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In this article, a technique called Meta-Optimization is used to enhance the effectiveness of
bio-inspired algorithms that solve antenna array synthesis problems. This technique consists
on a second optimization layer that finds the best behavioral parameters for a given algo-
rithm, which allows to achieve better results. Bio-inspired computational methods are useful
to solve complex multidimensional problems such as the design of antenna arrays. However,
their performance depends heavily on the initial parameters. In this paper, the distances be-
tween antenna array elements are calculated in order to reduce electromagnetic interference
from undesired sources. The results are compared to previous works, showing an improvement
on the performance of bio-inspired optimization algorithms such as Particle Swarm Optimiza-
tion and Differential Evolution. These results are found to be statistically significant based on
the Wilcoxon’s rank sum test as compared to these methods using the standard parameters
proposed in the literature. Furthermore, graphical representations of the Meta-Optimization
process called meta-landscapes are presented, showing the behavior of these algorithms for
a range of different parameters, providing the best parameter combinations for each antenna
problem.
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1. INTRODUCTION

Nowadays, the use of wireless communication devices like cellular phones and global
positioning systems has increased in such a way that the network bandwidth is affected.
One way to tackle this problem is to design antenna architectures that meet the require-
ments of communication systems. In recent years, antenna designers have benefited from
the use of computer systems and the application of numerical optimization techniques
to explore a wide diversity of configurations before fabrication [1]. In order to improve
the performance of an antenna, a set of individual antenna elements can be arranged
in a geometrical configuration to create an antenna array; the combination of the radi-
ated fields of every individual antenna element produces the overall radiation pattern
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of the array. The interference amongst all radiation patterns depends on the particular
geometry of the array (number of elements, distance between elements, etc.), where the
radiated pattern of the elements should interfere constructively in the required direction
and destructively in the remaining space. One goal in antenna array geometry synthesis
is to define the arrangement of the array elements that creates a radiation pattern with
the desired characteristics. A common requirement is the suppression of Side Lobe Lev-
els (SLL), while preserving the main lobe and also reducing the effects of interference
by placing nulls on the direction of undesired signals [12].

Bio-inspired computational methods like Particle Swarm Optimization (PSO) [18]
have been used in the past to solve complex multidimensional problems in engineering
[33] and electromagnetics [16, 34]. This algorithm has been found to be successful for
antenna design, as shown in [26, 41] and even has outperform, in certain cases, other
optimization methods [19]. Another widely used approach is Differential Evolution (DE),
proposed by Price and Storn [39]. This technique is based on combining the position of
individuals within a population and updating them if there is an improvement on their
fitness. Differential Evolution has been used to design antenna arrays [4, 14], and several
variations have been presented such as Ensemble Differential Evolution [35], and a multi-
objective version in [23]. Not only in the radio frequency domain bio-inspired methods
have been found useful: In [7], a Genetic Algorithm (GA) was applied to improve the
geometry of optical antennas, since traditional RF design rules are not suitable for higher
frequencies. The GA produced nonconventional geometries that outperform the classical
dipole designs. Other bio-inspired techniques have been recently used, such as Firefly
and Invasive Weed Optimization, as well as Wind Driven Optimization [22, 24, 25].

The performance of all these optimization algorithms to solve a given problem de-
pends heavily on its initial parameters [17, 28]. To enhance the effectiveness of the
algorithm, these parameters should be carefully selected according to the problem to be
solved. In this paper, the parameters of algorithms Particle Swarm Optimization and
Differential Evolution are selected using a technique called Meta-Optimization. This
process consists of using another optimization algorithm to find good behavioral param-
eters. Meta-Optimization allows for an objective way to find the most suitable set of
parameters for a given optimization method and problem to be solved. Different an-
tenna synthesis problems proposed in the literature [20, 21], namely the optimization of
distances between antenna elements, are tackled using Meta-Optimization techniques in
order to improve the effectiveness of bio-inspired optimization algorithms. The results
show an improvement on their capability to find better distance vectors that produce
more desirable antenna array patterns.

2. META-OPTIMIZATION

Traditionally, the behavioral parameters have been chosen according to numerous ex-
periments done by researchers. One example, presented in [36], shows the influence of
the parameters maximum velocity and inertia weight on the performance of the PSO
algorithm. A number of experiments were performed with different values for these
parameters and it was concluded that when the maximum velocity is small, an inertia
weight of approximately 1 is a good choice. Another example of parameter analysis is
given in [8], where a constriction factor is proposed to limit the maximum velocity while
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using the inertia weight according to a given equation. In relation to the DE algorithm,
Storn et al. [38] describe several variants of the algorithm and provide some general
hints on their usage. These parameters can also be found by means of mathematical
analysis as shown in [40] in which a selection of graphical guidelines is provided. This
research shows how the speed of convergence impacts on the robustness of the solutions.
Clerc and Kennedy [5] also show an analytical view of the particle’s trajectory which
leads to a generalized model of the algorithm and its convergence tendencies. These
studies suggest that an automatic approach could be useful to find the best parameters
for a given problem.

The selection of parameters can be divided into two cases: parameter control and
parameter tuning [10]. In parameter control, the parameter values change during the
optimization run. On the other hand, in parameter tuning the values do not change
during the run but there is still a large number of combinations depending on the
number of parameters (variables). Meta-Optimization, thus, is a kind of parameter
tuning. Meta-Optimization consists of using one optimization technique to tune the
parameters of another optimization technique. Meta-Optimization is also known as
meta-evolution or automated parameter calibration. This concept was considered as
early as 1978 by Mercer and Sampson [27], but their research was very limited due
to the large computational costs. This suggests that, given the recent advances in
computational power, the Meta-Optimization approach can now be an alternative.

As mentioned before, optimization techniques have a set of parameters that control
their behavior. These parameters must be chosen carefully since they have a great effect
on the output of the optimization method. It is worth mentioning that a given set of
parameters could work well when optimizing a specific problem but perform differently
when optimizing another. The way Meta-Optimization works is by using an optimization
algorithm that has the parameters as output. During the Meta-Optimization process,
every new set of parameters is used by the optimization algorithm and its output eval-
uated. Thus, the outer layer is in charge of finding a better set of parameters until a
stop condition is met. Figure 1 illustrates the Meta-Optimization concept.

Fig. 1. Meta-Optimization. The parameters of the optimization

algorithm are obtained by a second optimization layer.

For example, the PSO inertia weight determines how the previous velocity of a particle
influences its velocity in the next iteration. If the inertia weight is low, the particle will
change its velocity instantly and this effect would favor exploitation. On the other hand,
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if the inertia weight is high, the particle will hardly change its velocity and this will
favor exploration. Therefore, by adjusting these parameters, a good balance between
exploration and exploitation can be achieved. In the following section, the two bio-
inspired optimization algorithms used in this work, namely Particle Swarm Optimization
and Differential Evolution are explained. Likewise, the two techniques used to tune their
parameters, Pattern Search and Local Unimodal Sampling are presented.

3. OVERVIEW OF THE ALGORITHMS

This section provides the reader with a general overview of the optimization algorithms
used in this paper. Particle Swarm Optimization and Differential Evolution are used
to optimize the radiation pattern of linear antenna arrays. The remaining algorithms,
Pattern Search and Local Unimodal Sampling are used for the Meta-Optimization of
those algorithms.

3.1. Particle swarm optimization

Particle Swarm Optimization (PSO) is an optimization technique developed by Eberhart
and Kennedy [18]. It is inspired by the social behavior of various species. In these
biological systems, simple individuals interact on their environment showing a collective
behavior in order to fulfill their needs, for example, a swarm of bees searching for pollen.
The bees try to find as many flowers as possible by randomly flying over the field. Each
individual remembers the location where it found the most flowers, and it communicates
this information to other individuals. Occasionally, a bee finds an area with more flowers
than any other place found previously by the population in the swarm. Over time, more
bees end up flying closer and closer to the best patch in the field, and soon, all the
bees swarm around this point. The PSO algorithm begins by initializing a population of
random solutions (or particles) and tries to find the best solution by updating generations
of these particles. Each particle keeps track of their personal experience ~p and the overall
experience ~g, which are the best solution achieved by the particle and by the whole
population respectively. The particles also have a position and a velocity associated to
them, where the position represents a possible solution to the given problem and the
velocity controls their movement to a new and better position. This velocity changes
over the generations following the next two equations:

~vn+1 = ω · ~vn + c1r1(~pn − ~xn) + c2r2(~gn − ~xn) (1)

~xn+1 = ~xn + ~vn+1 (2)

where ~vn is the velocity of the particle and ~xn its position, both at the nth generation.
ω is called the inertia weight and controls the trade-off between the personal experience
and overall experience of the group of particles and usually takes values in the range of
[0,1]. c1 and c2 are acceleration constants and are usually taken as c1 = c2 = 2.0. r1
and r2 are random values uniformly distributed between 0 and 1. Each particle moves
to its updated location when a new velocity has been obtained. The new position is
determined according to Equation 2. The PSO algorithm will finish when a stopping
criteria is met, usually when it reaches a maximum number of iterations.
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3.2. Differential evolution

Differential Evolution (DE) is a population-based optimization technique introduced by
Storn and Price in [39]. Being an Evolutionary Algorithm, DE uses crossover, mutation
and selection operations to create a population of potential individuals that represent a
possible solution to the given problem. On each iteration, new candidates are created
by combining individuals from the existing population. These candidates are the result
of the addition of a weighted difference between two individuals to a third member, this
weight is a mutation factor called F . Then, a crossover operation is performed to make
trial individuals using a crossover probability of CR. Candidates are replaced when a
new individual has a better fitness value. There are many variants of the Differential
Evolution algorithm, for example [13], where a novel hybrid version is shown to be
effective for nonlinear optimization problems in high dimensional spaces.

3.3. Pattern search

Pattern Search (PS) is a method originally published by Hooke and Jeeves in [15],
although an early version is attributed to Fermi and Metropolis [6]. Pattern Search
is a kind of simple direct-search method since it can be used on functions that are
not continuous. It samples the search-space from the current position and decreases its
sampling-range when it fails to improve the fitness [29]. In this work, the Pattern Search
algorithm was chosen for the outer layer of the Meta-Optimization process due to its
simplicity. Since the Meta-Optimization approach requires a large number of iterations,
PS helps to reduce the computational effort.

3.4. Local Unimodal sampling

The heuristical optimization technique Local Unimodal Sampling (LUS) can be consider
an extension of the Pattern Search algorithm as it samples all dimensions simultaneously
[29]. LUS adapts its sampling range during the optimization process and reduces its
search-range through an exponential decrease. Since the number of possible solutions to
a problem increases exponentially (a phenomenon known as the Curse of Dimensionality
[3] random search algorithms can be improved by localizing the sampling around the
best-known position [31], thus, the Local Unimodal Sampling is also a good choice for
the Meta-Optimization process.

4. NUMERICAL RESULTS

In order to test the meta-optimized algorithms, a popular array synthesis technique pro-
posed by Khodier in [21] is used. Khodier formulated a fitness function used by the PSO
to obtain minimum Side Lobe Levels and null control by calculating the area under the
curve of the desired array pattern. The distance between antenna elements of a linear
antenna array was optimized and the results were compared with the QPM (Quadratic
Programming Method) technique. This concept was later used in [32] where the synthe-
sis was carried out for planar arrays and in [37] for circular arrays. In this paper, two
experiments were performed and the resulting antenna patterns were compared with the
ones obtained by Khodier in [20, 21]. In the next subsections, the Meta-Optimization
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Fig. 2. Linear array of 2N elements positioned along the x -axis.

process, the output parameters and the resulting enhanced antenna pattern are pre-
sented.

4.1. First experiment

The problem to be solved is the second example in [21] which consists on optimizing the
space between the elements of a 28-element linear array designed for SLL suppression
in the region [0◦, 180◦] and prescribed nulls at 55◦, 57.5◦, 50◦, 120◦, 122.5◦ and 125◦.
To achieve this, the following expression is used as the fitness function [21]:

Fitness =
∑
i

1

∆φi

φui∫
φli

|AF (φ)|2 dφ+
∑
k

|AF (φk)|2 (3)

where [φli, φui] are the spatial regions in which the SLL are suppressed, in this case from
0◦ to 180◦. ∆φi = φui − φli, and φk are the directions of the nulls. The first term of
the right-hand side of Equation 3 optimizes for suppressed Side Lobe Levels, while the
second term is used to optimize for null control. AF is the antenna array factor and
it represents an array of 2N infinitesimal dipoles positioned along the x-axis as shown
in Figure 2. The array factor is independent of the antenna type assuming all of the
elements are identical. In this work, isotropic radiators, which are ideal antennas that
radiate an equal amount of power in all directions, are considered. Since the total field
of the array is equal to the field of a single element positioned at the origin multiplied
by the array factor [2], and the element pattern of identical elements is known, the main
effort in the antenna array design is the synthesis of the array factor. Mathematically,
AF is given by:

AF (θ) = 2

N∑
n=1

In cos[kxn cos(θ) + βn] (4)

where 2N is the number of antenna elements, θ is the angle of interfering or desired
signal, xn is the location of the nth element, k is the wavenumber, In is the amplitude
weight at element n and βn is the phase shift weight at element n. Since the aim is to
obtain the optimized locations of the antenna elements, the amplitude and phase shift
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weights can be constant (In = 1 and βn = 0) and the array factor is simplified as

AF (θ) = 2

N∑
n=1

cos[kxn cos(θ)]. (5)

The Meta-Optimization algorithms were programmed in C] language using a modified
version of SwarmOps which is a source-code library for numerical optimization problems
written by Pedersen [30].

Table 1 shows the results of the Meta-Optimization process which was run to obtain
the best parameters for the DE algorithm. The first 2 columns show the algorithms
used as meta-optimizers as well as their parameters. PS needs no initial parameters and
LUS uses γ = 3. Another factor in the Meta-Optimization process is the number of
meta-runs which in this case is 5. The number of meta-iterations is defined according
to the number of parameters to be optimized multiplied by 20. This will allow a fair
number of meta-iterations depending on the number of variables. The fifth column in
Table 1 is the number of optimization iterations performed in the Meta-Optimization
phase. In this case, for each process three different experiments were run: using 200,
500 and 1000 iterations. This is to observe the variation in the quality of the results
according to the number of iterations, since optimization algorithms tend to get closer
and closer to the solution as the number of iterations increases. The next column is
the resulting meta-fitness from every experiment and shows the value obtained at the
end of the meta-iterations. The last three columns present the output which is the set
of parameters suitable for the DE algorithm to best solve the antenna problem. The
first is the number of particles NP , the second is the crossover probability CR and the
third the differential weight F . The parameters for the PSO algorithm are obtained
in the same fashion. The only difference is the number of meta-iterations, given that
each algorithm has a different number of parameters. The results are shown in Table 2,
where the last four columns are the best parameters found for the PSO algorithm: The
number of particles S, the inertia weight ω, and constants c1 and c2.

Meta-
method

Meta-
parameters

Meta-
runs

Meta-
iterations

Optimization
iterations

Meta-
fitness

Best found parameters
NP CR F

PS N/A 5 60
200 96.88 3.0000 0.0124 0.2342
500 82.14 84.1775 0.9688 0.0429

1000 76.76 32.0036 0.9375 0.2968

LUS γ = 3 5 60
200 97.25 23.1180 0.9927 0.0935
500 82.74 34.8685 0.8697 0.1827

1000 80.13 119.4043 0.6731 0.0172

Tab. 1. Meta-optimization of the Differential Evolution parameters

using meta-methods PS and LUS with number of iterations 200, 500

and 1000. The problem being solved is a 28-element array with SLL

suppression region of [0◦, 180◦] and prescribed nulls at 55◦, 57.5◦,

60◦, 120◦, 122.5◦ and 125◦.

These set of parameters are used in the second phase of the optimization problem
which is to run the algorithms to optimize the linear array described above. Another
important factor in the Meta-Optimization process is the number of runs performed by
the algorithm being meta-optimized. This is to obtain statistical significance and is set
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Meta-
method

Meta-
parameters

Meta-
runs

Meta-
iterations

Optimization
iterations

Meta-
fitness

Best found parameters
S ω c1 c2

PS N/A 5 80
200 114.81 300.0000 2.0000 -2.3792 6.0000
500 111.79 300.0000 -1.0514 4.0000 1.4987

1000 84.86 60.1695 -0.4515 -0.5656 1.4386

LUS γ = 3 5 80
200 113.93 202.6578 -1.9376 2.4022 4.8989
500 100.54 17.9624 -0.2811 -1.9813 1.9578

1000 84.95 202.9297 0.0102 0.1499 1.6154

Tab. 2. Meta-optimization of the Particle Swarm Optimization

parameters using meta-methods PS and LUS with number of

iterations 200, 500 and 1000. The problem being solved is a

28-element array with SLL suppression region of [0◦, 180◦] and

prescribed nulls at 55◦, 57.5◦, 60◦, 120◦, 122.5◦ and 125◦.

100 200 300 400 500 600 700 800 900 1000

Iterations

30

40

50

60

70

80

90

100

F
it
n

e
s
s

Fitness using PS meta-optimizer for a 28-element antenna array

DE with standard parameters

PSO with standard parameters

DE with meta-optimized parameters

PSO with meta-optimized parameters

(a) Pattern Search meta-optimized.
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(b) Local Unimodal Sampling meta-optimized.

Fig. 3. Fitness average of 50 runs using PS and LUS meta-optimizers

for a 28-element linear antenna array.

to 50 runs. In other words, several runs are performed to minimize the chance that
a better or worse result is obtained due only to the random nature of the algorithms.
The average fitness scores are plotted in Figure 3, where it is shown that the DE and
PSO meta-optimized parameters achieve a better convergence compared to the standard
parameters.

At the end of the optimization process, the PSO and DE algorithms found the dis-
tances between elements needed to comply with the requirements of the 28-element
linear antenna array: SLL suppression in the region [0◦, 180◦] and prescribed nulls at
55◦, 57.5◦, 50◦, 120◦, 122.5◦ and 125◦. Each of the found values represent the distance
of each antenna element to the center of the array with respect to λ and they are shown
in Table 3. Once the distances for every antenna element are found, it is possible to
build a full model of the resulting antenna array using Equation 5. The array factor AF
is calculated by the sum of all the radiation patterns of the 28 antenna elements. Each
value of xn is taken from Table 3 and the magnitude of the array factor for every trans-
mitting direction θ is obtained. Figure 4 and Figure 5 show a rectangular 2-D pattern
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in dB of the normalized AF , which is a graphical representation of the antenna array
behavior. Both figures show the results for the PS and LUS algorithms respectively. In
Figure 4, the “PSO” legend corresponds to the results obtained by Khodier in [21], and
the legends “meta-PSO” and “meta-DE” are the results found in this work. It can be
observed that the meta-optimized algorithms (particularly PSO) show lower Side Lobe
Levels, especially at the outer angles, where the PSO technique achieves around -35dB.
They also keep a narrow main lobe, as required by the suppression region [0◦, 180◦] and
the prescribed nulls are also obtained. Similar results can be seen in Figure 5, where the
LUS algorithm was used.

PS LUS

DE PSO DE PSO

−14.0000 −13.9999 −14.0000 −13.9958
−12.7162 −12.8550 −12.6238 −12.7723
−11.7458 −12.2137 −11.5534 −11.9684
−10.8999 −11.3429 −10.5314 −11.0294
−9.9774 −10.7613 −9.4410 −10.2245
−8.9429 −9.7964 −8.6096 −8.8950
−8.0736 −8.7276 −7.7340 −7.7529
−6.8577 −7.6411 −6.6975 −6.5539
−5.4952 −6.4483 −5.5469 −5.3588
−4.5287 −5.2548 −4.5823 −4.6704
−3.4568 −4.2565 −3.5783 −3.7413
−2.4958 −3.0349 −2.6328 −2.8647
−1.5006 −1.7781 −1.6174 −1.8965
−0.5102 −0.6313 −0.5643 −0.7349

0.5102 0.6313 0.5643 0.7349
1.5006 1.7781 1.6174 1.8965
2.4958 3.0349 2.6328 2.8647
3.4568 4.2565 3.5783 3.7413
4.5287 5.2548 4.5823 4.6704
5.4952 6.4483 5.5469 5.3588
6.8577 7.6411 6.6975 6.5539
8.0736 8.7276 7.7340 7.7529
8.9429 9.7964 8.6096 8.8950
9.9774 10.7613 9.4410 10.2245

10.8999 11.3429 10.5314 11.0294
11.7458 12.2137 11.5534 11.9684
12.7162 12.8550 12.6238 12.7723
14.0000 13.9999 14.0000 13.9958

Tab. 3. 28-element linear antenna array locations obtained with the

DE and PSO algorithms using the meta-optimized parameters

calculated by the PS and LUS meta-optimizers. Each value

corresponds to the distance of each element to the center of the array

with respect to λ.

4.2. Second experiment

A second experiment was performed to compare the results obtained by the Cuckoo
Search (CS) and Comprehensive Learning PSO (CLPSO) algorithms. These techniques
were recently introduced to the electromagnetics and antenna community by Khodier
in [20]. This experiment was conducted following the same procedure as the previous
one. The problem consists of a 32-element array with SLL suppression region of [0◦,
87◦] and [93◦, 180◦] and prescribed nulls at 81◦ and 99◦. The same fitness function from
the previous experiment was used. The results of the Meta-Optimization process using
DE and PSO are shown in Tables 5 and 6 respectively. Table 4.1 shows the resulting
distances between antenna elements and the array center. The average fitness scores are
plotted in Figure 6, showing the improved performance due to the meta-optimized DE
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Fig. 4. Lower Side Lobe Levels obtained with PS meta-optimized

parameters compared with Khodier’s results [21]. A 28-element array

with SLL suppression region of [0◦, 180◦] and prescribed nulls at 55◦,

57.5◦, 60◦, 120◦, 122.5◦ and 125◦.
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(a) Pattern Search meta-optimized.
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Fig. 6. Fitness average of 50 runs using PS and LUS meta-optimizers

for a 32-element linear antenna array.

PS LUS

−18.67 −19.80
−16.44 −18.50
−14.14 −14.79
−11.62 −12.26
−8.96 −10.95
−7.50 −10.42
−6.46 −9.07
−4.92 −8.49
−4.25 −6.98
−3.00 −6.97
−2.70 −5.47
−0.78 −5.10

0.04 −4.04
1.14 −3.83
1.62 −3.49
2.01 −2.57
3.36 −2.36
4.36 −1.44
5.66 −0.55
6.01 0.38
7.33 1.60
8.33 5.70
9.34 7.58

10.22 8.96
10.49 10.07
11.48 11.58
12.78 12.91
12.98 13.56
14.62 14.72
15.61 16.15
17.47 16.41
20.00 17.65

Tab. 4. 32-element linear antenna array locations obtained with the

PSO algorithm using the meta-optimized parameters calculated by

the PS and LUS meta-optimizers. Each value corresponds to the

distance of each element to the center of the array with respect to λ.
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Meta-
method

Meta-
parameters

Meta-
runs

Meta-
iterations

Optimization
iterations

Meta-
fitness

Best found parameters
NP CR F

PS N/A 5 60
200 30.80 22.9343 1.0000 0.3670
500 11.84 194.0127 0.8570 0.0098

1000 8.06 103.3261 1.0000 0.1710

LUS γ = 3 5 60
200 18.70 11.9133 0.5375 0.0342
500 11.45 84.9178 0.8226 0.0156

1000 8.14 61.6216 0.9196 0.1955

Tab. 5. Meta-optimization of the Differential Evolution parameters

using meta-methods PS and LUS with number of iterations 200, 500

and 1000. The problem being solved is a 32-element array with SLL

suppression region of [0◦, 87◦] and [93◦, 180◦] and prescribed nulls at

81◦ and 99◦.

Meta-
method

Meta-
parameters

Meta-
runs

Meta-
iterations

Optimization
iterations

Meta-
fitness

Best found parameters
S ω c1 c2

PS N/A 5 80
200 36.95 52.6579 0.0000 4.0000 2.4090
500 35.49 282.1608 -0.0352 -1.4511 5.6875

1000 12.65 126.2368 -0.0938 0.4913 1.5450

LUS γ = 3 5 80
200 42.21 265.5426 -0.3580 3.3055 1.9896
500 24.93 144.7197 0.0052 2.4909 1.5117

1000 12.23 74.8707 0.1816 0.2119 1.5254

Tab. 6. Meta-optimization of the Particle Swarm Optimization

parameters using meta-methods PS and LUS with number of

iterations 200, 500 and 1000. The problem being solved is a

32-element array with SLL suppression region of [0◦, 87◦] and [93◦,

180◦] and prescribed nulls at 81◦ and 99◦.

and PSO parameters. The radiation pattern results obtained by the PS and LUS Meta-
Optimization parameters are shown in Figure 7 and Figure 8 respectively. In Figure 7,
the “CS” and “CLSPSO” legends correspond to the results by [20], the Cuckoo Search
and the Comprehensive Learning PSO algorithms. The legend “meta-PSO” is the result
from this work. It can be seen that the meta-optimized PSO achieves lower Side Lobe
Levels. It also keeps a desired main lobe and the prescribed nulls are placed at the
angles 81◦ and 99◦, reaching as low as -70dB, surpassing CS and CLSPSO. The results
presented in Figure 8 show an even better pattern from the meta-optimized PSO.

4.3. Statistical tests

In order to statistically analyze the results in previous experiments, a non-parametric
significance procedure known as the Wilcoxon’s rank test for independent samples has
been conducted [11]. Such proof aims to detect significant differences between the behav-
ior of two algorithms. As per null hypothesis, it is assumed that there is no significant
difference between accuracy values in both optimized and meta-optimized approaches.
However, the alternative hypothesis considers a significant difference between accuracy
values in both methods. In this case, the significance level is 5%, which means that the
confidence level is 95%, a strong evidence that the second hypothesis is true, thus the
optimized and meta-optimized techniques are significantly different and therefore their
results did not occurred by coincidence, i. e., due to their random initialization nature.
These statistical results for both 28-array and 32-array experiments are shown in Ta-
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Fig. 7. Lower Side Lobe Levels obtained with PS meta-optimized

parameters compared with Khodier’s results [20]. A 32-element array

with SLL suppression region of [0◦, 87◦] and [93◦, 180◦] and

prescribed nulls at 81◦ and 99◦.
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parameters compared with Khodier’s results [20]. A 32-element array

with SLL suppression region of [0◦, 87◦] and [93◦, 180◦] and

prescribed nulls at 81◦ and 99◦.



Meta-optimization of bio-inspired algorithms for antenna array design 623

Standard
Meta-optimized

PS LUS
DE PSO DE PSO DE PSO

28-array
Best 20.85 22.03 16.07 18.61 17.25 19.13
Mean 28.73 28.33 22.66 23.39 21.00 23.83
Worst 38.40 37.39 32.13 32.07 24.87 29.90
SD 3.22 3.38 3.44 3.10 1.80 2.64
p-value N/A N/A 8.35E-11 1.73E-15 3.17E-12 2.21E-10
Runtime 12.05 12.04 11.27 13.53 13.69 10.98
32-array
Best 6.63 3.43 2.12 2.73 2.81 1.83
Mean 11.08 8.18 6.68 6.54 5.25 6.20
Worst 15.60 12.67 10.83 14.79 9.00 10.44
SD 1.97 2.34 1.83 2.22 1.50 1.97
p-value N/A N/A 1.59E-15 2.61E-17 1.72E-09 8.69E-04
Runtime 13.60 13.29 15.27 13.90 17.83 13.96

Tab. 7. Statistical results using standard and meta-optimized

parameters, including Wilcoxon’s p-values.

ble 7, together with the best, mean, worst and standard deviation fitness values from
50 experiments. It can be observed that the p-values obtained by the Wilcoxon test for
each meta-optimized method are much smaller than 5% (or 0.05), which is evidence of
a significant difference between methods.

4.4. Meta-landscapes

A third experiment was conducted, this time to study the Meta-Optimization process
itself. It consists on the graphical representation of a set of resulting parameters that
allows to observe the behavior of the procedure. This representation is called meta-
landscape.

As mentioned before, in optimization problems, researchers often have to deal with
the complexity of having an exponential increase of dimensions in a problem space.
In Meta-Optimization, the number of parameters to be optimized is multiplied by the
meta-optimizer’s own parameters. For each new parameter, the number of candidate
solutions grows exponentially. For this reason, it is desirable that the meta-optimizer
algorithm is as simple as possible. This means that the problem to be solved by the
meta-optimizer should not be so complex as to have the algorithm fail to converge. One
way to observe the kind of problem the meta-optimizer has to deal with, is to generate a
3-dimensional plot of the meta-fitness landscape. Most of the methods have more than
two parameters so it is necessary to fix some of them to be able to produce a viewable
plot.

Consider the PSO algorithm with c1 and c2 fixed to 1.49445, which is considered the
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standard value [9]. The variable parameters being the number of particles NP and the
inertia weight ω. The boundaries for these parameters are [1, 100] for NP and [-2, 2]
for ω. Figure 9(a) shows the meta-fitness landscape of the PSO when optimizing the 28-
element linear antenna array of the first experiment. The algorithm is executed 5 times
and runs for 1000 iterations. These results suggest that the problem of meta-optimizing
the PSO algorithm to solve the antenna array is simple. The meta-landscape surface
is fairly regular and without obvious local minima. The graph shows that the meta-
fitness values are worst when only a few number of particles are used. Another finding
is that the best results are achieved whenever the inertia weight values are close to 0,
regardless of their sign. It can be also observed that once a certain minimum number of
particles NP is used (around 20), the meta-optimizer is capable of finding good results
without having higher number of particles. This finding could be an advantage in the
Meta-Optimization process, since the processing time of the algorithm can be reduced
by using less particles. Something similar can be observed in Figure 9(b) where the
meta-landscape for the DE algorithm was obtained with the same problem. In this case,
the variables are the number of particles NP and the differential weight F . The third
parameter CR is fixed to 0.5313. It can also be noticed that the meta-landscape is
fairly simple with a single minimum. Moreover, the number of particles NP seems to
be unimportant, as long as the value of the differential weight F is kept below 0.5. This
is a useful discovery, as it allows to use less of particles, reducing the processing effort.
Both meta-landscapes show a valley of good performing parameter combinations. It is
worth mentioning that in these experiments some parameters were fixed, so it is possible
that using all of them the meta-landscape will look different.
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Fig. 9. Meta-landscapes for PSO (a) and DE (b) obtained by varying

two dimensions. For 5 runs and 1000 iterations. For a 28-element

linear antenna array.
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5. CONCLUSION

In this paper, a technique called Meta-Optimization was used to improve the per-
formance of bio-inspired optimization algorithms that solve antenna array synthesis
problems. Meta-Optimization consists of employing a second optimization algorithm
to find good behavioral parameters for a given technique. The parameters for Parti-
cle Swarm Optimization and Differential Evolution were calculated using two different
meta-optimizers: Pattern Search and Local Unimodal Sampling. The results show an
improvement on the antenna array radiation pattern as compared to previous works. The
Meta-Optimization approach reduced the Side Lobe Levels while keeping nulls at cer-
tain directions. It has also been found that the improvement obtained by this technique
is statistically significant based on Wilcoxon’s rank sum test as compared to previous
methods. Furthermore, the meta-landscapes for both algorithms were examined and it
was observed that for this particular problem the number of particles did not have a
considerable impact on the results. It was also found that the algorithms would perform
best when certain parameter values ranges were met.
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626 V. ZÚÑIGA-GRAJEDA, A. CORONADO-MENDOZA AND K. J. GURUBEL-TUN

[9] R. C. Eberhart and Y. Shi: Particle swarm optimization: developments, applica-
tions and resources. In: Proc. 2001 Congr. Evol. Comput. 1 (2001), pp. 81–86.
DOI:10.1109/cec.2001.934374

[10] A. E. Eiben, R. Hinterding, and Z. Michalewicz: Parameter control in evolutionary
algorithms. In: IEEE Trans. Evol. Comput. 3 (1999), 124–141. DOI:10.1109/4235.771166
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