudospectral approach can be extended to solve HJB problems.

A reasonable way of answering the second question mathematically is to interpret the
novel method in details. In the next section, a novel approach, based on the Chebyshev
pseudospectral method, is introduced and we show how the pseudospectral approach
can be extended efficiently to solve HJB problems.

3. THE PSEUDOSPECTRAL METHOD

In pseudospectral methods, the unknown solution is expanded by global polynomial
interpolants based on some suitable points. In addition, in some cases, the derivatives
are approximated by differentiation matrix. Thus, the concept of approximation by
interpolation and matrix differentiation seems to be necessary to describe.

3.1. Approximation by interpolation

Let −1 = ξ0, ξ1, . . . , ξn = 1 be n + 1 distinct nodes in [−1, 1], and ϕk(x), k = 0, . . . , n
be the Lagrange interpolation polynomials based on these nodes, which are defined as

ϕk(x) =

n∏
j=0
j 6=k

x− ξj
ξk − ξj

, (7)

with the Kronecker property ϕk(ξj) = δkj . The polynomials ϕk(x), k = 0, . . . , n form
a basis for Pn the space of the polynomials of degree less than or equal to n in [−1, 1].
A function z(x) defined on [−1, 1] may be approximated by Lagrange interpolation
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polynomials as

z(x) =

n∑
k=0

z(ξk)ϕk(x). (8)

The above approximation can be written in the following matrix form

z(x) ' φTn (x)z, (9)

where z = [z(ξ0), . . . , z(ξn)]
T

and φn(x) = [ϕ0(x), . . . , ϕn(x)]
T

. From the Kronecker
property, we conclude that

φn(ξj) = ej , j = 0, . . . , n, (10)

where ej is the jth column of the identity matrix of dimension n+ 1.
It is well known that the proper distribution of nodes is necessary for both the ac-

curacy of the approximating solution and the computational efforts [1]. A good choice
for these nodes is the well-known Gauss-Lobatto points [37], where lie inside [−1, 1] and
are accumulated near the endpoints. In this paper, Chebyshev–Gauss–Lobatto nodes
are used, which are defined as

ξj = cos

(
πj

n

)
, j = 0, . . . , n. (11)

According to [6], utilizing these nodes leads to stability and accuracy of interpolation
and pseudospectral methods.

3.2. Differentiation matrix

In pseudospectral methods, it is necessary to express the d
dxz(x) in term of z(x) at the

collocation points ξj , j = 0, . . . , n. This can be done by using the so-called differentiation
matrix.

Lemma 3.1. Let z be a function with sufficient degree of smoothness. From (9), the
first derivative of z can be approximated by

d
dxz(x) ' φTn (x)Dz, (12)

where D is differentiation matrix and the entries of the differentiation matrix D are
obtained by

dij = d
dxϕj(x)

∣∣
x=ξi

, i, j = 0, . . . , n. (13)

P r o o f . See Ref. [13]. �

Moreover, according to [1], the following recursive formula can be used for computing
the entries of differentiation matrix

dj+1,k+1 =


1

ξk−ξj

(
λk

λj
dk+1,k+1 − dk+1,j+1

)
, j 6= k,

−
n∑

i=0,i6=j
dj+1,i+1, j = k,

j = 0, 1, . . . , n, (14)
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where constants λj are defined by

λj =
n

Π
i=0,i6=j

(ξj − ξi) . (15)

It is shown that with these formulas, the effect of roundoff error is reduced and calcula-
tion of the differentiation matrix is performed accurately [1].

4. THE PROPOSED HYBRID METHOD

In this section, a numerical method based on the Chebyshev pseudospectral method and
Runge–Kutta time-marching is presented.

Theorem 4.1. Consider problem (1) in one dimensional case, then the Chebyshev pseu-
dospectral discretization of this problem leads to a system of ordinary differential equa-
tions with terminal conditions.

P r o o f . In view of (8), we approximate the solution of problem (3) – (4) as

v(s, x1) '
n∑
i=0

αi(s)ϕi(x1) = α(s)Tφn(x1), (16)

in which αi(s), i=0, . . . , n are unknown coefficient functions and α(s)=[α0(s), . . . , αn(s)]T

is the unknown coefficient vector that must be determined.
By differentiating with respect to s, x1 and using Lemma 3.1, we have

vs(s, x1) = α̇(s)Tφn(x1), (17)

vx1
(s, x1) = α(s)T φ̇n(x1) (18)

= [Dα(s)]
T
φn(x1), (19)

where D is differentiation matrix. Then, by replacing (17) – (19) in problem (3), we get

− α̇(s)Tφn(x1) + sup
u

{
−[Dα(s)]

T
φn(x1)f(s, x1, u)− L(s, x, u)

}
= 0. (20)

Collocating this equation at Chebyshev–Gauss–Lobatto points ξi for i = 0, . . . , n leads
to the following differential equations

− α̇i(s) + sup
u
{−[Dα(s)]if(s, ξi, u)− L(s, ξi, u)} = 0, i = 0, . . . , n. (21)

Moreover, by collocating the terminal condition (4) in the collocation points ξi, i =
0, . . . , n, we get v(tf , ξi) = h(ξi), i = 0, . . . , n. Using (16) and the Kronecker property,
we conclude the following terminal conditions

αi(tf ) = h(ξi), i = 0, . . . , n. (22)

�
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In order to calculate α0, . . . , αn one may solve the ordinary differential equations
(21) with terminal condition (22). By using (16), the approximation of v(s, x1) will be
computed.

However, we note that because of the existence of ‘sup’ function, the differential
equations (21) are not classical and we need to resolve the ‘sup’ operator. In some
problems, by differentiating with respect to u, we can explicitly express the control
function u based on α(t) and s. Consequently, in these problems, the ‘sup’ problem is
simply solved and the differential equation (21) is converted to a classical differential
equation. On the other hand, in some other problems, the ‘sup’ problem in (21) may
be hard to solve by differentiation. In such cases, we can use a numerical optimization
solver to solve the ‘sup’ problem. More precisely, we note that, generally, problem (21) –
(22) is solved by a numerical time-marching method such as Runge–Kutta and in each
iteration of Runge–Kutta, the ‘sup’ problem is converted to an optimization problem
which can be solved by an optimization solver.

Theorem 4.1 can be extended to the multi-dimensional problems. In the next theorem,
we extend the above problem for the two dimensional problems. For this purpose, we
define the Kronecker product.

Definition 4.2. If A is a p × q matrix and B is an r × s matrix, then the Kronecker
product A⊗B is a pr × qs matrix defined by [33]

A⊗B =

 a11B . . . a1nB
...

. . .
...

am1B · · · amnB

 .

Theorem 4.3. For the two dimensional version of problem (1), the Chebyshev pseu-
dospectral method leads to a system of ordinary differential equations with terminal
conditions.

P r o o f . For two dimensional HJB problem (1) we have

−vs + sup
u∈U

(−vx1f1 (s, x1, x2, u)− vx2f2 (s, x1, x2, u)− L(s, x1, x2, u)) = 0, (23a)

v(tf , x1, x2) = h(x1, x2). (23b)

Let to approximate the value function as

v(s, x1, x2) ' α(s)T (φn(x1)⊗ φn(x2)) . (24)

Taking derivative from v with respect to s, x1, x2 and using Lemma 3.1 yield

vs(s, x1, x2) = α̇(s)T (φn(x1)⊗ φn(x2)) , (25)

vx1
(s, x1, x2) = α(s)T

(
DTφn(x1)⊗ φn(x2)

)
, (26)

vx2
(s, x1, x2) = α(s)T

(
φn(x1)⊗DTφn(x2)

)
, (27)
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where the differentiation matrix D is defined in (14). Then, by substituting (25), (26)
and (27) in problem (23a), we have

−α̇(s)T (φn(x1)⊗ φn(x2))

+ sup
u

{
−α(s)T

(
DTφn(x1)⊗ φn(x2)

)
f1(s, x1, x2, u)

−α(s)T
(
φn(x1)⊗DTφn(x2)

)
f2(s, x1, x2, u)− L(s, x1, x2, u)

}
= 0.

Collocating the above equation at (n+ 1)× (n+ 1) Chebyshev–Gauss–Lobatto points
(x1, x2) = (ξi, ξj), i, j = 0, . . . , n yields the following (n+ 1)2 system of equations

−α̇in+j(s) + sup
u

{
−α(s)T

(
DTei ⊗ ej

)
f1(s, ξi, ξj , u)

−α(s)T
(
ei ⊗DTej

)
f2(s, ξi, ξj , u)− L(s, ξi, ξj , u)

}
= 0, (28)

i, j = 0, . . . , n.

By collocating the terminal condition (23b) at the nodes (x1, x2) = (ξi, ξj), i, j =
0, . . . , n, we have

v(tf , ξi, ξj) = h(ξi, ξj), i, j = 0, . . . , n. (29)

Substituting v from (24) into (29) and by the Kronecker property, yields

αin+j(tf ) = h(ξi, ξj), i, j = 0, . . . , n. (30)

�

Thanks to the Kronecker product, in a similar manner, we can extend Theorem 4.3
for the problems of three or more dimensions.

4.1. Domain decomposition

It is well-known that pseudospectral methods are efficient and accurate to solve the
problems with smooth solutions [37]. However, in some HJB problems, the value function
is not smooth and the efficiency of the hybrid method decreases for such problems. To
overcome this difficulty, we can use the domain decomposition technique as follows.

We consider the value function for (23a) – (23b), where the domain is partitioned into
m subdomains: Ω = [a, b] = [a0, a1] ∪ · · · ∪ [am−1, b]

v(s, x) =


v1(s, x), x ∈ [a, a0],
v2(s, x), x ∈ [a0, a1],

...
vm+1(s, x), x ∈ [am−1, b].

By applying the terminal condition of HJB problem for x ∈ [ak−1, ak] and vk(s, x) we
have 

−vks + sup
u∈U

(
−vkx · f (s, x, u)− L(s, x, u)

)
= 0,

vk(tf , x) = h(x),
x ∈ [ak−1, ak],

k = 1, . . . ,m. (31)
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Solving HJB sub-problems in each sub-domain [ak−1, ak], by the proposed hybrid method
and assembling them we get the solution.

In the two dimensional HJB problem, with domain Ω = [a, b] × [c, d], we partition
Ω = ([a0, a1] ∪ · · · ∪ [am−1, b])× ([c0, c1] ∪ · · · ∪ [cm−1, d]) and the value function as

v(s, x1, x2) =


v1,1(s, x1, x2), (x1, x2) ∈ [a0, a1]× [c0, c1],
v1,2(s, x1, x2), (x1, x2) ∈ [a0, a1]× [c1, c2],

...
vm+1,m+1(s, x1, x2), (x1, x2) ∈ [am−1, b]× [cm−1, d].

Then, similar to the one dimensional case, we will solve the following HJB problems for
i, j = 1, . . . ,m
−vi,js + sup

u∈U

(
−vi,jx1

f1 (s, x1, x2, u)− vi,jx2
f2 (s, x1, x2, u)− L(s, x1, x2, u)

)
= 0,

vi,j(tf , x1, x2) = h(x1, x2)
x1 ∈ [ai−1, ai], x2 ∈ [bj−1, bj ].

(32)

5. ILLUSTRATIVE EXAMPLES

In this section, we begin by demonstrating the performance of the proposed method
developed in Section. Matlab function ode45 is used to solve the system of differential
equations with terminal conditions. This solver controls the error by two parameters
RelTol and AbsTol. We set RelTol=1e-11 and AbsTol=1e-9.

To assess the accuracy of the method, the following averaged absolute error is re-
ported:

En =
1

n+ 1
‖vExact(t,x)− v(t,x)‖∞, (33)

where vExact and v are the exact and computed solutions, respectively.

5.1. Example 1 (Nonlinear)

In this example [25], we consider problem (1), in the one dimensional case with L(t, y(t), u(t)) =
u2(t), h(x) = x2, h (y(tf )) = y2(tf ) and f (t, y(t), u(t)) = y(t) + u(t) for x ∈ [−1, 1] and
t ∈ [s, tf ], in which s = 0, tf = 1. In other words, the following optimal control problem
is considered

min

∫ 1

0

u2(t) dt+ y2(tf ) (34a)

s.t. ẏ(t) = y(t) + u(t), (34b)

y(s) = x. (34c)

The corresponding HJB problem is as follows

−vt + sup
u

(
−vx(x+ u(t))− u2(t)

)
= 0, (35a)

v(1, x) = x2. (35b)
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The exact value function for HJB problem (35) is as follows [25]

vExact(t, x) =
2x2

1 + e2(t−1)
. (36)

Using the Chebyshev pseudospectral method, yields

−α̇i(t) + sup
u

{
−[Dα(t)]i (ξi + u(t))− u2(t)

}
= 0, (37)

αi(1) = ξ2i . (38)

Supremum u(t) for the quadratic term −[Dα(t)]i (ξi + u(t))− u2(t) happens if

u(t) = −1

2
[Dα(t)]i. (39)

Now, by substituting (39) in (37) for i = 0, . . . , n, we get n + 1 classical differential
equations with n+ 1 terminal conditions

−α̇i(t)− ξi[Dα(t)]i+
1

4
[Dα(t)]

2
i = 0, (40a)

αi(1) = ξ2i . (40b)

The above problem can be expressed as the following canonical and matrix form

α̇(t) =

(
1

4
[Dα(t)]− ξ

)
◦ [Dα(t)], (41)

α(1) = ξ ◦ ξ, (42)

where ξ = [ξ0, . . . , ξN ]T and ◦ denotes the Hadamard product, which for two matrices
A,B of the same dimension m× n is defined by

(A ◦B)i,j = (A)i,j(B)i,j .

Now, by by ode45 of Matlab package, we solve the system (40a) – (40b) to calculate the
coefficients α0(t), . . . , αn(t).

Table. 1 demonstrate the excellent results for even small values of n. This shows that
using this hybrid method for the Example 1, one does not need to use high memory and
thus the computational effort can reduce drastically.

In Figure 1, the value function and its error is depicted for n = 20. The computed
averaged errors of approximate value function from the proposed method are given in
Table 1. Table 1 demonstrates the high accuracy of the proposed method. This confirms
that the method yields excellent results.
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Fig. 1. (Example 1) (Left) The value function v(t, x) computed for

n = 20, (Right) The absolute error.

n 2 3 4 5
En 1.2617× 10−9 9.4614× 10−10 7.5690× 10−10 6.3094× 10−10

Tab. 1. The average absolute error computed by

En = 1
n+1
‖vExact(t, x)− v(t, x)‖∞ for Example 1.

5.2. Example 2 (Two dimensional, discontinuous derivative and nonconvex)

Let us consider problem (1) with two dimensional case [39]

min −y1(tf )− y2(tf ) (43a)

(43b)

s.t.

[
ẏ1(t)
ẏ2(t)

]
=

[
y1(t)
−y2(t)

]
u, (43c)

y1(s) = x1, y2(s) = x2, (43d)

u : [0, tf ]→ [0, 1]. (43e)

In this example we have L (t, y(t), u(t)) = 0, h(x1, x2) = −x1−x2, h (y(tf )) = −y1(tf )−
y2(tf ) and f1 (t, y(t), u(t)) = y1(t)u(t), f2 (t, y(t), u(t)) = −y2(t)u(t) for x1, x2 ∈ [−1, 1]
and t ∈ [s, tf ], in which s = 0, tf = 1. Thus, the HJB problem is

−vt + sup
0≤u≤1

(−vx1
x1u+ vx2

x2u) = 0, (44a)

v(1, x1, x2) = −x1 − x2. (44b)
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method in Ref. [16] The proposed method here
n Averaged absolute error n Averaged absolute error
8 8.31× 10−4 3 9.5001× 10−6

13 1.87× 10−4 5 8.4445× 10−6

23 3.6× 10−5 7 6.3750× 10−7

Tab. 2. The computed errors for Example 2.

The exact value function for (44a) – (44b) is [39]

vExact(t, x1, x2) =

{
−(x1 + x2)e1−t x1 + x2 > 0,
−(x1 + x2) x1 + x2 ≤ 0.

(45)

Applying the Chebyshev pseudospectral method for i, j = 0, . . . , n, yields

−α̇in+j(t) + sup
0≤u≤1

{
−α(t)T

[ (
DTei ⊗ ej

)
ξi +

(
ei ⊗DTej

)
ξj
]
u
}

= 0, (46a)

αin+j(1) = −ξi − ξj . (46b)

The supremum u(t) for the linear term −α(t)T
[ (

DTei ⊗ ej
)
ξi +

(
ei ⊗DTej

)
ξj
]
u is

either 0 or 1. Consequently, we conclude that the maximizer is

u(t) =

{
0, if −α(t)T

[ (
DTei ⊗ ej

)
ξi +

(
ei ⊗DTej

)
ξj
]
< 0,

1, if −α(t)T
[ (

DTei ⊗ ej
)
ξi +

(
ei ⊗DTej

)
ξj
]
> 0.

(47)

By using (47), the ‘sup’ function in problem, (46a) – (46b) is resolved and the problem
is converted to a classical system of differential equations with terminal conditions. We
note that function u in (47) is not continuous in t = 0. Thus, to get a better accuracy, we
consider the domain decomposition strategy with m = 1 and [−1,+1] = [−1, 0]∪ [0,+1].

The results of hybrid method for various values of n are reported in Table 2. More-
over, to make a comparison, the results for method in Ref. [16] which is based on radial
basis functions are given. Comparison is very helpful, because using the pseudospec-
tral method we reach the global minimum of the cost functional, even if v(t, x) is not
continuously differentiable and the problem is not convex.

5.3. Example 3 (Discontinuous derivative and nonconvex)

Consider the following optimal control problem [16]

min −y(tf ) (48a)

(48b)

s.t. ẏ(t) = y(t)u(t), (48c)

y(s) = x, (48d)

u : [s, tf ]→ [0, 1]. (48e)
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The associated HJB problem is as follows

−vt + sup
0≤u≤1

(−vxxu) = 0, (49a)

v(1, x) = −x, (49b)

with the following exact solution

vExact(t, x) =

{
−xe1−t x > 0,
−x x ≤ 0.

(50)

By applying the hybrid method, we get

−α̇i(t) + sup
0≤u≤1

{−[Dα(t)]iξiu} = 0,

αi(1) = −ξi,
i = 0, . . . , n.

Similar to Example 2, we find that

u(t) =

{
0, − [Dα(t)]i ξi < 0,

1, − [Dα(t)]i ξi > 0.

Since u(t) is discontinuous in t = 0, we apply the multidomain strategy with m = 1 and
[−1,+1] = [−1, 0] ∪ [0,+1].

In Figure 2 (Left), the value function with m = 1 and n = 20 collocation points is
depicted, where the absolute error is shown in the right hand side.
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0.6
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0
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0
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Fig. 2. (Example 3) (Left) The value function v(t, x) computed for

s = 0, tf = 1 and n = 20, (Right) The absolute error.
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method in Ref. [16] The proposed method here
n Averaged absolute error n Averaged absolute error
5 1.575× 10−2 3 3.7898× 10−10

9 5.34× 10−3 5 2.2742× 10−10

14 2.18× 10−3 7 1.6239× 10−10

26 6.59× 10−4 9 1.2623× 10−10

Tab. 3. Computed errors for Example 3.

The results for the hybrid method and the results in Ref. [16] are demonstrated in
Table 3. From this table, one can conclude that only a few number of grids is required
to achieve much better accurate solution. Here, it is shown that the current method
combined with the domain decomposition technique produces solutions accurate up to
the accuracy of the machine, even if the problem is not convex.

5.4. Example 4 (Discontinuous Derivative and Nonconvex)

In this example, we consider the following optimal control problem [16]

min −y2(tf ) (51a)

(51b)

s.t. ẏ(t) = u(t), (51c)

y(s) = x, (51d)

u : [s, tf ]→ [−1, 1], (51e)

with the following HJB problem

−vt + sup
−1≤u≤1

(−vxu) = 0, (52a)

v(1, x) = −x2. (52b)

The exact value function for (49) is [16]

vExact(t, x) = −[|x|+ (1− t)]2. (53)

The results for the hybrid method with m = 1 and various values of n, together with
the results of [16] are compared in Table 4.

method in Ref. [16] The proposed method here
n Averaged absolute error n Averaged absolute error
5 1.933× 10−2 5 2.5802× 10−14

10 6.127× 10−3 7 2.1094× 10−14

17 1.933× 10−3

32 6.39× 10−4

Tab. 4. Computed errors for Example 4.
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Fig. 3. (Example 4) (Left) The value function v(t, x) computed for

s = 0, tf = 1 and n = 20, (Right) The absolute error.

Figure 3 shows the value function and absolute error for n = 10.
Example 4, works with the simple supremum term (see (52a)). This is very helpful

in efficient solving the problem altogether, (see Table 4 and compare it with Tables 1, 2
and 3).

5.5. Example 5 (Highly Nonlinear)

Here, we consider the problem [23]

min

∫ 1

0

(
y4(t) + u4(t)

)
dt (54a)

(54b)

s.t. ẏ(t) = u(t), (54c)

y(s) = x. (54d)

Writing the HJB problem for it, yields

−vt + sup
u

(
−uvx − x4 − u4

)
= 0, (55a)

v(1, x) = 0. (55b)

By the help of the Chebyshev pseudospectral discretization for i = 0, . . . , n, one can
write

−α̇i(t) + sup
u

{
−u[Dα(t)]i − ξi

4 − u4
}

= 0, (56a)

αi(1) = 0. (56b)
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Supremum u(t) for the forth degree term −u[Dα(t)]i − ξi
4 − u4 happens if

u(t) = −
(

1

4
[Dα(t)]i

) 1
3

. (57)

By substituting the above control function in problem (56a) – (56b) for i = 0, . . . , n, we
get

−α̇i(t) = −3

(
1

4
[Dα(t)]i

) 4
3

+ ξi
4,

αi(1) = 0.

This problem can be expressed in the following vector form

−α̇(t) = −3

(
1

4
Dα(t)

) 4
3

+ ξ4,

α(1) = 0.

Now from the above problem, one can calculate coefficients α0, . . . , αn. Figure 4

shows the value function for n = 30.
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Fig. 4. (Example 5) The value function v(t, x) computed for

s = 0, tf = 1 and n = 30.

6. CONCLUSIONS

In this paper, we present a hybrid pseudospectral scheme for solving a class of linear
and nonlinear optimal control problems. This method is very helpful, because using it
we reach the global minimum of the cost functional, even if the problem is not convex.
Using these techniques, we approximate functions as a weighted sum of smooth basis
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functions which are Lagrange polynomials over Chebyshev–Gauss–Lobatto nodes. We
begin by introducing the HJB problem and develop a fully coherent numerical method.
Hybrid method here, consists of collocation points in the form of Chebyshev–Gauss–
Lobatto grids, Lagrange interpolators, efficient ordinary differential equation solvers,
matrix differentiation and domain decomposition technique to solve linear and nonlinear
convex and nonconvex HJB problems. Numerical results show that hybrid method is
a reliable scheme and it can be utilized as a powerful tool to solve HJB problems.
Moreover, the proposed method has a very good performance, even when a few amounts
of grids are used. The main advantages of this approach lie in its good accuracy, very
low numerical complexity, easy implementation and finding a feedback solution.
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