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MULTI-AGENT NETWORK FLOWS THAT SOLVE LINEAR
COMPLEMENTARITY PROBLEMS

Shu Liang and Xianlin Zeng

In this paper, we consider linear complementarity problems with positive definite matrices
through a multi-agent network. We propose a distributed continuous-time algorithm and show
its correctness and convergence. Moreover, with the help of Kalman–Yakubovich–Popov lemma
and Lyapunov function, we prove its asymptotic convergence. We also present an alternative
distributed algorithm in terms of an ordinary differential equation. Finally, we illustrate the
effectiveness of our method by simulations.
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1. INTRODUCTION

Recently, multi-agent networks have received much attention in various research fields
such as distributed optimization and game [12, 13, 14, 29, 32], distributed machine
learning [25] and distributed computation of equations [22, 31]. In contrast to centralized
computations, network based distributed algorithms do not require overall information
to accomplish a task and introduce an inherent robustness to communication or sensor
failures, and environmental uncertainties. Moreover, distributed algorithms only require
each agent to know a local part of the data, leading to a decomposition structure that
is quite preferable for large scale problems.

This work focuses on another significant type of problems called linear complemen-
tarity problems (LCPs). The LCPs play a fundamental role in broad research areas such
as game theory [28], geodetic network [27], contact problem [17], computer graphics [24],
circuit modeling [21], energy market [6], and image restoration [3]. Rich theories and
many conventional algorithms of LCPs were presented in the monograph [19]. Moreover,
interesting research branches of LCPs include, just to mention a few, the robust version
in the presence of uncertain data [26], which was motivated by robust optimization;
properties of the solution map of a parametric LCP [7], which employed powerful tools
from variational analysis; and various algorithms for solving LCPs [5, 10, 15]. Also,
many works encountered or dealt with large scale LCPs, e. g., see [4, 16, 18, 23].
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Existing methods for designing distributed algorithms, in general, fail to solve LCPs.
For example, saddle point conditions are the key technical foundation in many dis-
tributed optimization works. In a LCP, however, such conditions or tools do not hold
any more. Some distributed computation methods for solving linear algebraic equations
have just been proposed in recent works [11, 22, 30]. Comparing with linear algebraic
equations, LCPs are quite different and difficult, due to the nonsmoothness caused by
the complementarity.

In this paper, we develop a distributed continuous-time nonsmooth algorithm to
solve the linear complementarity problem under reasonable assumptions. Note that
continuous-time algorithms become more and more popular in distributed design [2, 9,
13, 22], which may be easily implemented by physical agents; moreover, continuous-time
methods may provide effective approaches, possibly employing the powerful control the-
ory. We design the algorithm in light of a differential inclusion with maximal monotone
map, which guarantees the existence and uniqueness of its trajectory. Then we obtain
the asymptotic convergence of the algorithm by virtue of Kalman–Yakubovich–Popov
(KYP) lemma and a suitably constructed Lyapunov function. Furthermore, we present
a modified algorithm in terms of a differential equation with discontinuous righthand
side, which yields the same trajectory that solves the considered LCP by the original
algorithm.

The rest of paper is organized as follows: Section 2 provides preliminaries and for-
mulates the problem. Section 3 presents the main results, followed by simulations in
Section 4. Finally, Section 5 gives some concluding remarks.

2. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we introduce necessary preliminaries and formulate the problem.

2.1. Notations and preliminaries

R and R+ are the set of real numbers and nonnegative real numbers, respectively. 0 and
1 are vectors of proper dimension with all the elements as 0 and 1, respectively. I and O
are the identity matrix and zero matrix, respectively. col{x1, . . . , xn} = (xT1 , . . . , x

T
n )T

is the column vector stacked with column vectors x1, . . . , xn. rge(A) is the range space
of matrix A. Given a vector a and a symmetric matrix P , a ≥ 0 means that each
component of a is nonnegative, while P � 0 means that P is positive definite. Given
a set S, the minimal selection operator m(S) is any element of S with least norm.

For a convex set C and a point x ∈ C, the tangent cone and normal cone to C at x
are

TC(x) ,
{

lim
k→∞

xk − x
tk

|xk ∈ C, tk > 0, and xk → x, tk → 0
}
, (1)

and
NC(x) , {v ∈ Rn | vT (y − x) ≤ 0, for all y ∈ C}, (2)

respectively [20].
A network with its interaction topology described by a graph G = {V, E}, where

V = {1, 2, . . . N} is the node set, E ⊆ V × V is the edge set. G is said to be undirected
if {i, j} ∈ E ⇒ {j, i} ∈ E . The adjacent matrix A = [aij ]N×N satisfies aij = 1 if
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(j, i) ∈ E , and aij = 0, otherwise. Let di =
∑N
j=1 aij and D = diag{d1, . . . , dN}. Then

the Laplacian matrix of G is defined as L = D −A.

Lemma 2.1. Graph G is connected and undirected if and only if L = LT is positive
semidefinite with zero as its simple eigenvalue.

The positive realness of a linear dynamical system [8, page 237] is defined as follows.

Definition 2.2. A p×p proper rational transfer function matrix G(s) is called positive
real if

• poles of all element of G(s) are in Re(s) ≤ 0,

• for all real ω for which jω is not a pole of any element of G(s), the matrix G(jω)+
GT (−jω) is positive semidefinite, and

• any pure imaginary pole jω of any element of G(s) is a simple pole and the residue
matrix lims→jω(s− jω)G(s) is positive semidefinite Hermitian.

The following lemma is about the positive realness, known as Kalman–Yakubovich–
Popov (KYP) Lemma [8, page 240].

Lemma 2.3. (KYP Lemma) Let G(s) = C(sI −A)−1B be a p× p transfer function
matrix where (A,B) is controllable and (A,C) is observable. Then G(s) is strictly
positive real if and only if there exist matrices P = PT � 0, R such that

PA+ATP = −RTR,
PB = CT .

(3)

A differential inclusion can be expressed as:

ẋ ∈ S(x), x(0) = x0, (4)

where S is a set-valued map that associates any w ∈ Rn with a subset S(w) of Rn
[1]. A trajectory x(t) : [0,+∞) → Rn is said to be a solution to (4) if it is absolutely
continuous and satisfies the inclusion for almost all t ∈ [0,+∞). Moreover, x(·) is said
to be a viable solution with respect to a convex set K ⊂ Rn if x(t) ∈ K, ∀ t ∈ [0,+∞).
It follows from the viability theory that (4) has a viable solution if it has a solution and

∀w ∈ K, S(w) ∩ TK(w) 6= ∅. (5)

For a set-valued map S, the domain of S is defined as domS , {w ∈ Rn |S(w) 6= ∅},
and the graph of S is defined as gphS , {(w, v) ∈ Rn ×Rn | v ∈ S(w)}. S is said to be
monotone if

(v − v′)T (w − w′) ≥ 0, ∀ (w, v), (w′, v′) ∈ gph(S). (6)

Moreover, S is said to be maximal monotone if there is no other monotone set-valued
map S̃ with gph(S̃) ⊃ gph(S). We introduce the following lemma [1, Theorem 1, page
147], which lays a theoretic foundation for our nonsmooth algorithm design.
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Lemma 2.4. Let S be a maximal monotone set-valued map from Rn to Rn. Consider
the differential inclusion

ẋ ∈ −S(x), x(0) = x0 ∈ domS. (7)

Then there exists a unique solution x(·) defined on [0,+∞), which is the slow solution
as

ẋ = −m(S(x)), for almost all t > 0. (8)

2.2. Problem formulation

Given a matrix M ∈ Rn×n and a vector q ∈ Rn, the linear complementarity problem
[19], denoted by LCP(q,M), is to find a vector z ∈ Rn such that

z ≥ 0, (9a)

q +Mz ≥ 0, (9b)

zT (q +Mz) = 0. (9c)

The solution set of the LCP(q,M) is denoted by SOL(q,M).
Our goal is to solve LCP(q,M) in a distributed manner through a multi-agent net-

work, described by a graph with nodes regarded as agents. The data matrix M and
vector q is decomposed as

M = M1 +M2 + · · ·+MN , q = q1 + q2 + · · ·+ qN . (10)

For each i ∈ V, the ith agent updates its local variable xi ∈ Rn to estimate the solution
z ∈ SOL(q,M), based on private data qi,Mi and information from its neighbors.

The LCPs do not share the “non-empty convex intersection” property, that is,

SOL(q,M) *
N⋂
i=1

SOL(qi,Mi).

This is easily seen from (9c) that z ∈
⋂N
i=1 SOL(qi,Mi) implies zT (qi+Miz) = 0, whereas

the original problem corresponds to
∑N
i=1 z

T (qi + Miz) = 0. Therefore, the methods
and techniques in [11, 22] and many distributed optimization works are inapplicable to
our problem, even though each SOL(qi,Mi) can be convex.

The decomposition (10) can be very flexible. In particular, each Mi can be quite
sparse, though M may not be. Also, recall that the decomposition in [11, 22] takes the
following form

M =


hT1
hT2
...
hTN

 , q =


zT1
zT2
...
zTN

 , (11)

with hi, zi being assigned to the ith agent. Clearly, this is a special case of (10) with

Mi =

OhTi
O

 , qi =

0
zi
0

 . (12)
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LCP(q,M) can be equivalently represented as a nonsmooth equation problem 0 =
min{z, q+Mz} or a set-valued generalized equation problem 0 ∈ q+Mz+NRn

+
(z), where

the operator min{·, ·} is in the componentwise sense. Such an inherit nonsmoothness
makes our problem totally different from the linear algebraic equation problem 0 =
q +Mz considered in [11, 22].

The following assumptions are adopted.

Assumption 1. M is positive definite (not necessarily symmetric). That is, zTMz > 0
for all nonzero z ∈ Rn.

Assumption 2. The communication graph G is connected and undirected.

Assumption 1 is adopted mainly for two reasons. Firstly, the LCP with a positive
definite matrix is encountered in many problems such as [3, 27]. Secondly, in general, a
LCP can be very complicated and its solution set can be empty or set-valued (i. e., with
multiple solutions). Thus, we need to impose some restriction for some well-posededness.
Also, in order to solve the problem in a distributed manner, some stronger condition is
often required than those in centralized algorithms. It follows from [19, Theorem 3.1.6]
that LCP(q,M) has a unique solution for all q ∈ Rn, if M is positive definite. Thus, we
restrict our current attention on such a class of problems.

A special case of our problem includes LCP(q,M) with symmetric and positive def-
inite matrix M , which corresponds to a quadratic programming with convex objective
function as f(z) = qT z+ 1

2z
TMz and the constraints z ≥ 0. Important source problems

of such type include the least square problems with inequality constraints. If each Mi

is also symmetric, then f(z) is separable with each fi(z) = qTi z + 1
2z
TMiz. Note that

fi(z) can be non-convex, since Mi is not necessarily positive semidefinite. Moreover, in
our formulation, there is no restriction on the symmetry. These observations indicate
that the considered problem differs from distributed convex optimizations.

3. MAIN RESULTS

In this section, we present the distributed algorithm design and give the convergence
analysis.

3.1. Distributed algorithm

In this subsection, we present our distributed algorithm to solve LCP(q,M). For i ∈ V,
the ith agent has the following update rule:

ẋi ∈ −(Mixi + qi)− γ
N∑
j=1

aij(xi − xj)−
N∑
j=1

aij(λi − λj)−NRn
+

(xi), xi(0) ∈ Rn+

λ̇i =

N∑
j=1

aij(xi − xj), λi(0) ∈ Rn

(13)
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Algorithm (13) is fully distributed since the ith agent only needs its local data qi,Mi

and exchanges the information of variables x, λ with its neighbors.

For convenience, we rewrite Algorithm (13) in a compact form as[
ẋ

λ̇

]
∈ −F(x,λ)−NΘ(x,λ), (x(0),λ(0)) ∈ Θ, (14)

where x = col{x1, . . . , xN}, λ = col{λ1, . . . , λN}, q = col{q1, . . . , qN}, Θ = RnN+ ×RnN ,

F(x,λ) =

[
diag{M1, . . . ,MN}x+ q + γ(L⊗ In)x+ (L⊗ In)λ

−(L⊗ In)x

]
,

and L is the Laplacian matrix of the communication topology. The parameter γ > 0
is chosen sufficiently large such that diag{M1, . . . ,MN}+ γ(L⊗ In) is positive definite.
Such a parameter γ always exists, as indicated by the following lemma.

Lemma 3.1. Under Assumption 1, there exists γ∗ > 0 such that for any γ > γ∗,
diag{M1, . . . ,MN}+ γ(L⊗ In) is positive definite.

P r o o f . Define

Γ , (
1

N
1N1TN )⊗ In, Γ⊥ , I − Γ. (15)

For any x ∈ RnN , define

v = Γx, w = Γ⊥x, and z = (
1

N
1TN ⊗ In)x. (16)

Then v = col{z, . . . , z}, x = v +w and

xT (diag{M1, . . . ,MN}+ γ(L⊗ In))x

= vT diag{M1, . . . ,MN}v + vT diag{M1 +MT
1 , . . . ,MN +MT

N}w
+wT diag{M1, . . . ,MN}w + γwT (L⊗ In)w

= zTMz + zT (1TN ⊗ In) diag{M1 +MT
1 , . . . ,MN +MT

N}w
+wT diag{M1, . . . ,MN}w + γwT (L⊗ In)w

≥ k1‖z‖2 − k2‖z‖‖w‖ − k3‖w‖2 + γk4‖w‖2,

where k1 > 0 is the smallest eigenvalue of 1
2 (M + MT ), k2 = ‖(1TN ⊗ In) diag{M1 +

MT
1 , . . . ,MN +MT

N}‖, k3 = ‖ diag{M1, . . . ,MN}‖ and k4 is the smallest nonzero eigen-
value of L. Then the conclusion holds with γ∗ = (k2k1 +k3) 1

k4
, which completes the proof.

�

We assume that an upper bound of γ∗ is available to the algorithm designer.
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3.2. Convergence analysis

We first present basic properties with respect to the trajectory of algorithm (14).

Theorem 3.2. Under Assumptions 1 – 2, (14) has a unique trajectory (x(t),λ(t)), which
satisfies (x(t),λ(t)) ∈ Θ.

P r o o f . Since[
x′ − x
λ′ − λ

]T
(F(x′,λ′)−F(x,λ)) = (x′−x)T (diag{M1, . . . ,MN}+γ(L⊗In))(x′−x) ≥ 0,

the set-valued map F(x,λ) + NΘ(x,λ) is maximal monotone, according to [20, page
559]. Therefore, (14) is a differential inclusion with maximal monotone map. It follows
from Lemma 2.4 that (14) has a unique solution (x(t),λ(t)).

Also, it is not difficult to verify that

∀ (x,λ) ∈ Θ, −(F(x,λ) +NΘ(x,λ)) ∩ TΘ(x,λ) 6= ∅.

Thus, the unique trajectory (x(t),λ(t)) belongs to Θ, which completes the proof. �

Next, we check the equilibrium of (14), which corresponds to the solution of the
considered LCP.

Theorem 3.3. Under Assumptions 1 – 2, a point x∗ ∈ RnN+ together with some λ∗ ∈
RnN is an equilibrium of (14) if and only if

x∗1 = · · · = x∗N = z∗, z∗ ∈ SOL(q,M). (17)

P r o o f . Necessity: Let (x∗,λ∗) satisfy 0 ∈ A(x∗,λ∗). Then there exists some z∗ ∈ Rn
such that x∗1 = · · · = x∗N = z∗, and

x∗ ≥ 0,

diag{M1, . . . ,MN}x∗ + q + γ(L⊗ In)x∗ + (L⊗ In)λ∗ ≥ 0,

x∗T (diag{M1, . . . ,MN}x∗ + q + γ(L⊗ In)x∗ + (L⊗ In)λ∗) = 0.

(18)

Substituting the z∗ into (18) yields

z∗ ≥ 0,

Mz∗ + q ≥ 0,

z∗T (Mz∗ + q) = 0,

(19)

where the second condition in (19) is derived from the second condition in (18) by left
multiplying 1TN ⊗ In. Therefore, z∗ ∈ SOL(q,M).

Sufficiency: Suppose that x satisfies (17). Then it suffices to verify the existence of
some λ∗ such that

diag{M1, . . . ,MN}x∗ + q + (L⊗ In)λ∗ ≥ 0, (20)
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or equivalently,

(Γ + Γ⊥)(diag{M1, . . . ,MN}x∗ + q + (L⊗ In)λ∗) ≥ 0,

where Γ and Γ⊥ are defined in (15). Note that

Γ(diag{M1, . . . ,MN}x∗ + q + (L⊗ In)λ∗) = Γ(diag{M1, . . . ,MN}x∗ + q) ≥ 0.

Then (20) holds if

Γ⊥(diag{M1, . . . ,MN}x∗ + q + (L⊗ In)λ∗) = 0.

Such a λ∗ always exists because rge(Γ⊥(L⊗ In)) = rge(Γ⊥).
Moreover, if λ∗ is a solution to (20), then it is clear that any element of the following

set
Λ = {λ |λ = λ∗ + 1N ⊗ ν, ν ∈ Rn}, (21)

is also a solution to (20). It completes the proof. �

Then we prove the convergence of the algorithm.

Theorem 3.4. Under Assumptions 1 – 2, algorithm (14) asymptotically converges to
an equilibrium point (x∗,λ∗).

P r o o f . Since diag{M1, . . . ,MN} + γ(L ⊗ In) is positive definite, there exists α > 0
such that diag{M1, . . . ,MN}+ γ(L⊗ In)− αI is positive semidefinite. Algorithm (14)
can be rewritten as

ẋ = −αx− (L⊗ In)λ+ u

λ̇ = (L⊗ In)x

u ∈ −(diag{M1, . . . ,MN}+ γ(L⊗ In)− αI)x− q −NRnN
+

(x)

(22)

Let G(s) be the transfer function matrix of the open-loop linear system from input
u to output x in (22). That is,

G(s) = Ĉ(sI − Â)−1B̂, (23)

where

Â =

[
−αI −(L⊗ In)
L⊗ In O

]
, B̂ =

[
I
0

]
, Ĉ =

[
I
0

]T
. (24)

By some calculations, we have

G(s) = s(s2I + αsI + (L⊗ In)2)−1. (25)

Since L is symmetric, it can be transformed into a diagonal matrixD = diag{0, µ2, . . . , µN}
via some orthogonal matrix Q as L = QDQT . Then G(s) = (QG̃(s)QT )⊗ In, where

G̃(s) =


1

s+α
s

s2+αs+µ2
2

. . .
s

s2+αs+µ2
N

 . (26)
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Consequently, G(s) is positive real according to Definition 2.2. Thus, for any minimal
realization (A,B,C) of G(s), it follows from Lemma 2.3 that there exist P = PT � 0
and R rendering (3).

Let (x∗,λ∗) be an equilibrium of (14) that satisfies (1N ⊗ In)Tλ∗ = (1N ⊗ In)Tλ(0).
Such an equilibrium exists, according to (21). Note that (Â, B̂, Ĉ) in (24) is not a
minimal realization of G(s). The only internal subsystem that is not involved in G(s)
is the dynamics of the variable λc̄ō(t) , (1N ⊗ In)Tλ(t) with the system matrices as
(O,0,0). Clearly, λc̄ō is neither controllable nor observable, but it is stable because
λ̇c̄ō(t) = 0, ∀ t > 0. As a result, λc̄ō(t) ≡ (1N ⊗ In)Tλ∗ , λ∗c̄ō. Since λc̄ō(t)− λ∗c̄ō ≡ 0,
we can choose some extended matrices R̂ and P̂ = P̂T � 0 with

θ(t) ,

[
x(t)− x∗
λ(t)− λ∗

]
, V (t) , θT (t)P̂θ(t), (27)

such that for almost all t > 0,

V̇ (t) = θT (t)(P̂ Ā+ ÂT P̂ )θ(t) + θT (t)P̂ B̂(u(t)− u∗)

= θT (t)(−R̂T R̂)θ(t) + θT (t)

[
I
0

]
(u(t)− u∗)

≤ (x(t)− x∗)(u(t)− u∗)
< 0,

(28)

where u∗ ∈ −(diag{M1, . . . ,MN}+γ(L⊗In)−αI)x∗−q−NRnN
+

(x∗). The last inequality

in (28) holds because of the monotonicity condition−(x(t)−x∗)T (u(t)−u∗) > 0, ∀ t > 0.
Thus, the conclusion follows. �

Remark 3.5. Theorem 3.4 states that our distributed algorithm for the considered LCP
achieves the exponential convergence. The key step in the proof is the construction of the
Lyapunov function (27) and obtaining the inequality (28) for its first order derivative,
which is fulfilled by taking advantage of KYP lemma, different from existing ones in [29].
Also, our nonsmooth analysis approach does not rely on the set-valued Lie derivative of
the Lyapunov function, which is different from the work [32].

3.3. Alternative algorithm

In order to avoid the set-valued righthand side of (13) caused by the normal cone, we
present an alternative distributed algorithm in the form of a differential equation with
discontinuous term on the righthand side, which may be preferable for implementation
due to its single-valued form.

For any a = col{a1, . . . , an} ∈ Rn and b = col{b1, . . . , bn} ∈ Rn+, let us define a vector
operator

π(a, b) , col{π(a1, b1), . . . , π(an, bn)}, (29)

where the scalar operator π(a, b) is defined on R× R+ as

π(a, b) ,

{
0, if b = 0 and a ≥ 0,

a, otherwise.
(30)
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Then the alternative distributed algorithm is
ẋi = −π(Fi, xi)

λ̇i =

N∑
j=1

aij(xi − xj)
(31)

where

Fi = Mixi + qi + γ

N∑
j=1

aij(xi − xj) +

N∑
j=1

aij(λi − λj).

Clearly, algorithm (31) is fully distributed. Moreover, it can be rewritten in a compact
form as [

ẋ

λ̇

]
=

[
−π(F ,x)
(L⊗ In)x

]
, (x(0),λ(0)) ∈ Θ, (32)

where F = col{F1, . . . , FN}.

Then we have the following result.

Theorem 3.6. Under Assumptions 1 – 2, algorithm (14) and algorithm (32) yield the
same trajectories. In particular, the following statements hold.

1. there is a unique trajectory (x(t),λ(t)) satisfying (32) for almost all t ≥ 0. More-
over, (x(t),λ(t)) ∈ Θ for all t > 0;

2. the trajectory is exponentially convergent with

lim
t→+∞

(x(t),λ(t)) = (x∗,λ∗), (33)

where x∗ satisfies (17).

P r o o f . For any (a, b) ∈ R× R+, there holds

m(a+NR+(b)) =

{
m({a}), if b > 0

m((−∞, a]), if b = 0
(34)

From (34) and (30), one has

π(a, b) = m(a+NR≥0
(b)), ∀ (a, b) ∈ R× R+.

Also, π(a, b) = m(a +NRn
≥0

(b)) holds for any a ∈ Rn, b ∈ Rn+. Therefore, (32) can be

equivalently written as [
ẋ

λ̇

]
= −m(F(x,λ) +NΘ(x,λ)). (35)

Thus, the conclusion follows from Lemma 2.4 and Theorems 3.2 – 3.4. �

Some discussions about our methods are summarized as follows.
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• Theorems 3.2 – 3.6 provide a complete procedure to prove that the algorithm (13)
or (31) solves LCP(q,M) in a distributed manner.

• Our techniques combine differential inclusions, viability theory, KYP lemma and
Lyapunov method, as well as some elementary results of LCPs.

• Algorithm (31) is preferable for implementation since it has single-valued righthand
side. However, since the term with operator π(·, ·) in (31) is discontinuous, it is
not easy to analyze the algorithm directly. Instead, we start from algorithm (13) in
terms of a differential inclusion, which is much convenient for theoretical analysis.

4. NUMERICAL SIMULATIONS

In this section, we give numerical examples for illustration. Consider LCP(q,M) with

M =

1 0 −1
0 2 1
2 0 3

 , q =

−3
−2
−1

 .

To solve the problem, we employ a multi-agent system with 6 agents. Consider a de-
composition as in (10), where

M1 =

1 0 0
0 0 0
0 0 0

 , M2 =

0 0 −1
0 0 0
0 0 0

 , M3 =

0 0 0
0 2 0
0 0 0

 ,
M4 =

0 0 0
0 0 1
0 0 0

 , M5 =

0 0 0
0 0 0
2 0 0

 , M6 =

0 0 0
0 0 0
0 0 3

 ,
and

q1 = q2 = q3 =

−1
0
0

 , q4 = q5 =

 0
−1
0

 , q6 =

 0
0
−1

 .

The agents share information over a graph as shown in Figure 1. Our distributed algo-
rithm with γ = 3 yields the solution z∗ = [3, 1, 0]T . The trajectories of the agents are
shown in Figure 2.

Next, we consider LCP(q,M) with the decomposition as in (11) and (12) for different
network sizes as N = 5, 6, . . . , 20. The data and the communication graph are randomly
generated such that Assumption 1 holds. The solution of LCP(q,M), denoted by z∗, is
calculated and confirmed by both the conventional (centralized) pivoting algorithm and
Newton type iterative algorithm [19]. Then we use our distributed algorithm to solve the

problem and take the relative error e(t) =
maxi=1,...,N ‖xi(t)−z∗‖

‖z∗‖ for t = 20, 40, 60, 80, 100.

The results of our numerical experiment are shown in Table 1, which verifies the perfor-
mance of our distributed algorithm for LCPs with different network sizes.
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Fig. 1. The communication graph of six agents.

0 10 20 30 40 50 60 70

Time (t)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

T
ra
je
ct
or
ie
s

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Fig. 2. The trajectories of the agents.

5. CONCLUSIONS

In the paper, distributed linear complementarity problems with positive definite matrices
have been studied, and a continuous-time nonsmooth algorithm in terms of a differential
inclusion with maximal monotone map has been proposed to solve the problem in a
distributed manner. The asymptotic convergence of the algorithm has been proved by
virtue of the KYP lemma and Lyapunov method. In addition, an algorithm described
by an ordinary differential equation has also been presented. Finally, simulations have
illustrated the effectiveness of our algorithm.
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t = 20 t = 40 t = 60 t = 80 t = 100
N = 5 0.0015 0.0000 0.0000 0.0000 0.0000
N = 6 0.0058 0.0000 0.0000 0.0000 0.0000
N = 7 0.0072 0.0001 0.0000 0.0000 0.0000
N = 8 0.0343 0.0012 0.0000 0.0000 0.0000
N = 9 0.0420 0.0018 0.0001 0.0000 0.0000
N = 10 0.0560 0.0044 0.0004 0.0000 0.0000
N = 11 0.0981 0.0099 0.0010 0.0001 0.0000
N = 12 0.1021 0.0118 0.0015 0.0002 0.0000
N = 13 0.1323 0.0192 0.0030 0.0005 0.0001
N = 14 0.1370 0.0218 0.0038 0.0007 0.0001
N = 15 0.1217 0.0176 0.0031 0.0006 0.0001
N = 16 0.1860 0.0362 0.0073 0.0015 0.0003
N = 17 0.2114 0.0458 0.0102 0.0023 0.0005
N = 18 0.1905 0.0395 0.0087 0.0020 0.0005
N = 19 0.2247 0.0522 0.0124 0.0030 0.0007
N = 20 0.2414 0.0601 0.0154 0.0040 0.0011

Tab. 1. relative error vs. problem size.
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