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ADAPTIVE THRESHOLDING TECHNIQUE FOR SOLVING
OPTIMIZATION PROBLEMS ON ATTAINABLE SETS OF
(MAX, MIN)-LINEAR SYSTEMS

Mahmoud Gad

This article develops a parametric method depend on threshold technique for solving some
optimization problems on attainable sets of so called (max, min)-separable linear systems. The
concept of attainable set for (max, min)-separable linear equation systems will be introduced.
Properties of the attainable sets will be studied in detail. The (max, min) - separable linear
equation systems, in which the function of unknown variable occur only on one side, will be
consider.

The main idea of the proposed algorithm is that we will begin the calculations with the max-
imum element and we will try to decrease the value of the objective function of our problem,
by decreasing its components in such a way that they stay within attainable set. Optimization
problem consisting in finding the nearest point of an attainable set to a given fixed point will
be considered. An algorithm for solving the optimization problem will be proposed. Motiva-
tional example from the area of operations research, which shows possible applications of the
optimization problem solved in this paper, will be given. Numerical example illustrating the
proposed algorithm is included.

Keywords: attainable sets, adaptive thresholding technique, (max;min)-separable equa-
tions
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1. INTRODUCTION

Problems on algebraic structures, in which pairs of operations (max,+) or (max,min)
replace addition and multiplication of the classical linear algebra have appeared in the
literature approximately since the sixties of the last century (see e. g. [1]). In this
paper we will study so called attainable sets of such systems, i. e. the sets of right-
hand sides, for which there exists a solution of the given system. Let us note that
problems, the original formulation of which has no solution were called sometimes in the
literature incorrectly posed problems ( see e. g. [3]). Such problems are neither linear
nor convex in usual algebraic sense. Such problems for (max,+)-linear equation system
were considered using a different approach in (see e. g. [2, 9]). Problems for (max,min)-
linear equation and inequality system were considered using a different approach in (see
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e. g. [4, 5, 7]). Our purpose in this paper is to present an approach to incorrectly
posed (max,min)-separable equation systems, which depend on Adaptive Thresholding
Technique.

Let us introduce the following notations: I = {1, 2, . . . ,m}, J = {1, 2, . . . , n}. Let
A be a matrix with finite elements aij ∈ R = (−∞,+∞),∀ i ∈ I, j ∈ J , let
α∧β ≡ min(α, β) for any α, β ∈ R. Vector A⊗x ∈ Rm for x = (x1, . . . , xn)T ∈ Rn

will be defined as follows:

(A⊗ x)i ≡ max
j∈J

(aij ∧ xj) ∀ i ∈ I.

The system of (max,min)-separable equations with right-hand side b ∈ Rm is an
equation system of the form

A⊗ x = b.

The set of all solutions of the system will be denoted M(b), (i. e. M(b) = {x ∈ Rn ; A⊗
x = b}.)

Definition 1.1. Set

R(A) ≡ {b ∈ Rm ; ∃ x ∈ Rn such that A⊗ x = b}

is called attainable set of matrix A.

In what follows we will solve the following optimization problem:

Problem I. Minimize ∣∣∣∣∣∣b− b̂∣∣∣∣∣∣ = max
i∈I

∣∣∣bi − b̂i∣∣∣
subject to

b ∈ R(A).

The optimal solution of Problem I will be denoted bopt. Let us note that if b̂ ∈ R(A),

it is evidently bopt = b̂. Therefore we will assume in what follows that b̂ 6∈ R(A).
Before investigating properties of attainable sets and analysis of problem solution, we
will bring an example, which shows one possible application, which leads to solving the
system given above.

Example 1.2. Let us assume that m places i ∈ I ≡ {1, 2, . . . , m} are connected with
n places j ∈ J ≡ {1, 2, . . . , n} by roads with given capacities. The capacity of the road
connecting place i with place j is equal to aij ∈ R. We have to extend for all i ∈ I, j ∈ J
the road between i and j by a road connecting j with a terminal place T and choose an
appropriate capacity xj for this road. If a capacity xj is chosen, then the capacity of the
road from i to T via j is equal to aij ∧xj = min(aij , xj). We require that the connection
between places i and T is for at least one j equal to a given number bi ∈ R and the
chosen capacity xj lies in a given finite interval i. e. xj ∈ [xj , xj ], where xj , xj ∈ R are
given finite numbers. Therefore feasible vectors of capacities x = (x1, x2, . . . , xn) (i. e.
the vectors, the components of which are capacities xj having the required properties)
must satisfy an equation system of the form A⊗ x = b.
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2. PROPERTIES OF ATTAINABLE SETS AND ANALYSIS OF THE PROBLEM

In this section we will study in more detail some properties of attainable sets and analyze
Problem I. The properties are formulated as the following three lemmas.

Lemma 2.1. Set R(A) has the maximum element, i. e. an element bmax ∈ R(A) such
that b ≤ bmax ∀ b ∈ R(A).

P r o o f . Let αi = maxj∈J aij ∀ i ∈ I . Let x ∈ Rn be arbitrarily chosen. Then
aij ∧ xj ≤ aij for all i ∈ I, j ∈ J . Therefore for any i ∈ I we obtain that

max
j∈J

(aij ∧ xj) ≤ max
j∈J

aij = αi.

Therefore if we set bmax
i = αi ∀ i ∈ I, then bmax ∈ R(A), since e. g. if x̂ ∈ Rn and

x̂j ≥ maxi∈I αi we have maxj∈J(aij ∧ x̂j) = αi = bmax
i . For an arbitrary b ∈ R(A)

there exists x ∈ Rn such that b = A ⊗ x ≤ A ⊗ x̂ = bmax, so that bmax is the
maximum element of R(A), this ends the proof. �

Lemma 2.2. (Zimmermann [8]) Let b ∈ Rm, I>j = {i ∈ I ; aij > bi} ∀ j ∈ J . Let
M(b) = {x ∈ Rn ; A ⊗ x = b} be nonempty. Let vector x(b) ∈ Rn be defined as
follows:

xj(b) = min
i∈I>

j

bi ∀ j ∈ J if I>j 6= ∅.

We set the minimum equal to infinity if I>j = ∅. Then x(b) is the maximum element of
set M(b).

P r o o f . Let us note that if x ∈M(b), then it must be aij ∧xj ≤ bi for all i ∈ I, j ∈ J .
Therefore it must be x ≤ x(b) ∀x ∈M(b) so that x(b) is the upper bound for elements
of M(b). It remains to prove that if set M(b) is nonempty it must be x(b) ∈M(b). Let
us set

Sj(xj) ≡ {k ∈ I ; akj ∧ xj = bk} ∀j ∈ J.

If I>j 6= ∅, then

Sj(xj(b)) =

{
k ∈ I ; xj(b) = bk = min

i∈I>
j

(bi)

}
.

If I>j = ∅, then xj(b) = ∞ and Sj(xj(b)) = {k ∈ I ; akj = bk}. We will show further
that

x(b) ∈M(b) ⇐⇒
⋃
j∈J

Sj(xj(b)) = I.

Really if
⋃

j∈J Sj(xj(b)) = I and p ∈ I is arbitrary, then there exists index j(p) ∈ J such
that p ∈ Sj(p)(xj(p)(b)) and therefore apj ∧xj(b) ≤ bp for all j ∈ J and apj(p)∧xj(p)(b) =
bp so that maxj∈J(apj ∧ xj(b)) = bp. Since p was arbitrary, we obtain that x(b) ∈M(b).
To prove the opposite implication let us assume that

⋃
j∈J Sj(xj(b)) 6= I so that there

exists index i0 ∈ I such that i0 6∈
⋃

j∈J Sj(xj(b)) and therefore ai0j ∧xj(b) 6= bi0 ∀j ∈ J
and therefore maxj∈J(ai0j ∧ xj(b)) 6= bi0 and thus x(b) 6∈M(b).
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Let us note that if xj ≤ xj(b) for any j ∈ J , then Sj(xj) ⊆ Sj(xj(b)). Therefore if⋃
j∈J Sj(xj(b)) ⊂ I, then for any x ≤ x(b) we have⋃

j∈J
Sj(xj) ⊆

⋃
j∈J

Sj(xj(b)) ⊂ I

and thus M(b) = ∅, since all elements of M(b) must satisfy the inequality x ≤ x(b). It
follows that

M(b) 6= ∅ ⇐⇒ x(b) ∈M(b).

In other words if M(b) 6= ∅, then x(b) ∈ M(b) and x ≤ x(b) for all x ∈ M(b), so that
x(b) in the maximum element of M(b), what was to be proved. �

Lemma 2.3. Let bmax be the maximum element of R(A), b̂ ∈ Rm such that b̂ ≥ bmax,
let bopt be the optimal solution of Problem I. Then bopt = bmax.

P r o o f . Since bmax is the maximum element of R(A), so b ≤ bmax for any an arbitrary

element b ∈ R(A), then bp ≤ bmax
p for all p ∈ I. Since b̂ ≥ bmax, Then

∣∣∣bmax
p − b̂p

∣∣∣ ≤∣∣∣bp − b̂p∣∣∣ for all p ∈ I it follows that ||bmax − b̂|| ≤ ||b − b̂|| for all b ∈ R(A), which

implies that bopt = bmax. �

In the next section, we will propose an algorithm for solving Problem I.

3. THE THRESHOLD ALGORITHM

Let us introduce the following notations, we assume that b ∈ R(A), b̂ 6∈ R(A), i ∈ I:

H+(b) = {i ∈ I ; bi > b̂i}, H−(b) = I \H+(b),

Let us define x̂(b) ∈ Rn as follows:

x̂j(b) =


mini∈I>

j
bi, if I>j 6= ∅,

maxi∈I=
j
bi, if I=j 6= ∅ and I>j = ∅,

∞ otherwise,

where I>j = {i ∈ I ; aij > bi} ∀j ∈ J , I=j = {i ∈ I ; aij = bi} ∀j ∈ J such that I>j = ∅.

Let us set further

Gi(b) = {h ∈ J ; aih ∧ x̂h(b) = max
j∈J

(aij ∧ x̂j(b))},

P (b) = {i ∈ I ; aih ∧ x̂h(b) = x̂h(b) ∀h ∈ Gi(b)}.
We will call terms aih ∧ x̂h(b) in the definition of Gi(b) ”active terms of Gi(b)”. If
i0 ∈ P (b), then all active terms of Gi0(b) are equal to x̂h(b), or in other words ai0h ∧
x̂h(b) = x̂h(b), which means that ai0h ≥ x̂h(b) ∀ h ∈ Gi0(b). Let us set

F+(b) = {k ∈ H+(b) ∩ P (b) ;
∣∣∣bk − b̂k∣∣∣ = max

i∈I

∣∣∣bi − b̂i∣∣∣},
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F−(b) = {k ∈ H−(b) ∩ P (b) ;
∣∣∣bk − b̂k∣∣∣ = max

i∈I

∣∣∣bi − b̂i∣∣∣}.
The main idea of the proposed algorithm is that we will begin the calculations with the
maximum element bmax and will try to decrease the value of the objective function of
Problem I, by decreasing components of b in such a way that we stay within attainable
set R(A). We will assume I>j 6= ∅ for all j ∈ J to avoid infinite components of x̂(b).
Let

G(b) ≡
⋃

k∈F+(b)

Gk(b).

Algorithm 3.1.

0 Input m, n , I, J, A, b̂, bmax, b := bmax

1 Determine H+(b), H−(b), x̂(b), Gi(b) ∀i ∈ I, P (b), F+(b), F−(b).

2 If F−(b) 6= ∅, go to 8 .

3 F̃ (b) := {i ∈ (I \ F+(b)) ∩ P (b) ; Gi(b) ⊆
⋃

k∈(F+(b)∩P (b))Gk(b)}.

4 T (b) := F+(b) ∪ F̃ (b); if T (b) = ∅, go to 8 .

5 set for t ≥ 0: bi(t) := bi − t ∀i ∈ T (b), bi(t) := bi otherwise.

6 Increase t until a value τ > 0, for which for the first time one of the following
events will occur:

(i) bi(τ) = b̂i for some i ∈ T (b);

(ii) bi(τ) = bp for some i ∈ T (b), p ∈ I \ T (b);

(iii)
∣∣∣bi(τ)− b̂i

∣∣∣ = maxk∈(I\T (b))

∣∣∣bk − b̂k∣∣∣ for some i ∈ T (b). It may happen

that Gp(b) 6⊆ G(b) so that p /∈ F̃ (b), but Gp(b − t) ⊆ G(b) so that

p ∈ F̃ (b− t) ∩ P (b− t);

(iv)
∣∣∣bi(τ)− b̂i

∣∣∣ =
∣∣∣bk(τ)− b̂k

∣∣∣, where i ∈ F̂+(b) and k ∈ T (b) ∩H−(b).

(v) P (b) may change, i. e. until for some t = τ may be P (b(τ)) 6= P (b), bi − t =
maxj∈J\Gi(b)

aij for some i ∈ T (b).

F Find τ by making use of Algorithm 3.2.

7 Set b := b(τ), go to 1 .

8 Set bopt := b, STOP.
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Through this algorithm we begin the calculations with the maximum element bmax and
will try to decrease the value of the objective function of Problem I. So we determine the
indices of the components of b have to be decreased in such a way that we stay within
attainable set R(A). as follows:

In step 2

Set F−(b) contains indices, for which b̂k − bk = ||b − b̂||. Since bk < b̂k and bk must
be decreased (it is the maximum element of R(A)), we can only increase the value of
the objective function and therefore we stop the calculations with b = bmax.

In step 3

Set F̃ (b) contains indices of b, which are not active at point b in the objective function

value ||b − b̂|| and their decrease is induced by the decrease of active components of b

(i. e. variables bk, which determine the value ||b− b̂||).
In step 4

Set T (b) contains indices of components bs, which will be decreased if we want to

decrease the value ||b − b̂||, i. e. bk, k ∈ F+(b), which must be decreased and variables
br, r ∈ F̃ (b), the decrease of which is induced (or forced) by the decrease of the compo-

nents of b, which take an active part in determining the value ||b− b̂||.
In step 5

The step carries out the uniform contemporary parametric decrease of variables
bs, s ∈ T (b).

In step 6

This step finds a value τ > 0 of parameter t, at which for the first time at least one
of the threshold index sets H+(b), H−((b), Gi(b), i ∈ I, F+(b), F−(b), P (b) changes.
Note that all these threshold index sets remain unchanged if b = b(t), t ∈ [0, τ ] and
if t > τ . If t = τ , then at least one of the threshold sets changes. Points (i) - (v)
determine the situations, at which the threshold sets change. The corresponding values
of parameter t,at which these changes take place will be computed in Algorithm 3.2

In what follows we will bring an Algorithm 3.2 for determining the parameter value
τ from step 6 of Algorithm 3.1. For this purpose we will introduce the following sim-
plifying notations:

α(b) ≡
∥∥∥b− b̂∥∥∥ ,

β(b) ≡ max
i∈I\T (b)

∣∣∣bi − b̂i∣∣∣ .
Let us recall that bi(t) = bi − t ∀i ∈ T (b), bi(t) = bi ∀i ∈ I \ T (b). We have then:∣∣∣bi(t)− b̂i∣∣∣ = bi(t)− b̂i = bi − t− b̂i ∀i ∈ F+(b)∣∣∣bi(t)− b̂i∣∣∣ = b̂i − bi(t) = b̂i − bi + t ∀i ∈ H−(b) ∩ T (b).

We will analyze in detail cases (i) - (v) from step 6 .
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Case (i) – changes H+(b). We have for i ∈ T (b)

bi(t) = b̂i if t = τ
(1)
i ≡ (bi − b̂i). Case (i) takes place for the first time if

t = τ (1) ≡ min
i∈T (b)

τ
(1)
i .

Case (ii) – changes T (b). We have bi(t) = bp for some i ∈ T (b), p ∈ I \ T (b) if

t = τ
(2)
ip ≡ bi − bp. Case (ii) takes place for the first time if

t = τ (2) = min
i∈T (b), p 6∈T (b)

τ
(2)
ip .

Case (iii) – changes F+(b). We have
∥∥∥b(t)− b̂∥∥∥ = α(b)−t, so that

∥∥∥b(t)− b̂∥∥∥ =

β(b) if

t = τ (3) ≡ (α(b)− β(b)).

Case (iv) – changes F−(b). We have for k ∈ T (b)∩H−(b) the equality
∣∣∣bk(t)− b̂k

∣∣∣ =

b̂k − bk + t so that
∥∥∥b(t)− b̂∥∥∥ =

∣∣∣bk(t)− b̂k
∣∣∣ if α(b)− t = (b̂k − bk + t) , i. e. if t = τ

(4)
k ≡

(α(b)− b̂k + bk)/2. Case (iv) takes place for the first time if

t = τ (4) ≡ min
k∈(T (b)∩H−(b))

τ
(4)
k .

Case (v) – changes G(b).

bi − t = max
j∈J\Gi(b)

(aij), for some i ∈ T (b)

i. e.

t = τ5i = bi − max
j∈J\Gi(b)

(aij)

for some i ∈ T (b).

We set then τ (5) = mini∈T (b) τ
(5)
i .

One of the Cases (i) – (v) takes place for the first time if

t = τ ≡ min
1≤k≤5

τ (k)

Value τ > 0 will be inserted in step 6 of algorithm (3.1). We will summarize these
considerations in the following
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Algorithm 3.2.

1 Input b̂, b, α(b), β(b).

2 τ
(1)
i ≡ (bi − b̂i) ∀i ∈ T (b),

τ (1) := min
i∈T (b)

τ
(1)
i .

3 τ
(2)
ip ≡ bi − bp, ∀i ∈ T (b), p 6∈ T (b),

t = τ (2) = min
i∈T (b), p 6∈T (b)

τ
(2)
ip .

4 τ (3) ≡ (α(b)− β(b)).

5 τ
(4)
k ≡ (α(b)− b̂k + bk)/2 ∀k ∈ T (b) ∩H−(b),

τ (4) ≡ min
k∈(T (b)∩H−(b))

τ
(4)
k .

6

τ (5) ≡ min
i∈T (b)

(
bi − max

j∈J\Gi(b)
(aij)

)
.

7

τ ≡ min
1≤k≤5

τ (k).

Remark 3.3. In the theory presented above we assumed that the entries of A and b
are real numbers. Note that the obtained results can be extended to cases, where the
entries are assumed to be e. g. rational numbers, integers or even given finite sets of
numbers.

Remark 3.4. In case that the entries of Problem I are rational or integer numbers,
the proposed algorithm has polynomial number of steps. Namely, each iteration of the
algorithm is connected with at least one change of a threshold index set connected with
reaching at least one threshold value generated by elements of A or components of b̂.
Each variable xj can be stopped m−1 times by m−1 elements of A in the jth column
when x̂j(b(t)) > aij and again set into movement when at a further current xj(b(t)) the
equality x̂j(b) = aij is reached (i. e. P (b) can change with the current decreased b(t)

m − 1 times. Besides bk(t), k ∈ F̃k(b(t)) can be stopped m − 1 times when F̃ (b(t))

changes and similarly can change F+(b(t)) if an active bk(t) reaches value b̂k. This

makes together O(mn) steps before a final step 8 . The computation of τ in Algorithm
3.2 needs O(m) resp. O(n) steps.

Remark 3.5. An alternative method for solving problems similar to Problem I was
suggested in [6]. Neither the method presented here nor the method in[6] can be preferred
in general. The effectiveness of the methods depends on the structure of examples solved.
If e. g. the number of elements of F+(b) is low, the method presented here seems to be
more effective than the method in [6].
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4. NUMERICAL EXAMPLES

We illustrate the theoretical result by the next numerical example,

Example 4.1.
Let m = n = 3, b̂ = (8, 8, 8)T ,

A =

 3 1 5
4 4 6
7 7 3

 .

In this case bmax = (5, 6, 7)T ≤ b̂ = (8, 8, 8)T . Taking into account Lemma 2.3, we
obtain that the optimal solution of Problem I is equal to bmax. The optimal value of

the objective function of Problem I is therefore
∥∥∥bmax − b̂

∥∥∥ = max(3, 2, 1) = 3.

Let us solve the same problem using the threshold algorithm from the preceding
section. The iterations of this algorithm will be the following:

1 m = n = 3, I, J, A, b̂, b = bmax = (5, 6, 7)T ;

Iteration 1

2 b = (5, 6, 7), H+(b) = I,H−(b) = ∅, x̂(b) = (7, 7, 6)T , G1(b) = {3}, G2(b) =

{3}, G3(b) = {1, 2}, P (b) = {2, 3}, F+(b) = {3};

3 F−(b) = ∅;

4 F̃ (b) = ∅;

5 T (b) = {3};

6 b(t) = (5, 6, 7− t)T

7 τ = min(7, 1, 1,+∞) = 1;

8 b := b(τ) = (5, 6, 6)T .

Iteration 2

2 b = (5, 6, 6), H+(b) = I, H−(b) = ∅, x̂(b) = (6, 6, 6), maxj∈J(a1j ∧ xj(b)) = a13 = 5,

so that G1(b) = {3}, maxj∈J(a2j ∧ xj(b)) = x3(b) = 6, G2(b) = {3}, maxj∈J(a3j ∧
xj(b)) = x1(b) = x2(b) = 7 so that G3(b) = {1, 2}, futher we have P (b) = {2, 3} so that
F+(b) = {2, 3}, F−(b) = ∅, ;

3 F−(b) = ∅;

4 F̃ (b) = ∅;

5 T (b) = {2, 3};

6 b(t) = (5, 6− t, 6− t);

7 τ = 1;

8 b = b(τ) = (5, 5, 5)T ;
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Iteration 3

2 b = (5, 5, 5), H+(b) = I, H−(b), x̂(b) = (5, 5, 5), F+(b) = {1};

3 F−(b) = ∅;

4 F̃ (b) = {2};

5 T (b) = {1, 2};

6 b(t) = (5− t, 5− t, 5);

7 τ = 1;

8 b = b(τ) = (4, 4, 5)T ;

Iteration 4

2 b = (4, 4, 5)T H+(b) = I, H−(b) = ∅, x̂(b) = (5, 5, 4), G1(b) = {3}, G2(b) =

{1, 2, 3}, G3(b) = {1, 2}, P (b) = {1, 3}, F+(b) = {1, 3};

3 F−(b) = ∅;

4 F̃ (b) = ∅;

5 T (b) = {1, 3};

6 b(t) = (4− t, 4, 5− t);

7 τ = 1;

8 b = b(τ) = (3, 4, 4)T ;

Iteration 5

2 b = (3, 4, 4), H+(b) = I, H−(b) = ∅, x̂(b) = (4, 4, 3), P (b) = {2, 3}, F+(b) = {2, 3};
3 F−(b) = ∅;

4 F̃ (b) = ∅

5 T (b) = {2, 3};

6 b(t) = (3, 4− t, 4− t);

7 τ = 1;

8 b := b(τ) = (3, 3, 3);
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Iteration 6

2 b = (3, 3, 3), H+(b) = I, H−(b) = ∅, x̂(b) = (3, 3, 3), P (b) = (1, 2, 3), F+(b) = {1};

3 F−(b) = ∅;

4 F̃ (b) = ∅;

5 T (b) = {1};

6 b(t) = (3− t, 3, 3);

7 τ = 1;

8 b; = b(τ) = (2, 3, 3);

Iteration 7.

2 b = (2, 3, 3), H+(b) = I, H−(b) = ∅, x̂(b) = (2, 3, 2), P (b) = {1, 2, 3}, F+(b) =
{1, 2, 3};

3 F−b = ∅;

4 F̃ (b) = ∅;

5 T (b) = {1};

6 b(t) = (2− t, 3− t, 3− t);

7 τ = 1;

8 b := b(τ) = (1, 2, 2);

Iteration 8

2 b = (1, 2, 2), H+(b) = I, H−(b) = ∅, x̂(b) = (1, 2, 1), G1(b) = {1, 2, 3}, G2(b) =

{2}, G3(b) = {2}, P (b) = {1, 2, 3}, F+(b) = {2, 3};

3 F−(b) = ∅;

4 F̃ (b) = ∅;

5 T (b) = {1, 2, 3};

6 b(t) = (1, 2− t, 2− t);

7 τ = τ (5) = 1;

8 b := b(τ) = (1, 1, 1);
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Iteration 9

2 b := (1, 1, 1), H+(b) = {1}, H−(b) = {2, 3}, x̂(b) = (1, 1, 1), Gi(b) = I ∀ i ∈
I, P (b) = I, F+(b) = {1};

3 F−(b) = ∅;

4 F̃ (b) = {2, 3};

5 T (b) = {1, 2, 3};

6 b(t) = (1− t, 1− t, 1− t);

7 τ = τ (4) = 1;

8 b := b(τ) = (1/2, 1/2, 1/2);

Iteration 10

2 b = (1/2, 1/2, 1/2), H+(b) = {1}, H−(b) = {2, 3}, x̂(b) = (1/2, 1/2, 1/2),

F+(b) = {1};
3 F−(b) = {2, 3} 6= ∅;

9 bopt := b = (1/2, 1/2, 1/2), STOP.

5. CONCLUSIONS

In this paper the idea that arises in connection with practical applications, which are
described by (max, min)-separable linear equation systems, is introduced. The problem
what to do if the given (max, min)-separable linear equation systems has no feasible
solution is analysed. We have to modify the original system (i. e. to modify its input
coefficients) in such a way that the new problem has a solution. In this situation it is
natural trying to modify the problems in such a way that the original goals of the given
system ( e. g. bounds on costs or arrival times) will be violated as little as possible. We
introduced a technique through it we can modify the values on the right hand side of the
systems until the system is solvable, and it will be violated as little as possible. Moreover,
we will try to apply the technique introduced here for real life problems and introduce
a new technique that allows modify the values of the left hand side coefficients in order
the system has a feasible solution. Another possibility to make the research closer to
practical requirements would be considering stochastic or interval input coefficients of
the (max,min)−linear systems.
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[1] P. Butkovič: Max-linear Systems: Theory and Algorithms. Springer Monographs in
Mathematics and Springer-Verlag, London – Dodrecht – Heudelberg – New York 2010.
DOI:10.1007/978-1-84996-299-5

[2] R. A. Cuninghame-Green: Minimax Algebra, Lecture Notes in Economics and Mathe-
matical Systems. Springer-Verlag 166, Berlin 1979. DOI:10.1007/978-3-642-48708-8

[3] I. I. Eremin, V. D. Mazurov, and N. N. Astáfev: Linear Inequalities in mathematical
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