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SMOOTH SUPER TWISTING SLIDING MODE BASED
STEERING CONTROL FOR NONHOLONOMIC SYSTEMS
TRANSFORMABLE INTO CHAINED FORM

Waseem Abbasi, Fazl ur Rehman and Ibrahim Shah

In this article, a new solution to the steering control problem of nonholonomic systems, which
are transformable into chained form is investigated. A smooth super twisting sliding mode
control technique is used to steer nonholonomic systems. Firstly, the nonholonomic system is
transformed into a chained form system, which is further decomposed into two subsystems.
Secondly, the second subsystem is steered to the origin by using smooth super twisting sliding
mode control. Finally, the first subsystem is steered to zero using signum function. The
proposed method is tested on three nonholonomic systems, which are transformable into chained
form; a two-wheel car model, a model of front-wheel car, and a fire truck model. Numerical
computer simulations show the effectiveness of the proposed method when applied to chained
form nonholonomic systems.
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1. INTRODUCTION

In the past decade, control of nonholonomic mechanical systems has attracted much
attention of the control community because of the vast practical applications in diverse
fields. Due to the mechanical design and configuration, these systems have constraints
on their motion. These constraints can be classified into two categories: holonomic and
nonholonomic. Holonomic constraints are of the form ϕ(q̇) = 0, and are integrable, i. e.,
can be written as ψ(q) = 0. One the other hand, nonholonomic constraints are of the
form ϕ(q̇) = 0, and are non-integrable, i. e., cannot be written as ψ(q) = 0. Here ψ(q)
represents the position function of the nonholonomic system.

Nonholonomic systems belong to a special class of nonlinear systems and are fre-
quently encountered in our daily life, e. g. while driving a car to work, pushing a baby
stroller, or riding a bicycle to school. One of the challenging problem in control of non-
holonomic systems is point stabilization to the desired point e. g. parallel parking of the
car. In particular, wheeled mobile robots are typical examples of nonholonomic mecha-
nism due to the perfect rolling constraints on the wheel motion (e. g. no longitudinal or
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lateral slipping).

In recent years, various control design techniques have been proposed for nonholo-
nomic systems in chained form, and much effort has been devoted to the stabilization
and tracking control, see [5, 7, 10, 19, 20]. Among the techniques mentioned in the
literature, Sliding Mode Control (SMC) has attracted much attention of the researchers
due to its simplicity, fast response, and robustness to external noise and parameter vari-
ation [1, 11, 21]. However, one major drawback of SMC is the presence of the chattering
effect, caused by the switching frequency of the control. The high-frequency components
propagate through the system, excite the unmodeled dynamics and therefore cause un-
desired oscillations. In fact, this can degrade the system performances or may even lead
to instability.

In the literature, three main approaches have been presented to reduce the chatter-
ing effect. The first class of methods uses saturation functions instead of the signum
function. The second class of methods is based on the use of a system observer and the
third class of methods uses higher order sliding mode controllers to reduce the chartering
phenomenon, and to keep the system on the desired manifold. The most advantageous
of these approaches to eliminate chattering is the third class of methods [4].

The higher order sliding mode uses differentiators and sliding mode manifold estima-
tors (as shown in [8]) to maintain the robustness of the system. The second order sliding
mode control (such as the smooth super-twisting sliding mode control) is relatively sim-
ple to implement and it provides good robustness to external disturbances. In recent
years, smooth super-twisting sliding mode control theory has become very popular and
therefore, it has been widely used to control systems with uncertainties. The smooth
super-twisting sliding mode control allows finite time convergence of the sliding variable
as well as its derivative to zero [6, 16, 18]. The sophisticated control law guarantees the
robustness, but for the price of increasing the transient time. To improve the transient
time of this control approach, a Lyapunov function has recently been constructed as
shown in [13]. This function is used to estimate the convergence time for super twisting
algorithm [12]. In [15], a super twisting structure is presented to analyze the stability
using the ideas of a Lyapunov function given in [13].

This article presents a method for designing steering control laws for a nonholonomic
system in chained form. The methodology depends on smooth super twisting sliding
mode control. The main objective is the steering of the nonholonomic system in the
presence of disturbance and unmodeled dynamics. Smooth super twisting sliding mode
controller is used to further reduce or suppress the chattering effect. Control design
methodology is first developed for the general case and then applied to specific cases.
The design of control law based upon smooth super twisting sliding mode for the steer-
ing control of the nonholonomic systems contributes to the motivation for the proposed
control design.

In this article, firstly, the nonholonomic system is transformed into a chained form
system. Secondly, the chained form system is decomposed into two subsystems S1 andS2

by assuming first input u1 = 1. The subsystem S1 consists of single state variable x1,
while the subsystem S2 consists of remaining state variables, i. e. x2, x3, . . . , xn. Then
the subsystem S2 is steered to the origin by using smooth super twisting sliding mode
controller. Finally, the subsystem S1 is steered to zero using signum function. The
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proposed method is tested on three mechanical nonholonomic systems, that are trans-
formable into a chained form; a two-wheel car model, a model of front-wheel car and a
firetruck model. The simulation results show the validity of the proposed controller for
the original nonholonomic systems.

The rest of the article is organized as follows. Section 2 presents control problem
formulation. Section 3 presents the proposed control methodology in its general form.
Section 4 presents application examples along with the simulation results and finally,
Section 5 concludes the paper.

2. THE CONTROL PROBLEM FORMULATION

Due to the presence of the nonholonomic constraint, the kinematics model of nonholo-
nomic systems are generally described by:

ż =

m∑
i=1

Zi(z) ui, z ∈ <n (1)

where Zi, i = 1, . . . ,m, are linearly independent vector fields on <n, ui are piecewise
continuous and locally bounded in t control functions defined on the interval [0, ∞). In
control system design it is very useful technique that the system is first transformed into
some canonical form via state – input transformation. One such canonical form is chained
form introduced first time by [14]. It has been shown in [3] that many nonholonomic
mechanical systems can be either locally or globally converted to the so-called chained
form under a coordinate and input transformations. As a result, the chained form has
been used as a canonical form in analysis and control design for nonholonomic systems.
The simplest chained system obtained from (1) for m = 2 is a nonlinear system that has
two control inputs (v1, v2) and n outputs (x1, x2, . . . , xn), where, n > 2. The general
chained form system can be written as:

ẋ1 = v1
ẋ2 = v2
ẋ3 = x2v1
ẋ4 = x3v1

...
ẋn = xn−1v1.

(2)

Given a desired setpoint xdes ∈ <n, construct a feedback strategy in terms of the controls
vi : <n → <, i = 1, 2, such that the desired setpoint xdes is an attractive set for (2),
so that there exists an ε > 0, such that x(t; 0, x0) → xdes, as t → ∞ for any initial
condition x0 ∈ B(xdes; ε).

Without the loss of generality, it is assumed that xdes = 0, which can be achieved by
a suitable translation of the coordinate system.

Assumptions:

For steering problem, the control systems described by (1) must satisfy the following
conditions.
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• (P1): The vector fields Z1(z) , . . . , Zm(z) are linearly independent.

• (P2): System (1) satisfies the LARC (Lie algebra rank condition) for accessibility,
namely that the Lie algebra, L(Z1, . . . Zm)(z) spans <n at each point z ∈ <n.

3. THE PROPOSED STEERING CONTROL ALGORITHM

Step 1:
Choose v1 = 1 and v2 = v, then system (2) becomes:

ẋ1 = 1

ẋ2 = v

ẋ3 = x2

ẋ4 = x3

...

ẋn−1 = xn−1

ẋn = xn−1.

(3)

Step 2:
Decompose the system (3) into two subsystems as:

S1 : ẋ1 = 1

S2 :



ẋn = xn−1

ẋn−1 = xn−2

...
ẋ4 = x3
ẋ3 = x2
ẋ2 = v.

(4)

Define the sliding surface for subsystem S2 as:

s = xn +

n−3∑
i=1

cixn−i + x2, (5)

where ci > 0 are chosen in such a way that s becomes Hurwitz polynomial. Then

ṡ = ẋn +

n−3∑
i=1

ciẋn−i + ẋ2 = xn−1 +

n−3∑
i=1

cixn−1−i + v. (6)

By choosing

v = veq + vs (7)
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where

veq = −xn−1 −
n−3∑
i=1

cixn−1−i (8)

vs = −k1|s|
ρ−1
ρ sign(s) + z (9)

ż = −k2 |s|
ρ−2
ρ sign(s) (10)

where k1, k2 > 0, ρ ≥ 2,

we have

ṡ = −k1|s|y sign(s) + z (11)

ż = −k2 |s|y−
1
ρ sign(s) (12)

where k1, k2 > 0 , y = ρ−1
ρ . Therefore the subsystem S2 is stable.

The stability proof of system (11) and (12) is based on the context given in reference
[12] as shown below:

Define:

ςT =
[
|s|y sign(s) z

]
(13)

Then

ς̇ =

[
y|s|y−1

ṡ
ż

]
=

[
y|s|−1/ρ{−k1|s|y sign(s) + z}

−k2 |s|y−
1
ρ sign(s)

]
= |s|−

1
ρ

[
y{−k1|s|y sign(s) + z}
−k2 |s|ysign(s)

]
ς̇ = |s|−

1
ρ

[
−yk1 y
−k2 0

] [
|s|y sign(s)

z

]
= |s|−

1
ρ Aς (14)

where A =

[
−yk1 y
−k2 0

]
i. e. ς̇ = |s|−

1
ρ Aς.

The eigenvalues of A are the roots of Hurwitz polynomial:

|λI −A| =
∣∣∣∣λ+ yk1 −y

k2 λ

∣∣∣∣ = λ2 + λ(yk1) + (yk2) = 0 (15)

therefore A =

[
−yk1 y
−k2 0

]
is asymptotically stable.

Theorem 3.1. Consider a Lyapunov function V = ςTPς, where P ∈ <2×2 is the posi-
tive definite and symmetric matrix satisfying the Lyapunov equation: ATP + PA =
−Q, where Q ∈ <2×2 is the positive definite and symmetric matrix. Then V̇ ≤
−|s|−

1
ρ ςTQς ≤ 0. Therefore, the system is stable. By using LaSalle’s invariance

principle it can be shown that the system (13) is asymptotically stable.



Steering control for nonholonomic systems 481

P r o o f .

V = ςTPς

V̇ = ς̇TPς + ςTP ς̇

V̇ = |s|−
1
ρ [ςTATPς + ςTPAς]

V̇ = |s|−
1
ρ ςT [ATP + PA]ς

V̇ = −|s|−
1
ρ ςTQς ≤ 0.

�

Step 3:
Apply the control inputs:

v1 = 1 (16)

v = veq + vs (17)

where

veq = −xn−1 −
n−3∑
i=1

cixn−1−i (18)

vs = −k1|s|
ρ−1
ρ sign(s) + z (19)

ż = −k2 |s|
ρ−2
ρ sign(s) (20)

where k1, k2 > 0, ρ ≥ 2, until the system (3) reaches on a surface:

S = {x ∈ <n : xn = · · · = x3 = x2 = 0 , x1 6= 0}. (21)

Step 4:
Apply the control inputs v1 = −sign(x1) and v = 0 until the system (3) reaches origin:

O = {x ∈ <n : xn = · · · = x3 = x2 = x1 = 0}. (22)

4. APPLICATION EXAMPLES

4.1. The two wheel car model

The two wheel car or unicycle model shown in Figure 1 represents a three-dimensional
nonholonomic system with control deficiency order one and its controllability algebra
contains Lie bracket of depth one. The kinematic model of a two wheel car is given as
[9]:  θ̇

ẋ
ẏ

 =

 1
0
0

u1 +

 0
cos θ
sin θ

u2. (23)
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Fig. 1. A two wheel car model.

Introducing a new set of state variables z = [z1, z2, z3]T = [θ, x, y]T the kinematics
model (23) can be written as: ż1

ż2
ż3

 =

 1
0
0

u1 +

 0
cos z1
sin z1

u2. (24)

or
ż = Z1(z)u1 + Z2(z)u2, z ∈ <3

where

Z1(z) =

 1
0
0

 & Z2(z) =

 0
cos z1
sin z1

 .
The kinematics model (24) satisfies Assumptions presented in Section 2. To verify
properties (P1) and (P2), it is sufficient to calculate the following Lie bracket:

Z3(z) = [Z1, Z2](z) =

 0
− sin z1
cos z1

 .
4.1.1. Conversion into chained form

Consider the following transformation:

x1 = z1
x2 = z2 cos z1 + z3 sin z1
x3 = z2 sin z1 − z3 cos z1
v1 = u1
v2 = u2 − x3u1.

(25)
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This transforms the nonholonomic system (25) into the following chained form system:

ẋ1 = v1
ẋ2 = v2
ẋ3 = x2v1.

(26)

Then, the proposed algorithm can be used with the following sliding surface:

s = x3 + x2. (27)

Figure 2 (a) – (c) shows response of the proposed controller and with the controller
reported in [2]. The initial conditions are chosen the same as [x1(0), x2(0), x3(0)] =
[2,−4, 3]. The controller reported in [2] is based on robust adaptive technique. Since
nonholonomic systems can only be stabilized either using discontinuous control, such
as sliding mode, or some kind of time varying control, the control in [2] uses sliding
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(a) System states: (x1, x2, x3) = (1, 2 − 4).
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(b) System states: (x1, x2, x3) = (2,−4, 3).
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(c) System states in [2]: (x1, x2, x3) = (2,−4, 3).
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(d) Control effort v1, v2.
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(e) System state x1: Doted line proposed and
solid line as reported in [2].
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(f) System state x2: Doted line proposed and
solid line as reported in [2].
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(g) System state x3: Doted line proposed and
solid line as reported in [2].

Fig. 2. A two wheel car model: Comparison of the proposed

controller and the controller reported in [2] for same initial conditions:

[x1(0), x2(0), x3(0), ] = [2,−4, 3].

mode control. Figure 2(d) shows the control inputs v1, v2 with gains k1 = 1, k2 = 5.
Figure 2 (e) – (g) show system states x1, x2, x3 represented by doted lines, converge to
zero in 11, 5, and 6 seconds with proposed controller. The response of the controller
reported in [2] is represented by solid lines which show the states converge to zero in 27,
13, and 14 seconds respectively. The proposed controller has an advantage in term of
settling time. From the above discussion the controller response in [2] is slow as well as
extremely oscillatory due to use of dynamic robust controller.
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4.2. The front wheel car model

4.2.1. The kinematics model

The front wheel car model as shown in Figure 3 represents four- dimensional nonholo-
nomic control system with control deficiency order two. Its controllability Lie algebra
contains Lie brackets of depth one and two. The kinematics model of a front wheel car
model is given as in [17]:

Fig. 3. A front wheel car model.


ϕ̇
ẋ

θ̇
ẏ

 =


1
0
0
0

u1 +


0

cos θ
1
l tanϕ
sin θ

u2. (28)

Where, (x, y): the center coordinate of the rear axle of the car,
ϕ: the steering angle of the front wheel of the car,
θ: the orientation of the car body with respect to x-axis,
l: the distance between the front and rear axles of the car.

Assuming that l = 1 and introducing a new set of state variables z
def
= (z1, z2, z3, z4) =

(ϕ, x, y, θ) the kinematics model (28) can be written as:
ż1
ż2
ż3
ż4

 =


1
0
0
0

u1 +


0

cos z4
sin z4
tan z1

u2 (29)

or
ż = Z1(z)u1 + Z2(z)u2, z ∈ <4
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where

Z1(z) =


1
0
0
0

 & Z2(z) =


0
cos z4
sin z4
tan z1

 .
The kinematics model (29) satisfies Assumptions presented in Section 2. To verify
properties (P1) and (P2), it is sufficient to calculate the following Lie brackets of
Z1(z) & Z2(z):

Z3(z) = [Z1, Z2](z) =


0
0
0

sec2z1

& Z4(z) = [Z2, Z3](z) =


0

− sin z4sec2z1
cos z4sec2z1

0


which satisfy the LARC condition:

span{Z1, Z2, Z3, Z4}(z) = <4 ∀ z ∈ <4.

4.2.2. Conversion into chained form

Consider the following transformation:

x1 = x = z2
x2 = tanϕ

lcos3θ = tan z1
lcos3z4

x3 = tan θ = tan z4
x4 = y = z3
v1 = cos θ u1 = cos z4 u1

v2 = 1+tan2ϕ
lcos3θ u1 + 3 tan θtan2ϕ

l2cos3θ u2
= 1+tan2z1

lcos3z4
u1 + 3 tan z4tan

2z1
l2cos3z4

u2.

(30)

Transforms the nonholonomic system (30) into the following chained form system:

ẋ1 = v1
ẋ2 = v2
ẋ3 = x2v1
ẋ4 = x3v1.

(31)

The proposed algorithm was applied to sliding surface:

s = x4 + 2x3 + x2. (32)

Figure 4 (a) – (c) shows response of the proposed controller and with the controller re-
ported in [17]. The initial conditions are chosen the same as [x1(0), x2(0), x3(0), x4(0)] =
[0.3, 0.4, 0.2, 0.5]. The controller reported in [17] is based on model decomposition tech-
nique. Since nonholonomic systems can only be stabilized either using discontinuous
control, such as sliding mode, or some kind of time-varying control, the control in [17]
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(a) System states: (x1, x2, x3, x4) =
(1,−2, 3,−4).
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(b) System states: (x1, x2, x3, x4) =
(0.3, 0.4, 0.2, 0.5).
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(c) System states as presented in [17].
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(d) Control input: v1, v2.
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solid line as reported in [17].
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(f) System state x2: Doted line proposed and
solid line as reported in [17].
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(g) System state x3: Doted line proposed and
solid line as reported in [17]
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(h) System state x4: Doted line proposed and
solid line as reported in [17]

Fig. 4. A front wheel car model: Comparison of the proposed

controller and the controller reported in [17] for same initial

conditions: [x1(0), x2(0), x3(0), x4(0)] = [0.3, 0.4, 0.2, 0.5].

uses time-varying sinusoidal functions. Figure 4(d) shows the control inputs v1, v2 with
gains k1 = 4, k2 = 10. Figure 4: (e) – (h) show system states x1, x2, x3, x4 represented
by doted lines, converge to zero in 12,6,5 and 4 seconds with proposed controller. The
response of the controller reported in [17] is represented by solid lines which show the
states converge to zero in 18 seconds respectively. The proposed controller has an advan-
tage in term of settling time. From the above discussion the controller response in [17]
is slow as well as extremely oscillatory due to use of time-varying sinusoidal functions.

4.3. The fire truck model

4.3.1. The kinematics model of a fire truck

The fire truck as shown in Figure 5 is an example of a nonholonomic system with three
inputs and six configuration variables, for which the controllability Lie algebra contains
two Lie brackets of depth one and one Lie bracket of depth two.

By defining the states variables as z = (z1, z2, z3, z4, z5, z6)T = (x, y, ϕ0, θ0, ϕ1, θ1)T and
assuming l0 = l1 = 1 in the kinematics model of fire truck as given in [17] we have the
following:

ż = Z0(z)u1 + Z2(z)u2 + Z3(z)u3 (33)
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Fig. 5. A firetruck model.

where,

Z0(z) =


cos z4
sin z4

0
tan z3

0
− sin(z6 − z4 + z5) sec z5

 , Z2(z) =


0
0
1
0
0
0

 , Z3(z) =


0
0
0
0
1
0

 .

Where (x, y): the center coordinate of the rear axle of the cab
ϕ0: the steering angle of the front wheel of the cab
θ0: the orientation of the cab body with respect to x-axis
ϕ1: the steering angle of the rear wheel of the trailer
θ1: the orientation of the trailer with respect to x-axis
l0: the distance between the front and rear axles of the cab
l1: the distance between the centers of the rear axles of the cab and trailer.

The system (33) can be rewritten as:

ż = Z1(z)ū1 + Z2(z)u2 + Z3(z)u3 (34)

where,

Z1(z) =
Z0(z)

cos z4
=


1

tan z4
0

tan z3 sec z4
0

− sin(z6 − z4 + z5) sec z5 sec z4

 , Z2(z) =


0
0
1
0
0
0

 ,
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Z3(z) =


0
0
0
0
1
0

 , ū1 = cos z4u1.

It can be verified that the system (34) satisfies the following assumptions presented in
section 2. To verify properties (P1) and (P2), calculate the Lie brackets, which are
linearly independent at the origin:

Z4(z) = [Z1, Z2](z) =


0
0
0

−sec2z3 sec z4
0
0



Z5(z) = [Z1, Z3](z) =


0
0
0
0
0

sec2z5 sec z4 cos(z6 − z4)



Z6(z) = [Z1, [Z1, Z2]](z) =


0

sec2z3sec3z4
0
0
0

sec2z3sec3z4 sec z5 cos(z6 + z5)

 .

It is clear that, if the motion of the system is restricted to the manifold:

M
def
= {z ∈ <6 : |zi| <

π

2
, i = 3, 4, 5}. (35)

Then the LARC condition namely: span{Z1(z), Z2(z), . . . , Z6(z)} = <6 ∀ z ∈ M is
satisfied.
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4.3.2. Conversion into chained form

Consider the following transformation:

x1 = z1
x2 = sec3z4 tan z3
x3 = tan z4
x4 = z2
x5 = − sin(z5 − z4 + z6) sec z5 sec z4
x6 = z6

(36)

v1 = ū1 = cos z4u1
v2 = a1ū1 + a2u2
v3 = a3ū1 + a4u3.

Where

a1 = 3tan2z3 tan z4sec4z4
a2 = sec2z3sec3z4
a3 = cos(z5 − z4 + z6) tan z3 sec z5sec2z4 + cos(z5 − z4 + z6) sin(z5 − z4 + z6)sec2z5sec2z4
− sin(z5 − z4 + z6) sec z5sec2z4 tan z3 tan z4

a4 = − cos(z5 − z4 + z6) sec z4 sec z5 − sin(z5 − z4 + z6) sec z5 sec z4 tan z5.

Transform the nonholonomic system (36) into the following chained form system:

ẋ1 = v1
ẋ2 = v2
ẋ3 = x2v1
ẋ4 = x3v1
ẋ5 = v3
ẋ6 = x5v1.

(37)

The proposed algorithm was applied with the sliding surface for subsystem S2 as:

s = x6 + 4x5 + 6x4 + 4x3 + x2. (38)

Figure 6 (a) – (c) shows response of the proposed controller and with the controller
reported in [17]. The initial conditions are chosen the same as [x1(0), x2(0), x3(0), x4(0),
x5(0), x6(0)] = [0.8, 0.5, 0.7, 0.3, 0.6, 0.4]. The controller reported in [17] is based on
model decomposition technique. Since nonholonomic systems can only be stabilized
either using discontinuous control, such as sliding mode, or some kind of time-varying
control, the control in [17] uses time varying sinusoidal functions. Figure 6(d) shows
the control inputs v1, v2 with gains k1 = 10, k2 = 20. Figure 6 (e) – (j) show system
states x1, x2, x3, x4, x5, x6 represented by doted lines, converge to zero in 35,8,8,11,11 and
11 seconds with proposed controller. The response of the controller reported in [17] is
represented by solid lines which show the states converge to zero in 25,19,32,19,22 and 19
seconds respectively. The proposed controller has an advantage in term of settling time.
From the above discussion the controller response in [17] is slow as well as extremely
oscillatory due to use of time varying sinusoidal functions.
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(a) System states: (x1, x2, x3, x4, x5, x6) =
(1,−5, 2,−3, 3, 2).
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(b) System states: (x1, x2, x3, x4, x5, x6) =
(0.8, 0.5, 0.7, 0.3, 0.6, 0.4).
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(c) System states as presented
in [17]: (x1, x2, x3, x4, x5, x6) =
(0.8, 0.5, 0.7, 0.3, 0.6, 0.4).
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solid line as reported in [17].
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(f) System state x2: Doted line proposed and
solid line as reported in [17].
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(g) System state x3: Doted line proposed and
solid line as reported in [17].
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(h) System state x4: Doted line proposed and
solid line as reported in [17].
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(i) System state x5: Doted line proposed and
solid line as reported in [17].
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(j) System state x6: Doted line proposed and
solid line as reported in [17].

Fig. 6. A firetruck model: Comparison of the proposed controller

and the controller reported in [17] for same initial conditions:

[x1(0), x2(0), x3(0), x4(0), x5(0), x6] = [0.8, 0.5, 0.7, 0.3, 0.6, 0.4].

5. CONCLUSION

A smooth super twisting sliding mode based steering control for nonholonomic systems
which are transformable into chained form is presented. The proposed method is tested
on three nonholonomic systems which are transformable into chained form; a two-wheel
car model, a model of front-wheel car and a firetruck model. The aim was to steer the
systems from any initial condition to a desired value which was assumed to be zero. The
simulation results show the correctness and the effectiveness of the proposed controller
for the chained form nonholonomic systems, when compared to already existing methods.
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It is evident from the simulation results that the objective has been achieved.

(Received June 21, 2017)
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[16] J. Picó, E. Picó-Marco, A. Vignoni, and H. De Battista: Stability preserving maps for
finite-time convergence: super-twisting sliding-mode algorithm. Automatica 49 (2013), 2,
534–539. DOI:10.1016/j.automatica.2012.11.022

[17] F. Rehman: Feedback stabilization of nonholonomic control systems using model decom-
position. Asian J. Control 7, (2005), 3, 256–265. DOI:10.1111/j.1934-6093.2005.tb00235.x

[18] Y. B. Shtessel, I. A. Shkolnikov, and A. Levant: Smooth second-order slid-
ing modes: Missile guidance application. Automatica 43 (2007), 8, 1470–1476.
DOI:10.1016/j.automatica.2007.01.008

[19] O. J. Sordalen and O. Egeland: Exponential stabilization of nonholonomic chained systems.
IEEE Trans. Automat. Control 40 (1995), 1, 35–49. DOI:10.1109/9.362901

[20] Y. Wang, Z. Miao, H. Zhong, and Qi. Pan: Simultaneous stabilization and tracking of
nonholonomic mobile robots: A Lyapunov-based approach. IEEE Trans. Control Systems
Technol. 23 (2015), 4, 1440–1450. DOI:10.1109/tcst.2014.2375812

[21] V. Utkin, J. Guldner, J. Shi, S. Ge, and F. Lewis: Sliding Mode Control
in Electro-mechanical Systems. Second Edition. Boca Raton: CRC Press, 2009.
DOI:10.1201/9781420065619

Waseem Abbasi, Capital University of Science and Technology, Islamabad. Pakistan.
e-mail: waseemabbasi97@gmail.com

Fazal ur Rehman, Capital University of Science and Technology, Islamabad. Pakistan.
e-mail: drfrehman@gmail.com

Ibrahim Shah, Capital University of Science and Technology, Islamabad. Pakistan.
e-mail: ebraheemshah@yahoo.com

http://dx.doi.org/10.1016/j.automatica.2013.12.032
http://dx.doi.org/10.1016/j.automatica.2012.11.022
http://dx.doi.org/10.1111/j.1934-6093.2005.tb00235.x
http://dx.doi.org/10.1016/j.automatica.2007.01.008
http://dx.doi.org/10.1109/9.362901
http://dx.doi.org/10.1109/tcst.2014.2375812
http://dx.doi.org/10.1201/9781420065619

	Introduction
	 The control problem formulation
	The proposed steering control algorithm
	Application examples
	The two wheel car model
	Conversion into chained form

	The front wheel car model
	The kinematics model
	Conversion into chained form

	The fire truck model 
	The kinematics model of a fire truck
	Conversion into chained form


	Conclusion

