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THE DYNAMIC BEHAVIORS OF A NEW IMPULSIVE
PREDATOR PREY MODEL WITH IMPULSIVE CONTROL
AT DIFFERENT FIXED MOMENTS

Linjun Wang, Youxiang Xie, Qicheng Deng

In this paper, we propose a new impulsive predator prey model with impulsive control at
different fixed moments and analyze its interesting dynamic behaviors. Sufficient conditions
for the globally asymptotical stability of the semi-trivial periodic solution and the permanence
of the present model are obtained by Floquet theory of impulsive differential equation and
small amplitude perturbation skills. Existences of the “infection-free” periodic solution and the
“predator-free” solution are analyzed by bifurcation theory of impulsive differential equation.
Finally, the analytical results presented in the work are validated by numerical simulation
figures for this proposed model.
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1. INTRODUCTION

In recent years, many biologists have been concerning about the management of renew-
able natural resources, and also aware that it is possible to change the genetic pattern
of resources by suitable stocking and harvesting which can play an important part in
the permanence of ecosystems [16, 28, 32]. Some researchers have studied the effects of
toxicants that emitted into the environment from industrial and household sources on
biological species [2, 22, 35]. In fact, most of these ecosystems are assumed that the
exogenous input of toxicants has its continuous characteristic. Moreover, there are many
activities that are related to natural factors, such as planting, drought, harvesting and
flooding, as well as human exploitation. These activities have deeply perturbed ecolog-
ical systems. Especially, sudden changes can be mathematically described in the form
of impulses. So we often remove the continuous input of toxicants from the ecological
systems and replace it using a pulse perturbation. Therefore, in order to accurately
describe these systems, we often exploit an impulsive differential equation. Recently,
since the theory of impulsive differential equations develops very quickly, it has led to
the proposal of many different kinds of population dynamical models of impulsive dif-
ferential equations which have been researched by many experts [3, 7, 18, 26]. Meng
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et al. proposed a new SEIRS epidemic disease model with two profitless delays and
nonlinear incidence and analyzed the dynamic behaviors of the model under pulse vac-
cination [29]. Jin et al. proposed a pulse vaccination SIR model with periodic infection
rate, and studied the stability of the infection-free periodic solution and the existence
of the positive periodic solution [38]. Gao et al. formulated an SEIRS epidemic model
with time delays and pulse vaccination, and obtained the exact infection-free periodic
solution of the impulsive epidemic system and proved its global attractability and per-
sistence [24]. Zuo and Jiang investigated a stochastic non-autonomous Holling-Tanner
predator-prey system with impulsive effect, and proved the existence and global attrac-
tion of the boundary periodic solution by using the comparison theorem [27]. Sun et
al. presented a new integrated pest management predator-prey model, and verified the
existence and stability of the order-1 periodic orbit for the proposed model [14]. Sun
et al. studied a pest control scaled prey-predator model, where the yield releases of
the predator and chemical control strength are dependent on the pest control level [15].
Zhang and Tan considered a stochastic predator-prey system in a polluted environment
with pulse toxicant input and impulsive perturbations, and obtained a set of sufficient
conditions for extinction, with weak persistence in the mean and global attraction to
any positive solution of the proposed system, and estimated the conditions for the upper
boundedness of the expectations of this proposed system solution [25]. For more related
research works, one may refer to the references [4, 11, 19, 23, 33, 34, 36, 37, 39].

Some experts have controlled the pests by exploiting viruses and simultaneously re-
leasing the pest population [8, 20]. First, a small amount of pathogens are introduced
into a pest population with the expectation that it will generate an epidemic and that it
will subsequently be endemic. The success of this method depends on the survival of the
microbes which in turn depends on environmental factors. At the same time, we con-
sider to release the pests infected in the laboratories to the pest population with periodic
impulsive effect. The infected pests have little effect on the crops. The susceptible pests
become infected through direct contact with the infective ones or through encountering
the free-living infective stage in the environment. Thus it can infect the pest population
and result in the death of them continuously. The main purpose of this paper therefore
is to formulate and investigate an epidemiological model for the bio-control of a pest.
In fact, the theoretical investigation and its application analysis can be found in almost
every field [1, 6, 9, 10, 12, 13, 17, 21, 30]. This pest population is assumed to grow
according to a logistic curve in the absence of disease [5, 31]. Moreover, many experts
have studied biological model with impulsive effect, but the interesting research work
obtained by comprehensive prevention and impulse control strategy at different fixed
moments is very less. Therefore, in this paper, we investigate the dynamic behaviors of
a new impulsive predator prey model with impulsive control at different fixed moments.

The paper is organized as follows: We establish a new impulsive predator prey model
with impulsive control at different fixed moments in Section 2. In Section 3, some
corresponding preliminaries are given and ready for the investigation of our proposed
model. Some sufficient conditions that assure the stability and persistence of semi-trivial
periodic solutions are strictly provided in Section 4. Existences of the “infection-free”
periodic solution and the “predator-free” solution are sufficiently analyzed by bifurcation
theory of impulsive differential equation in Section 5. In Section 6, numerical simulations
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validate the correctness of theoretical analysis on this new biological model.

2. THE FORMULATION OF PEST CONTROL MODEL

In Ref. [36], Xie at al. provided the insect-pathogen model. In this paper, based on this
model, we suppose that the pathogens are introduced at the pulse time and the natural
enemies of pest are also introduced, and then we can obtain a new biological control
model which is given as follows:

.

S(t) = [r − a (S(t) + I(t))]S(t)− λS(t)I(t)− bS(t)Y (t) = f1(t)
·
I(t) = λS(t)I(t) + (r − β − a (S(t) + I(t))) I(t) = f2(t)
.

Y (t) = µbS(t)Y (t)− d1Y (t) = f3(t)

 t 6= nT,
t 6= (n+ l − 1)T,

∆I(t) = α, t = (n+ l − 1)T
∆Y (t) = R, t = nT,

(2.1)
where

∆I(t) = I(t+)− I(t), ∆Y (t) = Y (t+)− Y (t),

α > 0 represents the release amount of the infected pests at t = (n+l−1)T ; R represents
the release amount of predators at t = nT ; T is the period of the impulsive effect and
n ∈ N+, N+ = {1, 2 · ··}, 0 < l < 1. Throughout this paper, it is supposed that the
mortality rate is smaller than the birth rate, which means β < γ, considering the illness.

3. PRELIMINARIES

In order to conveniently get the expected results in the next section, it is very necessary
to use the following notations:

R+ = [0,+∞) ,

Rn+ = {x= (x1, x2, · · · , xn) ∈ Rn |xi ≥ 0, i = 1, 2, · · · , n} ,

f = (f1, f2, f3)
T
.

Let V : R+ ×R3
+ → R+, then V is said to belong to class ν0 if:

(1) V is piecewise continuous in ((n− 1)T, (n+ l − 1)T ]×R3
+, and ((n+ l − 1)T, nT ]×

R3
+(n ∈ N+). For each x ∈ R3

+, and there exists

lim
(t,Y )→(nτ+,x)

V (t, Y ) = V (nτ+, x);

(2) V satisfies the local Lipschitz condition in x.

Definition 3.1.
Let V ∈ v0, then for (t, x) ∈ ((n− 1)T, (n+ l − 1)T ]×R3

+ or ((n+ l − 1)T, nT ]×R3
+ ,

the upper right derivative of V (t, x) with respect to the system (2.1) is defined as

D+V (t, x) = lim
h→0

sup
1

h
[V (t+ h, x+ hf(t, x))− V (t, x)] .
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The solution of system (2.1) is piecewise continuous for x : R+ → R3
+. x(t) is

continuous and differentiable in ((n− 1)T, (n+ l − 1)T ] , and ((n+ l − 1)T, nT ] , n ∈
N+. limt→nT+ x(t) = x(nT+) and limt→(n+l−1)T+ x(t) = x((n + l − 1)T+) exist. The
smoothness characteristic of f ensures the global existence and uniqueness of solutions
of system (2.1) [26].

Definition 3.2. Refer to [36].
Noticing that variable can not be negative, we hope that solutions of system (2.1)

can also keep non-negative during the time that the initial condition is non-negative.
Therefore, we need to introduce the following conclusions:

Lemma 3.1. Suppose x(t) = (S(t), I(t), Y (t)) be a solution of system (2.1). If x+
0 ≥ 0,

then x(t) ≥ 0 for all t ≥ 0. In addition, if x+
0 > 0, then we have x(t) > 0 for all t ≥ 0.

P r o o f . We suppose that there exists t∗ ∈ (0, T ], then S(t) ≥ 0, I(t) ≥ 0, Y (t) ≥ 0,

S(t∗) = 0,
.

S(t∗) < 0, I(t∗) ≥ 0, and Y (t∗) ≥ 0 for all t ∈ (0, t∗). According to the first

equation of system (2.1), we have
.

S(t∗) = 0, and this is a contradiction. Using its first
equation, we can obtain

S(t) =

{
S(0+)e

∫ t
0

[γ−a(S(ξ)+I(ξ)−λI(ξ)−by(ξ))]]dξ, t ∈ (0, lT ] ,

S(lT+)e
∫ t
lT

[γ−a(S(ξ)+I(ξ)−λI(ξ)−by(ξ))]dξ, t ∈ (lT, T ] .

�

Obviously, S(t) ≥ 0 for S(0+) ≥ 0 and when S(0+) > 0, S(t) > 0 for t ∈ (0, T ] .
Moreover, we can validate it for I(t) and Y (t). Next we will obtain an important result
about the following impulsive differential equations.

Lemma 3.2. (Panetta [10]) Assume that V ∈ v0 satisfies the following conditions:{
D+V (t, x) ≤ g(t, V (t, x)), t 6= nT

V (t, x(t+)) ≤ ψn(V (t, x)), t = nT,
(3.1)

where g : R+ × R+ → R is continuous in (nT, (n+ 1)T ] × R+. For u ∈ R+ , n ∈ N ,
lim

(t,v)→(nT+,u)
g(t, v) = g(nT+, u) exists and ψn : R+ → R+ is non-decreasing. We assume

that r(t) is the maximal solution of the scalar impulsive differential equation
.
u(t) = g(t, u(t)), t 6= nT,
u(t+) = ψn(u(t)), t = nT,
u(0+) = u0

which exists on [0,∞).
Therefore, we have V (t, x(t)) ≤ r(t) for t ≥ t0 according to V (0+, x0) ≤ u0, in which

x(t) is a solution of system (2.1).
Next we will obtain some basic properties about the following impulsive differential

equations.
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Lemma 3.3. Suppose r − β > 0, I0 ≥ 0, then system
.

I(t) = (r − β − aI(t))I(t), t 6= (n+ l − 1)T
I(t+) = I(t) + α, t = (n+ l − 1)T,
I(0+) = I0, β > 0,

(3.2)

has a unique positive periodic solution

I∗(t) =


I∗(0+)e(r−β)(t−(n−1)T )(r−β)

r−β−aI∗(0+)+aI∗(0+)e(r−β)(t−(n−1)T ) , t∈((n−1)T, (n+l−1)T ] ,

[I∗(0+)e(r−β)lT+α]e(r−β)(t−(n+l−1)T )(r−β)
r−β−a[I∗(0+)e(r−β)lT+α]+a[I∗(0+)e(r−β)lT+α]e(r−β)(t−(n+l−1)T ) , t∈((n+l−1)T, nT ] ,

in which

I∗(0+) =
ω +

√
ω2 + 4aα(r − β)(e(r−β)T − 1)

2a(e(r−β)T − 1)

and
ω = (r − β + aα)(e(r−β)T − 1).

In addition, any solution I(t) of system (3.2) can be given as

I(t) =
I(0+)e(r−β)t(r − β)

r − β − aI(0+) + aI(0+)e(r−β)t
− I∗(0+)e(r−β)t(r − β)

r − β − aI∗(0+) + aI∗(0+)e(r−β)t

+I∗(t), t ∈ ((n− 1)T, nT ],

and satisfies |I(t)−I∗(t)| → 0 as t→∞.
We consider the following equation

.

Y (t) = −d1Y (t), t 6= nT,
Y (t+) = Y (t) +R, t = nT,
Y (0+) = Y0,

(3.3)

and it is easy to check that there exists the only positive periodic solution

Y ∗(t) =
Re−d1(t−nT )

1− e−d1T
.

When susceptible pest S(t) is absent, system (2.1) will be transformed as
·
I(t) = (r − β − aI(t)) I(t)
.

Y (t) = −d1Y (t)

}
t 6= nT, t 6= (n+ l − 1)T,

I(t+) = I(t) + α, t = (n+ l − 1)T
Y (t+) = Y (t) +R, t = nT.

(3.4)

By Lemma 3.3, positive periodic solution (I∗(t), Y ∗(t)) of system (3.4) is given as

I∗(t) =


I∗(0+)e(r−β)(t−(n−1)T )(r−β)

r−β−aI∗(0+)+aI∗(0+)e(r−β)(t−(n−1)T ) , t ∈ ((n− 1)T, (n+ l − 1)T ] ,

[I∗(0+)e(r−β)lT+α]e(r−β)(t−(n+l−1)T )(r−β)
r−β−a[I∗(0+)e(r−β)lT+α]+a[I∗(0+)e(r−β)lT+α]e(r−β)(t−(n+l−1)T ) , t∈((n+l−1)T, nT ] ,
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Y ∗(t) = Y ∗(0+)e−d1(t−(n−1)T ), (n− 1)T < t ≤ nT,

in which

Y ∗(0+) =
R

1− e−d1T
.

Moreover, any solution (I(t), Y (t)) of system (3.4) with initial value (I(0+), Y (0+)) can
be given as

I(t) =
I(0+)e(r−β)t(r − β)

r − β − aI(0+) + aI(0+)e(r−β)t
− I∗(0+)e(r−β)t(r − β)

r − β − aI∗(0+) + aI∗(0+)e(r−β)t
+ I∗(t)

for t ∈ ((n− 1)T, nT ] and

Y (t) = (Y (0+)− Y ∗(0+))e−d1t + Y ∗(t), (n− 1)T < t ≤ nT.

It is not difficult to obtain following results.

Lemma 3.4. Assume Z∗(t) = (I∗(t), Y ∗(t)) is a positive periodic solution of system
(3.4). For each solution Z(t) = (I(t), Y (t)) of system (3.4) with initial value Z(0+) =
(I(0+), Y (0+)), we have ‖Z(t)−Z∗(t)‖ → 0 as t→∞.

Considering the ultimate boundedness of solutions of system (2.1), we have the fol-
lowing results.

Lemma 3.5. There exists a constant M > 0 such that, for any solution

x(t) = (S(t), I(t), Y (t))

of system (2.1) with initial value x(0+) = (S(0+), I(0+), Y (0+)) ∈ R3
+, we have S(t) ≤

M, I(t) ≤M and Y (t) ≤M with t large enough.

P r o o f . Set V (t) = S(t) + I(t) + 1
µY (t).

By calculating the derivative of V(t) with respect to system (2.1), when t 6= (n+l−1)T
and t 6= nT, we have

D+V (t) = (r − a(S(t) + I(t)))(S(t) + I(t))− βI(t)− d1
µ Y (t)

≤ −γV (t) +M0,

where γ = min{β, d1µ } and

M0 = sup
S(t)+I(t)>0

{[r − a(S(t) + I(t))](S(t) + I(t))} <∞.

If t = (n+ l − 1)T, we have

V ((n+ l − 1)T+) ≤ V ((n+ l − 1)T ) + α.

If t = nT, we can obtain
V (nT+) ≤ V (nT ) +R.
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By Lemma 3.2, we can easily have

lim
t→∞

supV (t) ≤ M0

γ
+

(α+R)eγT

eγT − 1
.

According to this, there exists a constant M > 0 such that S(t) ≤M, I(t) ≤M and
Y (t) ≤M for t large enough. This completes the proof. �

In order to discuss the stability of semi-trivial periodic solution of system (2.1), we
need to present the Floquet theory for the linear T-periodic impulsive equation:{ .

h(t) = A(t)h(t), t 6= Tk, t ∈ R,
h(t+) = h(t) +Bkh(t), t = Tk.

(3.5)

Firstly, we need to use the following assumptions:

(H1) A(·) ∈ PC(R,Cn×n) and A(t + T ) = A(t)(t ∈ R), in which PC(R,Cn×n) is the
set of all piecewise continuous matrix functions that are right continuous at t = Tk, and
Cn×n is the set of all n× n matrices.

(H2) Bk ∈ Cn×n, det(E +Bk) 6= 0 , Tk < Tk+1(k = 1, 2, 3 . . .).

(H3) There exists a q ∈ N , such that Bk+q = Bk and Tk+q = Tk + T (k = 1, 2, 3 . . .).
Suppose Φ(t) is a fundamental matrix of equations (3.4), then there exists a unique
non-singular matrix M ∈ Cn×n that satisfies Φ(t+ T ) = Φ(t)M, t ∈ R.

The matrix M is called the monodromy matrix of (3.4) and it corresponds to the
fundamental matrix of Φ(t). All the monodromy matrices of (3.4) are similar and have
the same eigenvalues. The eigenvalues µ1,µ2, . . . , µn of the monodromy matrices are
called the Floquet multipliers of (3.4).

Lemma 3.6. (Lakshmikantham, Bainov and Simeonov [26], Floquet Theorem). Sup-
pose that Hypotheses (H1) – (H3) hold, then the linear T-periodic impulsive (3.4) is

(1) stable if and only if all the multipliers µj(j = 1, 2, . . . , n) of (3.4) satisfy the
inequality |µj | ≤ 1. Moreover, for those µj which satisfy |µj | = 1, there correspond
simple elementary divisors;

(2) asymptotically stable if and only if all the multipliers µj of (3.4) satisfy |µj | < 1;

(3) unstable if |µj | > 1 for some j = 1, 2, . . . , n.

Next we will provide some necessary definitions and lemmas about the persistence
of dynamical systems, and it will be used in the following discussion of permanence of
system (2.1). For more details, see [34, 36].

Let X be a metric space with metric d, and let f : X → X be a continuous map. For
any x ∈ X, we represent fn(x) = f(fn−1(x)) for any integer n > 1 and f1(x) = f(x).
f is said to be compact in X, if for any bounded set H ⊂ X, set f(H) = {f(x) : x ∈ H}
is precompact in X. f is said to be point dissipative if there is a bounded set B0 ⊂ X
such that, for any x ∈ X, limn→∞ d(fn(x), B0) = 0.
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For any x0 ∈ X, the positive semi-orbit through x0 is defined by

γ+(x0) = {fn(x0) = xn, n = 1, 2, · · · }.

The negative semi-orbit through x0 is defined as a sequence γ−(x0) = {xk} which satisfy
f(xk−1) = xk for integers k ≤ 0. The omega limit set of γ+(x0) is defined by

$(x0) = {y ∈ X : there is a sequence nk →∞ such that lim
k→∞

xnk = y},

and the alpha limit set of γ−(x0) is defined by

α(x0) = {y ∈ X : there is a sequence nk → −∞ such that lim
k→∞

xnk = y}.

A nonempty set B ⊂ X is said to be invariant if f(B) ⊆ B. A nonempty set M of B is
called isolated in X if it is the maximal invariant set in a neighborhood of itself. For a
nonempty set M of X, set

W s(M) := {x ∈ X : lim
n→∞

d(fn(x),M)}

is called the stable set of M.

Let M1 and M2 be two isolated invariant sets and set M1 is said to be chained to set
M2, usually expressed as M1 →M2, if there exists a full orbit though some x /∈M1∪M2

such that $(x) ⊂M2 and α(x) ⊂M1.

A finite sequence µ = {M1,M2, · · · ,Mn} of isolated invariant sets is called a chain if
M1 →M2 → · · · →Mn, and the chain is called a cycle if Mn = M1 .

Let X0 be a nonempty open set of X. We denote

∂X0 := X\X0,

M∂ := {x ∈ ∂X0 : fn(x) ∈ ∂X0,∀n ≥ 0}

Lemma 3.7. (Li et al. [34], Xie et al. [36]) Suppose f : X → X is a continuous map.
It is assumed that the following conditions hold:

(C1) Map f is compact and point dissipative and f(X0) ⊆ X0;

(C2) There exists a finite sequence µ = {M1,M2, · · · ,Mn} of compact and isolated
invariant sets in ∂X0 such that

(1) Mi ∩Mj = ∅ for any i, j = 1, 2, · · · , n and i 6= j;

(2) Ω(M∂) :=
⋃

x∈M∂

$(x) ⊂
n⋃
i=1

Mi;

(3) no subset of µ forms a cycle in ∂X0;

(4) W s(Mi) ∩X0 = ∅ for each 1 ≤ i ≤ n.
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The map f is uniformly persistent with respect to (X0, ∂X0); that is, there exists a
constant η > 0 such that

lim
n→∞

inf d(fn(x), ∂X0) ≥ η

for all x ∈ X0.
In the following section, we will investigate the stability of the susceptible pest-

eradication periodic solution.
It is not difficult to have that system (2.1) has a semi-trivial periodic solution X(t) =

(0, I∗(t), Y ∗(t)), where I∗(t) and Y ∗(t) are the positive periodic solution of the system
(3.4). Exploiting the global asymptotic stability of this periodic solution, we can easily
obtain the following theorem.

4. THE STABILITY AND PERSISTENCE OF SEMI-TRIVIAL PERIODIC
SOLUTIONS.

Theorem 4.1. If r > β, λ ≥ a and∫ T

0

(r − (a+ λ)I∗(t)− bY ∗(t)) dt < 0,

then the semi-trivial periodic solution (0, I∗(t), Y ∗(t)) of system (2.1) is globally asymp-
totical stable.

P r o o f . First, we investigate the local stability of susceptible pest eradication periodic
solution (0, I∗(t), Y ∗(t)).

Suppose u1(t) = S(t), u2(t) = I(t) − I∗(t), and u3(t) = Y (t) − Y ∗(t), then we can
obtain

∆u2(t) = 0, t = (n+ l − 1)T, 0 < l < 1.
∆u3(t) = 0, t = nT.

The corresponding linearized system is given by
·
u1(t) = (r − (a+ λ)I∗(t)− bY ∗(t))u1(t)
.
u2(t) = (λ− a)I∗(t)u1(t) + (r − β − 2aI∗(t))u2(t)
.
u3(t) = µbY ∗(t)u1(t)− d1u3(t).

(4.1)

We assume that Φ(t) is the fundamental matrix of system (4.1), and then we have

dΦ(t)

dt
=

 r − (a+ λ)I∗(t)− bY ∗(t) 0 0
(λ− a)I∗(t) r − β − 2aI∗(t) 0
µbY ∗(t) 0 −d1

 Φ(t)

with Φ(0) = I a 3× 3 identity matrix.
According to calculation, we have

Φ(t) =

 e
∫ t
0

(r−(a+λ)I∗(s)−bY ∗(s)) ds 0 0

∗ e
∫ t
0

(r−β−2aI∗(s)) ds 0
∗∗ ∗ ∗ ∗ e−d1t

 .
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It is not required in the following discussion, so it is not necessary to give the specific
forms of ∗, ∗∗, ∗ ∗ ∗, which can be discarded. Obviously, the eigenvalues of matrix M =
Φ(T ) are given as follows [17]:

λ2 = e
∫ T
0

(r−β−2aI∗(s)) ds = . . . < 1;

λ3 = e−d1t < 1;

λ1 = e
∫ T
0

(r−(a+λ)I∗(s)−bY ∗(s)) ds.

Hence while |λ1| < 1, i. e., e
∫ T
0

(r−(a+λ)I∗(t)−bY ∗(t)) dt < 1. According to the Floquet
theory, we have that the solution (0, I∗(t), Y ∗(t)) is locally asymptotically stable.

Next we will prove the global attractivity of (0, I∗(t), Y ∗(t)). We first choose ε1 > 0
such that

δ = e
∫ T
0

[r−(a+λ)(I∗(t)−ε1)−b(Y ∗(t)−ε1)]dt < 1.

By Lemmas 3.2 and 3.3, we have

I(t) ≥ I∗(t)− ε1, Y (t) ≥ Y ∗(t)− ε1 (4.2)

for sufficiently large t.
So we may suppose that (4.2) holds for all t ≥ 0, which together with system (2.1)

and equation (4.2), and then we can obtain

S′(t) = (r − a(S(t) + I(t)))S(t)− λS(t)I(t)− bS(t)Y (t)
≤ S(t)(r − (a+ λ)(I∗(t) + ε1)− b(Y ∗(t) + ε1)).

For any t > 0, we can choose an integer n ≥ 0 such that t = nT + t̃, where t̃ ∈ [0, T ).
Integrating the above inequality from 0 to t, we have

S(t) ≤ S(0+)e
∫ t
0

[r−(a+λ)(I∗(s)+ε1)−b(Y ∗(s)+ε1)] ds

= S(0+)e
∫ nT
0

[r−(a+λ)(I∗(s)+ε1)−b(Y ∗(s)+ε1)]dse
∫ nT+t̃
nT

[r−(a+λ)(I∗(s)+ε1)−b(Y ∗(s)+ε1)] ds

≤ S(0+)eM0T δn,

where

M0 = sup
t≥0

[r − (a+ λ)(I∗(t) + ε1)− b(Y ∗(t) + ε1)] > 0,

which implies S(t) → 0 as t → ∞. So we can give a conclusion that the solution
(0, I∗(t), Y ∗(t)) is globally asymptotical stable. We will investigate the permanence of
system (2.1) in the next part. �

Theorem 4.2. If r − β > 0, λ ≥ a and∫ T

0

[r − (a+ λ)I∗(t)− bY ∗(t)] dt > 0, (4.3)

then system (2.1) is permanent.
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P r o o f . Noticing that the impulsive effects in system are periodic, system (2.1) can be
regarded as periodic system with period T. So we can exploit the persistence theory of
dynamical systems to analyze the permanence of system (2.1).

Herein we define

X = {(S(t), I(t), Y (t)) : S(t) ≥ 0, I(t) ≥ 0, Y (t) ≥ 0}

X0 = {(S(t), I(t), Y (t)) : S(t) > 0, I(t) ≥ 0, Y (t) ≥ 0},

and thus we have

∂X0 = X\X0 = {(S(t), I(t), Y (t)) ∈ X : S(t) = 0}.

According to Lemma 3.1, we can conclude that X and X0 are positively invariant
with respect to system (2.1), and ∂X0 is relatively closed set in X.

Let P : X → X be a Poincaré map which is associated with system (2.1); that is

P (S0, I0, Y0) = u(T, S0, I0, Y0), (S0, I0, Y0) ∈ X,

where u(T, S0, I0, Y0) is the unique solution of system (2.1) with initial value

u(0+, S0, I0, Y0) = (S0, I0, Y0).

From Lemma 3.4, Poincaré map P is compact and point dissipative on X. Therefore,
condition (C1) of lemma 3.7 holds.

Suppose

M∂ = {(S0, I0,Y0) ∈ ∂X0 : Pn(S0, I0,Y0) ∈ ∂X0, n = 1, 2, . . .},

in which
Pn = P (Pn−1), n > 1,

and P 1 = P.
Firstly, we will prove M∂ = ∂X0.
Clearly,

M∂ ⊆ ∂X0.

For any (0, I0, Y0) ∈ ∂X0, by S0 = 0, the solution (S(t), I(t), Y (t)) of system (2.1) with
initial value

(S(0+), I(0+), Y (0+)) = (0, I0, Y0)

satisfies S(t) = 0, I(t) ≥ 0, and Y (t) ≥ 0 for all t ≥ 0.
So for any integer n > 0, we have Pn(0, I0, Y0) ∈ ∂X0. This implies (0, I0, Y0) ∈M∂ .

Then M∂ = ∂X0 holds.
System (2.1) can be simplified as (3.4) in ∂X0. According to Lemma 3.4, System

(2.1) has globally attractive periodic solution (0, I∗(t), Y ∗(t)) in ∂X0. This shows that
Map P has a global attractor M1 = {(0, I∗(0), Y ∗(0))} in ∂X0.

It is easy to check that, ∂X0, {M1} is isolated, invariant, and does not form a cycle.
Therefore, conditions (1) – (3) of (C2) in Lemma 3.7 hold.
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Secondly, assume x0 = (S0, I0, Y0) ∈ X0. By the continuity of solutions with respect
to the initial value, for any ε > 0, there is a δ1 > 0, when ‖x0 −M1‖ < δ1, we can obtain

‖u(t, x0)− u(t,M1)‖ < ε, ∀t ∈ [0, T ]. (4.4)

Then we have
lim
n→∞

sup d(Pn(x0),M1) ≥ δ1. (4.5)

Assume that the conclusion is not true, then we have

lim
n→∞

sup d(Pn(x0),M1) < δ1

for some x0 ∈ X0.
For the sake of simplicity, we may suppose that

d(Pn(x0),M1) < δ1, ∀n > 0.

In addition, exploiting (4.4), we have that

‖u(t, Pn(x0))− u(t,M1)‖ < ε, ∀n > 0, t ∈ [0, T ].

Then, for any t ≥ 0, let t = nT + t̃, where t̃ ∈ [0, T ) and n = [ tT ] is the greatest integer
less than or equal to t

T , we can obtain

‖u(t, x0)− u(t,M1)‖ =
∥∥u(t̃, Pn(x0))− u(t̃,M1)

∥∥ < ε. (4.6)

Since u(t, x0) = (S(t), I(t), Y (t)) and

u(t,M1) = (0, I∗(t), Y ∗(t)),

(4.6) signifies that  0 < S(t) < ε
I(t) ≤ I∗(t) + ε
Y (t) ≤ Y ∗(t) + ε

(4.7)

for all t ≥ 0.
According to (4.3), we can choose ε > 0 such that

ρ = e
∫ T
0

[r−a(ε+I∗(t)+ε)−λ(I∗(t)+ε)−b(Y ∗(t)+ε)] dt = e
∫ T
0
ρ0(t,ε) dt > 1.

Moreover, by inequalities (4.7), we can obtain

S′(t) = S(t)[r − a(I(t) + S(t))− λI(t)− bY (t)]
≥ S(t)[r − a(ε+ I∗(t) + ε)− λ(I∗(t) + ε)− b(Y ∗(t) + ε)].

(4.8)

For any t ≥ 0, choose an integer k ≥ 0 such that t = kT + t̂, where t̂ ∈ [0, T ). Integrating
(4.8) from 0 to t, then we have

S(t) ≥ S(0+)e
∫ t
0
ρ0(s,ε) ds

= S(0+)ek
∫ T
0
ρ0(s,ε)ds+

∫ kT+t̂
kT

ρ0(s,ε) ds ≥ S(0+)
eTN0

ρk,
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in which

N0 = sup
t≥0

ρ0(t, ε) > 0.

Therefore

lim
t→∞

S(t) =∞,

which is a contradiction with 0 ≤ S(t) ≤ ε for all t ≥ 0. Hence claim (4.5) holds.
This shows W s(M1) ∩ X0 = ∅. So condition (4) of (C2) holds. Therefore, exploiting
Lemma 3.7, P is uniformly persistent with respect to (X0, ∂X0).

Lastly, Noticing that system (2.1) is periodic, we have that system (2.1) is uniformly
persistent. By Lemma 3.5, system (2.1) is permanent. So we complete the proof of
Theorem 4.2. �

5. EXISTENCE OF THE “INFECTION-FREE” PERIODIC SOLUTION AND THE
“PREDATOR-FREE” SOLUTION.

5.1. Preliminaries

In this section, we will analyze the existence of the “infection-free” and the “predator-
free” periodic solutions exploiting the technique used by A. Lakmeche in [1]. Prelimi-
naries in Section 4.1 of Ref. [36] are still introduced to obtain the later results.

Lemma 5.1. (Lakmeche [1], Xie et al. [36]) If |1− a′0| < 1 and d
′

0 = 0, then we can
obtain:

(a) If BC 6= 0, then we have a bifurcation. Moreover, we have a bifurcation of nontriv-
ial periodic solution of system (4.1), if BC < 0, and a subcritical case if BC > 0.

(b) If BC = 0, then we have an undetermined case.

5.2. Existence of the “infection-free” periodic solution

Herein we consider the following set of differential equations:

.

S(t) = µbS(t)Y (t)− d1S(t)
∆
= F1(S, Y )

.

Y (t) = (r − aY (t))Y (t)− bS(t)Y (t)
∆
= F2(S, Y )

}
t 6= nT,

S(t+) = S(t) +R
∆
= θ1(S, Y )

Y (t+) = Y (t)
∆
= θ2(S, Y )

}
t = nT, n = 0, 1, 2, . . .

In order to successfully use the conclusion of Lemma 5.1, we need to compute:

d
′

0 = 1− e
∫ T0
0

∂F2(π(ζ))
∂Y dζ = 1− e

∫ T0
0 (r−bS∗(ζ)) dζ ,

if d
′

0 = 0, we can obtain the formula of T0. Moreover,

a
′

0
= 1− e

∫ T0
0 −d1 dt = 1− e−d1T0 > 0,
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b
′

0
= −

∫ T0

0

e
∫ T0
v
−d1 dξµbs∗(v)e

∫ v
0
−bs∗(ξ) dξdv < 0.

Noticing ∂θ1
∂Y = ∂θ2

∂S = 0, ∂θ1
∂S = ∂θ2

∂Y = 1, ∂2θ2
∂Y 2 = ∂2θ2

∂S∂Y = 0, it is easy to verify that
C > 0, and if

rT0 −
∫ T0

0

bS̃(ξ) dξ > 0,

then

B = −
(

1

a
′
0

S̃
′
(T0)

∂2Φ2(T0, V0)

∂S∂Y
+ [r − bS̃(T0)]e

∫ T0
0 [r−bS̃(ζ)] dζ

)
< 0.

By Lemma 5.1, we can have the following results.

Theorem 5.1. (Lakmeche [1]) System (2.1) has a positive periodic “infection” solu-
tion if T > T0 and is close to T0, in which T0 is the root of d0

′ = 0.

This theorem illustrates that the “semi-trivial” solution becomes unstable if the pe-
riodic T is more than T0 and close to T0, and becomes the “infection-free” solution.
5.3. Existence of the “predator-free” periodic solution.

We consider the following set of differential equations

.

S(t) = λS(t)I(t) + [r − β − a(S(t) + I(t))]S(t)
∆
= F1(S, I)

.

I(t) = [r − a(S(t) + I(t))] I(t)− λS(t)I(t)
∆
= F2(S, I)

}
t 6= (n+ l − 1)T,

S(t+) = S(t) + α
∆
= θ1(S, I)

I(t+) = I(t)
∆
= θ2(S, I)

}
t = (n+ l − 1)T.

We first compute the following:

d
′

0 = 1− e
∫ T ′0
0

∂F2(π(ζ))
∂I dζ = 1− erT

′
0−

∫ T ′0
0 (λS̃(ζ)+aS̃(ζ)) dζ .

If d
′

0 = 0, we can obtain T
′

0. Moreover,

a
′

0 = 1− e
∫ T ′0
0 (r−β−2aS̃(t)) dt > 0,

b
′

0 = −
∫ T

′
0

0

e
∫ T ′0
v

(r−β−2aS̃(ζ)) dζ(λ− a)S̃(v)e
∫ v
0

∂F2
∂I dζdv > 0.

Noticing ∂θ1
∂I = ∂θ2

∂S = 0, ∂θ1
∂S = ∂θ2

∂I = 1, ∂2θ2
∂I2 = ∂2θ2

∂S∂I = 0, we can easily check that
C > 0, and if ∫ T

′
0

0

[r − (λ+ a)S̃(ζ)] dζ < 0,

then

B = −(
1

a′
0

S̃′(T
′

0)
∂2Φ2(T

′

0, V0)

∂S∂I
+ [r − aS̃(T

′

0)− λS̃(T
′

0)]e
∫ T ′0
0 [r−aS̃(ξ)−λS̃(ξ)] dξ) < 0.

From Lemma 5.1, we can obtain the following results.
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Theorem 5.2. (Lakmeche [1]) System (2.1) has a positive periodic solution “predator-
free” solution if T > T

′

0, and is close to T
′

0, where T
′

0 is the root of d
′

0 = 0.

This theorem illustrates that the “semi-trivial” solution becomes unstable if the pe-
riod T is more than T

′

0 and close to T
′

0, and the variable I(t) begins to oscillate with an
amplitude, and becomes the “predator-free” solution.

6. NUMERICAL SIMULATIONS

In this section, we will use numerical simulation figures to confirm the results of our
theoretical analysis and further illustrate the complex and rich characteristics of the
proposed model. In recent years, many researchers have developed a great deal of
management technology which is used in ecosystem and agriculture. We can conveniently
take impulsive control strategy in controlling or even eliminating pests by using some
advanced technology and thus can prevent crops from being harm to a great extent.

Firstly, when we choose r = 2.1, λ = 0.1, a = 0.5, µ = 0.8, β = 1, α = 0.005, T =
1.23, b = 0.5, R = 1, d = 0.5, l = 0.3, by verification, we can easily find that these pa-
rameters satisfy the sufficient conditions of Theorem 4.1, and thus the mature predator-
extinction periodic solution is globally attractive. Its corresponding dynamic behavior
can be shown in Figure 1. The phase portraits of S(t), I(t) and Y(t) is shown in Figure
1 (a). The phase portrait of S(t) and t is shown in Figure 1(b), from which we can
find that S(t) goes to extinction. The phase portrait of I(t) and t is shown in Figure
1(c), from which it can be found that I(t) goes oscillatory. Figure 1(d) shows the phase
portrait of Y(t) and t and it also shows that Y(t) goes oscillatory. Moreover, it can be
also found that the periodic solution of system (2.1) is globally attractive.

Secondly, we analyze and discuss the permanence of system (2.1). When we choose
parameters r = 2.1, λ = 0.1, a = 0.5, µ = 0.8, β = 1, α = 0.005, T = 12, b = 0.5, R =
1, d = 0.5, l = 0.3, we can easily check that they satisfy the sufficient conditions of
Theorem 4.2 in previous Section. Therefore, system (2.1) is permanent. Figure 2 (b)
exhibits the positive time series of predator species in the interval [260, 400]. The positive
time series of prey species in the interval [0, 100] are clearly shown in Figure 2 (c) and
(d). It can be shown from Figure 2 that time series of three species are stable if t is
large enough. Therefore, these numerical simulation figures sufficiently demonstrate the
permanence of system (2.1).

7. CONCLUSIONS

In this paper, we have studied a new impulsive predator prey model with impulsive
control at different fixed moments. We have confirmed that If r > β, λ ≥ a and∫ T

0
(r−(a+λ)I∗(t)−bY ∗(t)) dt<0, then the semi-trivial periodic solution (0, I∗(t), Y ∗(t))

of system (2.1) is globally asymptotical stable by using Floquet theories and small am-
plitude perturbation technique. Moreover, we proved that If r − β < 0, λ ≥ a and∫ T

0
[r − (a+ λ)I∗(t)− bY ∗(t)] dt > 0, then system (2.1) is permanent. We also obtain

sufficient conditions for the existence of the “infection-free” periodic solution and the
“predator-free” solution by bifurcation theory of impulsive differential equation. In ad-
dition, we can drive the susceptible pest to extinction, exploiting the impulsive control
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Fig. 1. Numerical solution of system (2.1) with r = 2.1, λ = 0.1, a =

0.5, µ = 0.8, β = 1, α = 0.005, T = 1.23, b = 0.5, R = 1, d = 0.5, l = 0.3,

and all the parameters satisfy
∫ T

0
(r − (a+ λ)I∗(t) − bY ∗(t)) dt < 0.

(a) Phase (S(t), I(t), Y(t)) (b) Time-series of the susceptible pest

species S(t). (c) Time-series of the corresponding infected pest species

I(t). (d) Time-series of natural enemies of the pest Y(t).
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Fig. 2. Numerical solution of system (2.1) with r = 2.1, λ = 0.1, a =

0.5, µ = 0.8, β = 1, α = 0.005, T = 12, b = 0.5, R = 1, d = 0.5, l = 0.3,

and all the parameters satisfy
∫ T

0
[r − (a+ λ)I∗(t) − bY ∗(t)] dt > 0.

(a) Phase (S(t), I(t), Y(t)). (b) Time-series of the susceptible pest

species S(t). (c) Time-series of the corresponding infected pest species

I(t). (d) Time-series of natural enemies of the pest Y(t).
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strategy, as well as the effect of the viruses on the ecosystem environment and cost of
the releasing pest which is infected in a laboratory such that T < T0 ≈ 1.24. Therefore,
in practice, we can be sure that the reasonable impulse constant control should be taken
to manage the agricultural resources. Moreover, it can effectively make the ecosystem
display more unpredictable and interesting dynamic characteristics.
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