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QMLE OF PERIODIC BILINEAR MODELS AND OF PARMA
MODELS WITH PERIODIC BILINEAR INNOVATIONS

Abdelouahab Bibi and Ahmed Ghezal

This paper develops an asymptotic inference theory for bilinear (BL) time series models
with periodic coefficients (PBL for short). For this purpose, we establish firstly a necessary
and sufficient conditions for such models to have a unique stationary and ergodic solutions
(in periodic sense). Secondly, we examine the consistency and the asymptotic normality of
the quasi-maximum likelihood estimator (QMLE) under very mild moment condition for the
innovation errors. As a result, it is shown that whenever the model is strictly stationary, the
moment of some positive order of PBL model exists and is finite, under which the strong con-
sistency and asymptotic normality of QMLE for PBL are proved. Moreover, we consider also
the periodic ARMA (PARMA) models with PBL innovations and we prove the consistency
and the asymptotic normality of its QMLE.

Keywords: periodic bilinear model, periodic ARMA model, strict and second-order peri-
odic stationarity, strong consistency, asymptotic normality

Classification: 2M10, 62M15

1. INTRODUCTION

Periodically varying parameters can arise in modelling nonstationary time series hav-
ing significant periodic behavior in mean, variance and in covariance structures, namely
in economic, hydrological and meteorological ones. Data of this type are frequently
analyzed using a s−periodic autoregressive moving average (PARMAs) models (inter-
ested readers are advised to see Gardner et al. [21] for references dealing with PARMAs
models). However, many real time series encountered in practice exhibit not only nonsta-
tionary behavior, but also certain phenomena commonly observed by the practitioners
such as, limit cycles, self-excitation, asymmetric distributions, leptokurtosis and sud-
den jumping that cannot be adequately modeled by linear models and hence the resort
to some non linear models becomes inevitable. Among others, the most prominent
discrete-time model for modelling the non-Gaussian and nonstationary time series is
certainly the bilinear models with time-varying coefficients which have been attracting
a great deal of interest in the recent statistical literature. This class of models is an
extension of PARMAs models by adding one or more interaction components between
the observed and the innovations processes. It becomes an appealing tool for investi-
gating both non Gaussianty and distinct ”seasonal” patterns appearing for instance in
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finance, macroeconomics, econometrics, etc. . . , and continue to gain a growing interest
and a relevant attention of researchers. In other words, a discrete-time process (Xt)t∈Z,
Z = {0,±1,±2, . . . .} defined on some probability space (Ω,=, P ), is called periodic bi-
linear model denoted by PBLs(p, q, P,Q) if it satisfies the following nonlinear stochastic
difference equation

Xn = a0 (n) +

p∑
i=1

ai(n)Xn−i +

q∑
j=0

bj(n)en−j +

Q∑
j=1

P∑
i=1

cij(n)Xn−ien−j . (1.1)

In (1.1), (en)n∈Z is a sequence of independent and identically distributed (i.i.d.) ran-
dom variables defined on the same probability space (Ω,A, P ), with E {en} = 0 and
E
{

log+ |en|
}
< +∞ where log+ x = max(log x, 0), x > 0, and ek is independent of Xn

for k > n, the coefficients ai(n), bj(n) and cij(n) are periodic functions with period s.
Therefore, by setting n = st+ v, Xst+v = Xt (v) and est+v = et (v), Model (1.1) may be
equivalently written in periodic version as

Xt (v) = a0(v) +

p∑
i=1

ai(v)Xt(v− i) +

q∑
j=0

bj(v)et(v− j) +

Q∑
j=1

P∑
i=1

cij(v)Xt(v− i)et(v− j).

(1.2)
In (1.2) the notation Xt (v) refers to Xt during the v−th “season” or regime v ∈
{1, . . . , s} of cycle t and hence the functions ai(v), bj(v) and cij(v) may be interpreted
as the coefficients of model corresponding to the v−th regime. For the convenience,
Xt (v) = Xt−1 (v + s), et (v) = et−1 (v + s) if v < 0. The non-periodic notations {Xn},
{en}, {ai(n)}, {bi(n)}, {cij(n)}, etc. will be used interchangeably with the periodic
notations {Xt (v)}, {et (v)}, {ai(v)}, {bi(v)} , {cij(v)} etc. whenever emphasis on sea-
sonality is not paramount. It is worth noting that when s > 1, the process is globally
nonstationary, but is stationary within each period.

Remark 1.1. Recently, many empirical works have showed after fitting some data to
bilinear models, that the (G)ARCH effect in residual process is significant (see Pan et
al. [30] for more general settings) and hence the i.i.d hypothesis on (en)n∈Z may be
relaxed for an heteroscedastic process.

The model (1.1) has been studied by Bibi et al. {[5, 7, 8, 9, 10, 11]}, more precisely,
with respect to the probabilistic properties, Bibi [5], beside the motivations proposed to
introduce the class of bilinear models with time-dependent coefficients, he also studied
the L2−structure and some empirical properties of such models. In particular, with pe-
riodic coefficients, Bibi and Lessak [9] have established some sufficient conditions for the
existence of causal, periodically correlated (PC) and β−mixing of the solution process
for some specifications of (1.2) (see the subsection 2.2 for a definition of PC processes).
More general, necessary and sufficient conditions for the existence of PC solution process
of (1.2) are given by Bibi and Lescheb [10]. From statistical point of view of such models,
Bibi and Oyet [7] have studied a subclass of time-dependent coefficients (not necessar-
ily periodic) and established the consistency and the normality asymptotic (CAN) of
the conditional least square estimator. The asymptotic properties of Yule-Walker type
estimator have been established by Bibi and Aknouche [8] for some restrictive periodic
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bilinear models. Recently, Bibi and Ghezal [11] have studied the CAN properties of the
generalized method of moments (GMM) estimator for the model (1.2).

In this paper, we propose the conditional quasi-maximum likelihood method for esti-
mating the unknown parameters of PBLs (p, q, P,Q) and we prove its CAN properties.
Moreover, the proposal method is also applied for PARMAs model with some periodic
BL innovation. Note here that the PBLs (p, q, P,Q) encompasses many commonly used
models in the literature, indeed,

(i) Standard BL (p, q, P,Q) models: These models are obtained by assuming constant
the functions ai(.), bj(.) and cij(.) in (1.1) (e. g., Subba Rao and Gabr [32] and
the references therein), i. e.,

Xn = a0 +

p∑
i=1

aiXn−i +

q∑
j=0

bjen−j +

Q∑
j=1

P∑
i=1

cijXn−ien−j .

(ii) Periodic ARMA models (PARMAs): These models are obtained by setting cij(.) =
0 for all i and j in (1.1) (e. g., Francq et al. [18] for recent references on PARMAs
models), i. e.,

Xn = a0 (n) +

p∑
i=1

ai(n)Xn−i +

q∑
j=0

bj(n)en−j .

(iii) Some classes of periodic GARCH (p, q) (PGARCHs): (see Bibi and Lessak [9]
and Kristensen [26] for the building of GARCH models as special case of BL),
i. e. Xn =

√
hnen where the volatility process (hn)n satisfy

hn = a0 (n) +

p∑
i=1

ai(n)hn−i +

p∑
i=1

cii(n)hn−ie
2
n−i,

in which the sequences (ai(n), 0 ≤ i ≤ p)n∈Z, (cii(n), 1 ≤ i ≤ p)n∈Z are positive
with a0 (n) > 0 for all n.

Since, it is difficult to handle in (1.1) the product terms, like Xnen−k, k > 0, so
in the sequel, we shall restrict ourselves on the so-called superdiagonal models noted
SPBLs(p, q, p, q) in which cij(n) = 0 in (1.1) for all i < j and all n ∈ Z, i. e.,

Xn = a0 (n) +

p∑
i=1

ai(n)Xn−i +

q∑
j=0

bj(n)en−j +

q∑
j=1

p∑
i=j

cij(n)Xn−ien−j . (1.3)

The main purpose of this paper is to investigate some probabilistic and statistical proper-
ties of equation (1.3). Recalling here that a process (Yt)t∈Z, defined on some probability
space (Ω,A, P ) is said to be strictly periodically stationary (SPS) (with period s > 0) if
the distribution of (Yt1 , Yt2 , . . . , Ytn)

′
is the same as that of (Yt1+sh, Yt2+sh, . . . , Ytn+sh)

′

for all n ∈ N∗ and h, t1, t2, . . . , tn ∈ Z. Furthermore, it is called periodically ergodic
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(PE) if for all Borel set B and all integer m, 1
n

n∑
t=1

IB (Yv+st, Yv+1+st, . . . , Yv+m+st) con-

verges almost surely (a.s) to P ((Yv, Yv+1, . . . , Yv+m) ∈ B) as n→∞ for all 1 ≤ v ≤ s,
where IB(.) denotes the indicator function of the set B (cf., Boyles and Gardner [14] for
further discussion). As for the stationary case (see for instance Billingsley [12] Theorem
36.4), periodic ergodicity is closed under certain transformations. In particular if (εt)t∈Z
is SPS and PE and if (Yt)t∈Z is defined by Yt = f (. . . , εt, εt+1, . . .) where f is some
measurable function mapping from R∞ to R, then (Yt)t∈Z is also SPS and PE. More-
over, if (Yt)t∈Z is SPS and PE and if f is a measurable function from R∞ to R such

that E {f (. . . , Yt−1, Yt, Yt+1, . . .)} <∞ then 1
n

n∑
t=1

f
(
. . . , Yv+s(t−1), Yv+st, Yv+s(t+1), . . .

)
converges a.s. to E

{
f
(
. . . , Yv+s(t−1), Yv+st, Yv+s(t+1), . . .

)}
as n→∞ for all 1 ≤ v ≤ s.

Before we proceed, we need to introduce some notations:

1.1. Algebraic notation

Throughout the paper, the following notations are used.

. I(n) is the n×n identity matrix, O(k,l) denotes the matrix of order k× l whose entries
are zeros, for simplicity we set O(k) := O(k,k) and O(k) := O(k,1).

. The spectral radius of square matrix M is noted ρ (M).

. Let ‖.‖ denote any induced matrix norm on the set of m× n and m× 1 matrices. For
any γ ∈ ]0, 1], we set |M |γ := (|mij |γ), then it is easy to see that the operator
|.|γ is submultiplicative, i. e., |M1M2|γ ≤ |M1|γ |M2|γ , |MX|γ ≤ |M |γ |X|γ for

any appropriate vector X and

∣∣∣∣∑
i

Mi

∣∣∣∣γ ≤ ∑
i

|Mi|γ where the inequality M ≤ N

denotes the elementwise relation, i. e., mij ≤ nij for all i and j.

. The symbol ⊗ is the usual Kronecker product of matrices and M⊗r = M⊗M⊗. . .⊗M
r−times, V ec(M) is the vector obtained from a matrix M := (mij) by setting down
the column of M underneath each other, ”  ”, ”p lim ” and ”a.s.” respectively
means convergence in law, in probability and almost surely.

The remaining sections are organized as follows. In the next section, we first give nec-
essary and sufficient conditions ensuring the existence of SPS, causal and PE solution
of (1.3) and other probabilistic properties such as existence of moments for some finite
order. The conditions are shown to reduce to the usual conditions that we find often in
literature of time series and especially for the models cited above. Section 3 deals with
the strong consistency and the asymptotic normality properties of conditional QMLE
for SPBLs while in Section 4, we investigate those of PARMAs models with periodic
bilinear innovations. Section 5, concludes the article.

2. MARKOVIAN REPRESENTATION AND ITS PROBABILISTIC PROPERTIES

With constant coefficients (i. e., when s = 1), the Markovian representation and its
properties were discussed in [31]. This representation can easily be extended to the class
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of SPBLs(p, q, p, q) models as follows Xn = H ′Xn−1 + a0(n) + b0(n)en and

Xn = Γn(en)Xn−1 + η
n

(en) , (2.2)

in which Γn(en) = Γ0(n) + enΓ1(n), η
n

(en) = b0(n) + b1(n)en + b2(n)e2
n where

Γ0(n) =

(
J A(0)(n)

A(1)(n) A(2)(n)

)
r×r

,Γ1(n) =

(
O(p,p) O(p,q)

C(1)(n) C(2)(n)

)
r×r

.

The matrices J ,
(
A(i)(n)

)
0≤i≤2

and
(
C(j) (n)

)
1≤j≤2

and the vectors H, b0(n), b1(n) and

b2(n) are periodic in n with period s, its explicit forms can be found in Bibi [5]. Equa-
tion (2.2) is the same as defining periodic random coefficient autoregressions (PRCAR)
(see Aknouche and Guerbyenne [2]) except that the matrix Γn(en) is not independent
of the vector η

n
(en) as it is required in these models, whereas Γn(en) and η

m
(em)

are independent for all m 6= n. Noting here that, because of s−periodic time-varying
coefficients in equation (2.2), the solution process (when existing) are not strictly sta-
tionary nor ergodic unless s = 1. To remedy this problem, the idea is to introduce
the concept of SPS and PE solutions already discussed above. For this purpose, it-
erate (2.2) s−times to get the following equation X(n+1)s = Γ (en)Xns + η (en) where

Γ (en) =

{
s−1∏
i=0

Γs−i
(
e(n+1)s−i

)}
and η (en) =

s∑
j=1

{
s−j−1∏
i=0

Γs−i
(
e(n+1)s−i

)}
η
j

(ens+j)

with en+1 =
(
e(n+1)s, . . . .esn+1

)
. Now, let X(n) = Xns and rewrite the above equation

as
X(n) = Γ (en)X(n− 1) + η (en) . (2.3)

It is worth noting however that Γ (en) is independent of X(k) for any k < n and((
Γ (en) , η (en)

))
n∈Z is an i.i.d. process and hence a formal solution for (2.3) can be

given by

X(n) = η(en) +
∑
k≥1


k−1∏
j=0

Γ(en−j)

 η(en−k). (2.4)

Therefore, (1.3) has a unique, causal, SPS and PE solution given by (H
′
X(n−1)+a0(n)

+ b0(n)en)n∈Z, if and only if (2.4) has a unique, causal, strictly stationary and ergodic
solution.

2.1. Strict periodic stationarity

Processes (X (n))n∈Z similar to (2.3) has been examined by Brandt [15] (in scalar case)
and by Bougerol and Picard [13], who have showed that the unique solution for (2.3)
should be given by the series (2.4) if and only if

γ (Γ) < 0, (2.5)

where γ (Γ) is the top−Lyapunov exponent associated with the strictly stationary and
ergodic sequence of random matrices (Γ(en))n∈Z defined by

γ (Γ) := inf
n≥1

1

n
E

{
log

∥∥∥∥∥
n−1∏
i=0

Γ(en−i)

∥∥∥∥∥
}

a.s
= lim

n→∞

1

n
log

∥∥∥∥∥
n−1∏
i=0

Γ(en−i)

∥∥∥∥∥ .
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Note that the right-hand member in above equality can be justified using Kingman’s
subadditive ergodic theorem and the existence of γ (Γ) is guaranteed however by the
fact that E

{
log+ ‖Γ(en)‖

}
and E

{
log+

∥∥η(en)
∥∥} are finite. The following theorem due

to Bougerol and Picard [13], gives us the main result for stochastic difference equation
(2.3).

Theorem 2.1. Consider the SPBLs(p, q, p, q) model (1.3) with Markovian represen-
tation (2.2). Then, if (2.3) has a strictly stationary solution, then (2.5) hold true.
Conversely, if (2.5) hold true, then for any n ∈ Z, the series (2.4) converges ab-
solutely a.s. and constitute the unique, causal, strictly stationary and ergodic solu-
tion for (2.3) and hence (1.3) has a unique, causal, SPS and PE solution (given by(
H ′X(n− 1) + a0(n) + b0(n)en

)
n∈Z).

The properties of solution process (2.4) is given in the following theorem.

Theorem 2.2. Consider the SPBLs(p, q, p, q) model (1.3) with Markovian representa-
tion (2.2). Under the condition (2.5), we have

1. Equation (2.2) has an unique, causal, SPS and PE solution given by the series
(2.4).

2. The dual (multivariate) process
(
X ′st+1, X

′
st+2, . . . , X

′
st+s

)′
is strictly stationary

and ergodic.

P r o o f . The proof follows essentially the same arguments as in Bibi and Lescheb [10].
�

Though the condition (2.5) could be used as a test for the SPS, it is of little use
in practice since this condition involves the limit of products of infinitely many random
matrices. However, some simple sufficient conditions ensuring the negativity of γ (Γ)
can be given.

Theorem 2.3. Let |Γ| = E {|Γ (en)|} and
∣∣η∣∣ = E

{∣∣η (en)
∣∣}, and consider the model

(1.3) with Markovian representation (2.2), then γ (Γ) < 0, if one of the following condi-
tions holds true.

1. E

{
log

∥∥∥∥n−1∏
i=0

Γ(en−i)

∥∥∥∥} < 0 for some n ≥ 1,

2. ρ (|Γ|) < 1.

P r o o f . Because the top−Lyapunov exponent is independent of the norm, by choosing
an absolute norm, i. e., a norm ‖.‖ such that ‖.‖ ≤ ‖|.|‖, then from the definition of γ (Γ)

and according to Kesten and Spitzer [25] we have almost surely lim
n→∞

1
n log

∥∥∥∥n−1∏
i=0

Γ(en−i)

∥∥∥∥ ≤
log ρ (|Γ|). On the other hand, by Jensen’s inequality we get almost surely

γ (Γ) ≤ 1

n
E

{
log

∥∥∥∥∥
n−1∏
i=0

Γ(en−i)

∥∥∥∥∥
}
≤ 1

n
logE

{∥∥∥∥∥
n−1∏
i=0

∣∣Γ(en−i)
∣∣∥∥∥∥∥
}
≤ log ρ (|Γ|) ,

so the result follows. �
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Corollary 2.1. If γ (Γ) < 0 then there is a δ ∈ ]0, 1] such that E
{
‖X (n)‖δ

}
< +∞

and hence E
{
|Xn|δ

}
< +∞, ∀n ∈ Z.

P r o o f . See for instance Aknouche and Bibi [3]. �

Example 2.1. For PBLs (1, 1, 1, 1) model, we obtain Γ (en) :=
s−1∏
v=0

(a1(s− v) + c11(s−

v)en−1 (s− v − 1)). Hence PBLs(1, 1, 1, 1) admits a causal, SPS and PE solution if

and only if γ (Γ) :=
s−1∑
i=0

E {log(|a1(i) + c11(i)e0|} < 0. It is worth noting that the

existence of ”explosive regimes” (i. e., E {log(|a1(i) + c1(i)e0|} > 0) does not preclude
the existence of SPS solution.

Example 2.2. For the PARMAs model, the necessary and sufficient condition reduces

to ρ

(
s−1∏
v=0

A(2)(v)

)
< 1 where A(2)(n) is the companion matrix associated with PARs (p)

part in PARMAs model.

Remark 2.1. The condition (2.5) provides a certain stability of model (1.3). However
when γ (Γ) ≥ 0, the model (1.3) is said to be unstable and hence does not admit a
SPS solution. As an example, consider PBLs (0, 1, 1, 1) then it is not difficult to verify

that γ (Γ) ≥ 0 if and only if
s−1∏
v=0
|c11 (v)| ≥ exp (−sE {log |e0|}). Since, if (et)t∈Z follow

N (0, 1) then E {log |e0|} = 1
2 (log(2) +

Γ′ (0.5)

Γ (0.5)
) where Γ (.) and Γ′ (.) are the Gamma

function and its first derivative respectively. Hence, exp (−sE {log |e0|}) ≈ exp(0.1048s).

Remark 2.2. For the PBLs(1, 1, 1, 1) model and if et admits a density, then the dis-
tribution of the polynomial Pv (e0) = c11(v)e0 + a1 (v) can be expressed in terms of the

CDF of et and hence
s−1∑
v=0

E {log |Pv (e0)|} follows.

When p > 1, the top-Lyapunov exponent criterion γ (Γ) is defined as a product of
infinitely many random matrices, so, one encounters fundamental difficulties in determi-
nation of its asymptotic distribution explicitly. However, a potential method to verify
the negativity of γ(Γ) is via Monte-Carlo simulation using Equation (2.4) (see for in-
stance He et al. [24] and the references therein). On the other hand, in statistical
applications, we often suggest conditions ensuring the existence of some moments for
the stable process under investigation, but this suggestion cannot be achieved by the
top-Lyapunov exponent criterion. Therefore, we need to search for conditions ensuring
the existence of moments for the SPS solutions.

2.2. Second-order periodic stationarity

The problem of finding conditions ensuring the existence of solution of (1.3) having mo-
ments up to second-order were addressed initially by Gladyshev [22] and continues to
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receive more attention in literature under the so-called periodically correlated (PC) pro-
cesses (e. g. [21] and the references therein). Formally a second-order process (Xn)n∈Z
is said to be PC with periodic s, if for any integers n and n′, E {Xn+s} = E {Xn} and
Cov (Xn+s, Xn′+s) = Cov (Xn, Xn′). In other word, the mean function µn = E {Xn}
and the covariance functions γn (h) = Cov(Xn, Xn+h), h ∈ Z are both periodic in n
with s period, so when s = 1, a PC process is equivalent to second-order station-
ary process. In this subsection, we give the necessary and sufficient conditions for
the existence of causal, SPS and PE solution to Equation (1.3). For this purpose
and for convenience, we shall consider the centered version of the state vector (2.2),

i. e., X̃n = Γn (en) X̃n−1 + η̃
n

(en) in which X̃n = Xn − µn where µ
n

= E {Xn} and

η̃
n

(en) = en

(
b1 (n) + Γ1(n)µ

n−1

)
+ b2 (n)

(
e2
n − σ2

)
so a similar version of (2.3) is now

X̃(n) = Γ (en) X̃(n− 1) + η̃ (en) , (2.6)

in which the process
(
η̃ (en)

)
n∈Z is centered and is orthogonal to X̃(k) for any k < n−s.

However, the process (Xt)t∈Z has a PC and PE solution if and only if (2.6) has a second-
order and ergodic solution.

Theorem 2.4. Suppose that E
{
e4
n

}
< +∞. Then there exists a PC process (Xt)t∈Z

generated by the equation (1.3) with state-space representation (2.6) if

λ(2) = ρ
(

Γ(2)
)
< 1, (2.7)

where Γ(2) := E
{

Γ⊗2 (en)
}

=

s−1∏
v=0

{
Γ⊗2

0 (s− v) + σ2Γ⊗2
1 (s− v)

}
. The covariance ma-

trix ΣX = E
{
X̃(n)X̃

′
(n)
}

of
(
X̃(n)

)
n∈Z

is then given by

V ec
(
ΣX
)

=
(
I(r) − Γ(2)

)−1

Σ⊗2
η ,

where Σ⊗2
η = E

{
η̃⊗2 (en)

}
, moreover, its solution process is causal, unique, strictly

stationary and ergodic.
Conversely, a necessary condition for existence of a PC process solution to (1.3) is

that there exists a covariance matrix ΣX associated with state-space representation (2.6)
solution of the equation (

I(r) − Γ(2)
)
V ec

(
ΣX
)

= Σ⊗2
η .

P r o o f . The proof follows essentially the same arguments as in Bibi and Lessak [9]. �

Remark 2.3. It is not difficult to see that if E
{
e4
n

}
< +∞ and E

{∥∥Γ
(
en0

)∥∥2
}
< 1

for some n0, then (Xn)n∈Z is square integrable.
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Example 2.3. The following table summarizes the condition (2.7) for some particular
cases.

Specification Condition (2.7) Particular case: p = q = 1

Standard BL ρ
(
Γ⊗2

0 (1) + σ2Γ⊗2
1 (1)

)
< 1 a2(1) + σ2c211(1) < 1

PARMAs ρ

(
s−1∏
v=0

A⊗2
(2) (v)

)
< 1

s−1∏
v=0
|a (v)| < 1

PGARCHs (p, p)
(a)

ρ

(
s−1∏
v=0

Ξ (v)

)
< 1

s−1∏
v=0

(
a (v) + σ2c11 (v)

)
< 1

(a)Ξ(v) =

 M0(v)
1

σ2
(M̃1(v)− J)

M̃0(v) M̃1(v)

 where M0(v) =

(
a1(v), . . . , ap(v)

I(p−1) O(p−1)

)
M̃0(v) =

(
σ2a1(v), . . . , σ2ap(v)

O(p−1)

)
, M̃1(v) =

(
σ2c11(v), . . . , σ2cpp(v)
I(p−1) O(p−1)

)
Tab. 1. Conditions ensuring E

{
X2

t

}
< +∞ for certain specifications.

Remark 2.4. Noting here that some extensions of PC processes which can account for
more complex cyclical phenomena have been proposed (see Bibi and Francq [6] for further
discussion). In particular almost periodically correlated (APC) processes were intro-
duced by Gladyshev [22] and have been discussed by several authors. A discrete−time
process is said to be APC if its covariance function is an almost periodic sequence
in the sense of Bohr, i. e., for each n and every ε > 0, the set of ε−almost periods
of the function h → γn (h) = Cov(Xn, Xn+h) defined as the integer number τε such
that |γn (h+ τε)− γn (h)| < ε for every h ∈ Z is relatively dense in Z. Similarly,
a continuous−time process (Xn)n∈R is said to be APC, if its covariance function is
an almost periodic function on R in the sense of Bohr. Example of APC processes
are obtained from contemporaneous aggregation of independent periodic process with
incommensurate periods, for instance Xn = en sin(n) +ηn sin(πn), n ∈ R where (en)n∈R
and (ηn)n∈R are independent stationary processes.

3. QUASI-MAXIMUM LIKELIHOOD ESTIMATION FOR SPBLS (P, 0, P, 1)

The estimating of general bilinear model (1.1) is quite challenging even when s = 1.
However, in the literature many ideas have been proposed for estimating the unknown
parameters of some restrictive stationary and ergodic bilinear models. The most fre-
quently used methods are the (generalized) method of moments (G) (MM) and the
(conditional) least squares (C) (LS) method. The asymptotic properties of the (G)MM
and (C)LS estimates have been also discussed under certain restrictions (see for exam-
ple, Liu [28], Grahn [23], Wittwer [34] and among others). Recently, Bibi et al. [8, 11]
have developed certain procedures for estimating some special bilinear processes with
periodically time-varying parameters. In this section, we focus on the estimation of the
parameter governing the following model

Xt = a1 (t) +

p∑
i=2

ai(t)Xt−i + et +

p∑
i=2

φi(t)Xt−iet−1, (3.1)
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in which, the order p and the period s are assumed to be known and fixed. The
d = s (2p− 1) + 1−unknown parameter gathered in θ :=

(
a′, φ′

)′
= (θ1, . . . , θd)

′
and

its true value denoted by θ0 lying in some parameter space Θ ⊂ Rd where the vec-

tors coordinate projections a :=
(
a′1, . . . , a

′
p

)′
and φ :=

(
φ′

2
, . . . , φ′

p
, σ2
)′

, with ai =

(ai(1) , . . . ai(s))
′, 1 ≤ i ≤ p and φ

j
= (φj(1) , . . . φj(s))

′, 2 ≤ j ≤ p. The state-space

representation of (3.1) may be obtained as Xt = H ′Xt where

Xt = (A0(t) + et−1A1(t))Xt−1 +Het + a1(t), (3.2)

in which H = (1, 0, . . . , 0)
′
, a1(t) = (a1(t), 0, . . . , 0)

′
and Xt = (Xt, Xt−1, . . . , Xt−p+1)

′

are vectors in Rp, the periodic matrices A0(t) and A1(t) are however easily determined.
Let µt (a) (resp. ht

(
φ
)
) be the conditional expectation (resp. variance) of Xt given

=t−2 where =t = σ (Xs, s ≤ t), then µt (a) = E {Xt|=t−2} = a1 (t) +
p∑
i=2

ai(t)Xt−i and

ht
(
φ
)

= V ar {Xt|=t−2} = σ2
(
1 + α2

t

(
φ
))

with αt
(
φ
)

=
p∑
i=2

φi(t)Xt−i and hence, the

model (3.1) is conditionally heteroscedastic (but not aGARCH model). Let {X1, . . . , Xn,
n = sN} be a realization from the unique, causal and SPS solution of (3.1) initialized
from {X0, . . . , X1−p, e0} which may be chosen as X0 = . . . = X1−p = e0 = X1 or

X0 = . . . = X1−p = e0 = 0. (3.3)

A Gaussian quasi-likelihood function for estimating θ0 based on observed data (Xt, 1−p
≤ t ≤ n) is given by

L̃n (θ) =


n∏
t=1

1(
2πh̃t

(
φ
)) 1

2

 exp

{
−

n∑
t=1

(Xt − µ̃t (a))
2

2h̃t
(
φ
) }

, (3.4)

in which µ̃t (a) and h̃t
(
φ
)

are constructed under the initial values (3.3). A quasi-

maximum likelihood estimator (QMLE) of θ0 is defined as any measurable solution

θ̂n of

θ̂n = Argmax
θ∈Θ

L̃n (θ) = Argmin
θ∈Θ

(−L̃n (θ)),

where (ignoring the constants) L̃sN (θ) = − 1
sN

N∑
t=1

s−1∑
v=0

l̃st+v (θ) with l̃t (θ) =
(Xt − µ̃t (a))

2

h̃t
(
φ
)

+ log h̃t
(
φ
)
. Note that θ̂n would provide the exact conditional maximum likelihood. Due

to the strong dependency of µ̃t (a) and h̃t
(
φ
)

on initial values,
(
l̃t (θ)

)
t≥1

is not a SPS

nor PE process, and hence, it will be convenient to approximate it by its SPS and PE
version (lt (θ))t≥1, so we work with an approximate version Ln (θ) of the likelihood (3.4),
i. e.,

LsN (θ) = − 1

sN

N∑
t=1

s−1∑
v=0

lst+v (θ) with lt (θ) =
(Xt − µt (a))

2

ht
(
φ
) + log ht

(
φ
)
.
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Remark 3.1. It is worth noting that the choice of initial values have importance from
a practical point of view and doesn’t affect the asymptotic properties of QMLE.

Remark 3.2. Azrek and Mélard [2] (resp. Bibi and Oyet [7]) established asymptotic
results for ARMA (resp. bilinear) models with time-dependent coefficients using the
penalty function Ln (θ). Recently Ling et al. [27] have used the same approach for
estimating special time-invariant bilinear model.

Remark 3.3. Aknouche and Bibi [3] established asymptotic results for periodicGARCH

model, in which the process

(
∂lt
∂θ

(
θ0
)
,=t
)
t≥1

is required to form a martingale difference

(MD) sequence, however, in our case

(
∂lt
∂θ

(
θ0
)
,=t
)
t≥1

is not a MD sequence.

Remark 3.4. Florian [17] established asymptotic properties for general periodic au-
toregressive, conditionally heteroscedastic models. When applied to the model (3.1),
her consistency result coincides with our.

In what follows, we will give conditions ensuring the strong consistency of θ̂n and its
asymptotic normality. Our approach has benefited from the papers by Bibi and Oyet
[7] for some restrictive time-dependent bilinear models, Azrak and Melard for Time-
dependent ARMA models, Francq et al. [18], Basawa and Lund [4] and Florian [17] for
periodic ARMA models, Aknouche and Bibi [3] for the periodic GARCH model, Ling
et al. [27] for some standard simple bilinear models, Ngatchou-Wandji [29], Chatterjee
and Das [16] for general conditionally heteroscedastic time series.

3.1. Strong consistency of QMLE

To study the strong consistency of θ̂n, we consider the following regularity assumptions.

A.1 θ0 ∈ Θ and Θ is a compact subset of Rd and θ0
j (v)θj(v) > 0 for all v ∈ {1, . . . , s} , j =

1, . . . , d.

A.2 E
{
|e0|2δ

}
<∞ for some 0 < δ ≤ 1 and ρ (Γδ) < 1 where

Γδ =
s−1∏
v=0

E
{
|A0(v) +A1(v)e0|δ

}
.

As usual in nonlinear models, the compactness of Θ in A.1, is assumed in order that
several results from real analysis maybe used. The second assumption is imposed for
the identification purpose. A.2, is more practical than γ (L) < 0 and ensure that the
process (Xt, t ∈ Z) defined by (3.1) admits a SPS and PE solution with some finite
moments (see corollary 2.1 ).

First we show the following technical lemmas.
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Lemma 3.1. Under A.1, A.2 and with initial values (3.3), almost surely as t→ +∞

1.sup
θ∈Θ
|µt (a)− µ̃t (a)| = o(1),

2.sup
θ∈Θ

∣∣∣ht (φ)− h̃t (φ)∣∣∣ = o(1),

3.sup
θ∈Θ

∣∣∣Ln (θ)− L̃n (θ)
∣∣∣ = o(1).

P r o o f . The first and second assertion follows upon the observation that under initial
values (3.3)

µt (a)− µ̃t (a) = H ′A0(t)
(
Xt−1 − X̃t−1

)
and αt − α̃t = H ′A1(t)

(
Xt−1 − X̃t−1

)
,

where X̃t is the solution process of (3.2) initializing the state-space vector Xt at O(p).

Therefore, under A.2, almost surely
∥∥∥Xt − X̃t

∥∥∥ ≤ Ketγ(L), for some positive constant

K. Now∣∣∣L̃n (θ)− Ln (θ)
∣∣∣

≤ 1

n

n∑
t=1

{
1

h̃t
(
φ
)
ht
(
φ
) (∣∣∣h̃t (φ)− ht (φ)∣∣∣ (Xt − µ̃t (a))

2
+

+ h̃t
(
φ
)
|µ̃t (a)− µt (a)| |2 (Xt − µ̃t (a)) + (µ̃t (a)− µt (a))|

)
+ log

(
ht
(
φ
)

h̃t
(
φ
))} .

Using the inequality log
(y
x

)
≤ |y − x|

min (x, y)
for any positive x and y, we obtain

sup
θ∈Θ

∣∣∣L̃n (θ)− Ln (θ)
∣∣∣ ≤ 1

nσ2

n∑
t=1

sup
θ∈Θ

(∣∣∣h̃t (φ)− ht (φ)∣∣∣ ( 1

σ2
(Xt − µt (a))

2
+ 1)

+ h̃t
(
φ
)
|µ̃t (a)− µt (a)| |2 (Xt − µ̃t (a)) + (µ̃t (a)− µt (a))|

)
.

By assertions 1, 2 of lemma 3.1, Assumption A.2 and Borel Cantelli lemma, the result
follow. �

Lemma 3.2. Under A.1 and A.2, if almost surely µt (a) = µt
(
a0
)

and ht
(
φ
)

= ht
(
φ0
)

then θ = θ0 for any θ ∈ Θ.

P r o o f . Straightforward and hence omitted. �

Lemma 3.3. Under A.2,
s∑

v=1
Eθ0

{
sup
θ∈Θ

lv (θ)

}
< ∞ and

s∑
v=1

Eθ0 {lv (θ)} achieves its

unique minimum at θ = θ0.
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P r o o f . First by corollary 2.1, we have for some δ ∈ ]0, 1],

1

δ

s∑
v=1

Eθ0

{
sup
θ∈Θ

log hδst+v
(
φ
)}
≤ 1

δ

s∑
v=1

sup
θ∈Θ

logEθ0
{
hδst+v

(
φ
)}

<∞,

and second

s∑
v=1

Eθ0 sup
θ∈Θ

{
(Xst+v − µst+v (a))

2

hst+v
(
φ
) }

≤ 1

σ2

s∑
v=1

(
Eθ0

{
sup
θ∈Θ

e2
st+v

1 + α2
st+v

(
φ
)}+ Eθ0

{
sup
θ∈Θ

(
a1(v)− a0

1(v)
)2

1 + α2
st+v

(
φ
) }

+Eθ0

{
sup
θ∈Θ

e2
st+v−1α

2
st+v

(
φ0
)

1 + α2
st+v

(
φ
) }

+ Eθ0


sup
θ∈Θ

(
p∑
j=2

(
aj(v)− a0

j (v)
)
Xst+v−j

)2

1 + α2
st+v

(
φ
)



 .

It can be shown that each term between the above bracket on the right-hand side is
finite and hence the first assertion follows. To show the second, we observe that for each
v ∈ {1, . . . , s}

Eθ0
{

(Xst+v − µst+v (a))
2 |=st+v−2

}
=

(a1(v)− a0
1(v)

)
+

p∑
j=2

(
aj(v)− a0

j (v)
)
Xst+v−j

2

+ hst+v
(
φ0
)
,

so,

Eθ0 {lv (θ)}

= Eθ0
{

log hv
(
φ
)}

+ Eθ0

{
hv
(
φ0
)

hv
(
φ
) }

+ Eθ0

 1

hv
(
φ
)
(a1(v)− a0

1(v)
)

+

p∑
j=2

(
aj(v)− a0

j (v)
)
Xst+v−j

2


= Eθ0

{
hv
(
φ0
)

hv
(
φ
) − log

(
hv
(
φ0
)

hv
(
φ
) )+ log hv

(
φ0
)}

+ Eθ0

 1

hv
(
φ
)
(a1(v)− a0

1(v)
)

+

p∑
j=2

(
aj(v)− a0

j (v)
)
Xst+v−j

2
 ,

using the inequality x − log x ≥ 1 for all x > 0 with equality if and only if x = 1, we
can see that Eθ0 {lv (θ)} reaches its minimum if and only if σ2 = σ2

0 , φj(v) = φ0
j (v) and
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aj(v) = a0
j (v) for all j = 2, . . . , p and v ∈ {1, . . . , s}, i. e., Eθ0 {lv (θ)} ≥ Eθ0

{
lv
(
θ0
)}

solving that the criterion is minimized at θ0. �

Lemma 3.4. For all θ 6= θ0 there is a neighborhood V (θ) of θ such that almost surely

lim inf
n→+∞

inf
θ∗∈V(θ)

(
−L̃n (θ∗)

)
>

s∑
v=1

Eθ0
{
lv
(
θ0
)}
.

P r o o f . The proof follows essentially the same arguments as in Aknouche and Bibi [3].
�

We are now in a position to state the following result.

Theorem 3.1. Under Assumptions A.1 and A.2, θ̂n −→ θ0 a.s. as n→ +∞.

P r o o f . In view of lemmas 3.1−3.4, the proof of the theorem is completed by using
the compactness of Θ. First, for all neighborhood V

(
θ0
)

of θ0, we have

lim sup
n→+∞

inf
θ̃∈V(θ0)

(
−L̃n

(
θ̃
))
≤ lim
n→+∞

(
−L̃n

(
θ0
))

=

s∑
v=1

Eθ0
{
lv
(
θ0
)}
. (3.5)

The compact Θ is covered by a finite union of a neighborhood V
(
θ0
)

of θ0 and the set

of neighborhoods V (θ), θ ∈ Θ\V
(
θ0
)

where V (θ) fulfills lemma 3.4. Therefore, there

exists a finite sub-coverning V
(
θ0
)
,V (θ1) , . . . ,V

(
θj
)

of Θ such that inf
θ̃∈Θ

(
−L̃n (θ∗)

)
=

min
i∈{1,...,j}

inf
θ∗∈V(θi)∩Θ

(
−L̃n

(
θ̃
))

. From (3.5) and lemma 3.4, the above equality shows

that θ̂n ∈ V
(
θ0
)

for n large enough, which completes the proof of the theorem. �

3.2. Asymptotic normality of QMLE

To prove the asymptotic normality of QMLE it is unavoidable to explore the derivatives
of Ln (θ) under the following additional assumptions

A.3 θ0 ∈
o

Θ where
o

Θ is the interior of Θ.

A.4 κ4 = E
{
e4
t

}
< +∞.

Assumption A.3 is necessary for the asymptotic normality of the QML estimator, it

ensures also the existence of a suitable compact convex subset Θ0 ⊂
o

Θ on which we
investigate of the differentiability and the validity of the Taylor series expansion of the
penalty functions Ln (.) and L̃n (.) and their components and hence the processes h̃t (.)
and ht (.). Assumption A.4 is imposed in accordance with the Markovian representation
of (3.2).
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Theorem 3.2. Under Assumption A.1 –A.4,
√
sN
(
θ̂sN − θ

0
)
 N

(
O,Σ

(
θ0
))

where

Σ
(
θ0
)

:= J−1
(
θ0
)

Ω
(
θ0
)
J−1

(
θ0
)
, the matrices Ω

(
θ0
)

and J
(
θ0
)

are nonnegative def-

inite and given by Ω
(
θ0
)

=
s∑

v=1
Ωv
(
θ0
)

and J
(
θ0
)

=
s∑

v=1
Jv
(
θ0
)

where

Ωv
(
θ0
)

= Eθ0

{
∂lst+v

(
θ0
)

∂θ
+
∂lst+v−1

(
θ0
)

∂θ

}{
∂lst+v

(
θ0
)

∂θ
+
∂lst+v−1

(
θ0
)

∂θ

}′

− E

{
∂lst+v−1

(
θ0
)

∂θ

∂lst+v−1

(
θ0
)

∂θ′

}
,

Jv
(
θ0
)

= diag

(
E

{
∂2lst+v

(
θ0
)

∂a∂a′

}
, E

{
∂2lst+v

(
θ0
)

∂φ∂φ′

})
,

and J
(
θ0
)

is non-singular.

The proof of Theorem 3.2 rests classically on a Taylor-series expansion of
∂Lt (θ)

∂θ
around

θ0. Indeed, for θ̂n ∈
o

Θ we have almost surely

O =
1√
n

n∑
t=1

∂lt
∂θ

(
θ̂n

)
=

1√
n

n∑
t=1

∂lt
∂θ

(
θ0
)

+

(
1

n

n∑
t=1

∂2lt

∂θ∂θ′
(θ∗)

)
√
n
(
θ̂n − θ

0
)
,

for some θ∗ where
∥∥θ0 − θ∗

∥∥ ≤ ∥∥∥θ0 − θ̂n
∥∥∥. We will thus show that

1√
n

n∑
t=1

∂lt
∂θ

(
θ0
)
 N (O,Ω) and p lim

n→∞

1

n

n∑
t=1

∂2lt

∂θ∂θ′
(θ∗) = J,

and hence the theorem will straightforwardly follow. The partial derivatives of lt (θ) are
given by

∂lt
∂a

(θ) = −2
(Xt − µt (a))

ht
(
φ
) ∂µt (a)

∂a
,

∂lt
∂σ2

(θ) =

(
1− (Xt − µt (a))

2

ht
(
φ
) )

1

σ2
,

∂lt
∂φ

(θ) =

(
1− (Xt − µt (a))

2

ht
(
φ
) )

1

ht
(
φ
) ∂ht (φ)

∂φ
,

∂2lt
∂a∂a′

(θ) =
2

ht
(
φ
) ∂µt (a)

∂a

∂µt (a)

∂a′
− 2

(Xt − µt (a))

ht
(
φ
) ∂2µt (a)

∂a∂a′
,
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∂2lt

∂φ∂φ′
(θ) =

(
(Xt − µt (a))

2

ht
(
φ
) − 1

)
1

h2
t

(
φ
) ∂ht (φ)

∂φ

∂ht
(
φ
)

∂φ′

+

(
1− (Xt − µt (a))

2

ht
(
φ
) )

1

ht
(
φ
) ∂2ht

(
φ
)

∂φ∂φ′
,

∂2lt

∂a∂φ′
(θ) = 2

(Xt − µt (a))

h2
t

(
φ
) ∂µt (a)

∂a

∂ht
(
φ
)

∂φ′
,

in which with periodic notation for j = 2, . . . , p,

∂µst+v (a)

∂a1

= 1v,
∂µst+v (a)

∂aj
= 1vXst+v−j ,

∂hst+v
(
φ
)

∂φ
j

= 2σ2αst+v
(
φ
)

1vXst+v−j ,

where 1v denotes a s × 1 unit vector whose entries are all zero except for a one in the
vth row. Note here that for a non Gaussian processes, neither Ω−1

(
θ0
)

nor J−1
(
θ0
)

is
an asymptotic covariance matrix (see for instance [33]) but well the so-called sandwich
estimator J−1

(
θ0
)

Ω
(
θ0
)
J−1

(
θ0
)
. To prove the Theorem 3.2, we need to check the

following intermediate results.

Lemma 3.5. Under Assumptions A.1 –A.4, we have

1.
s∑

v=1
Eθ0

{
sup
θ∈Θ

∥∥∥∥∂lst+v∂θ

(
θ0
)∥∥∥∥2
}
<∞,

2.
s∑

v=1
Eθ0

{
sup
θ∈Θ

∥∥∥∥∂2lst+v

∂θ∂θ′
(
θ0
)∥∥∥∥
}
<∞,

3. sup
θ∈Θ

∥∥∥∥∥ 1
sN

N∑
t=1

s∑
v=1

{
∂2lst+v

∂θ∂θ′
(
θ0
)
− E

{
∂2 l̃st+v

∂θ∂θ′
(
θ0
)}}∥∥∥∥∥ = o(1).

4. There exists a neighborhood V(θ0) of θ0 such that for all i, j, k ∈ {1, . . . , d},
s∑

v=1
Eθ0

{
sup

θ∈V(θ0)

∣∣∣∣∂3lst+v (θ)

∂θi∂θj∂θk

∣∣∣∣
}
< +∞.

P r o o f . Notice that Xt − µt (a) = et − (a1(t) − a0
1(t)) −

p∑
j=2

(
aj(t)− a0

j (t)
)
Xt−j +

p∑
j=2

φ0
j (t)Xt−jet−1, so we have

Eθ0

{
sup
θ∈Θ

∥∥∥∥∂lst+v∂a1

(
θ0
)∥∥∥∥2
}

= 4 ‖1v‖
2
Eθ0

{
sup
θ∈Θ

(Xst+v − µst+v (a))
2

h2
st+v

(
φ
) }

≤ 4 ‖1v‖
2 {I(1) + I(2)} ,
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and for any j ∈ {2, . . . , p}

Eθ0

{
sup
θ∈Θ

∥∥∥∥∂lst+v∂aj

(
θ0
)∥∥∥∥2
}

= 4 ‖1v‖
2
Eθ0

{
sup
θ∈Θ

(Xst+v − µst+v (a))
2
X2
st+v−j

h2
st+v

(
φ
) }

≤ 4 ‖1v‖
2 {I(3) + I(4)} ,

where the finiteness of the following expressions is obviously satisfied

I(1)

= 2Eθ0

sup
θ∈Θ

 (a1(v)− a0
1(v))2

h2
st+v

(
φ
) +

1

h2
st+v

(
φ
)
 p∑
j=2

(
aj(v)− a0

j (v)
)
Xst+v−j

2

 ,

I(2)

= Eθ0

{
sup
θ∈Θ

hst+v
(
φ0
)

h2
st+v

(
φ
) } ,

I(3)

= 2Eθ0

sup
θ∈Θ

 (a1(v)− a0
1(v))2X2

st+v−j

h2
st+v

(
φ
) +

X2
st+v−j

h2
st+v

(
φ
)
 p∑
j=2

(
aj(v)− a0

j (v)
)
Xst+v−j

2

 ,

I(4)

= Eθ0

{
sup
θ∈Θ

hst+v
(
φ0
)
X2
st+v−j

h2
st+v

(
φ
) }

.

Using the same technique as in Ling et al. [27], we can show the uniform integrability of
all partial derivatives. The assertion 3, follows essentially from standard arguments, it
suffices to replace the stationarity and the ergodicity arguments by periodic stationarity
and periodic ergodicity ones and the assertion 4 follows essentially the same arguments
as in Francq and Zakôıan [20]. �

It is worth noting that in spite E

{
∂lt
∂θ

(
θ0
)
|=t−2

}
= O, the process

(
∂lt
∂θ

(
θ0
)
,=t
)
t≥1

is not a martingale difference sequence, so the asymptotic distribution of n−1/2

n∑
t=1

∂lt
∂θ

(
θ0
)

for the martingale difference sequence is not applicable here. To remedy this difficulty,
use the representation (3.2) to define, for any m ≥ 1,

U t(m) =

m∑
k=0

{
k−1∏
i=0

(A0(t− i) + et−i−1A1(t− i))

}
H (et−k + a1(t− k)) ,

V t(m) =

{
m∏
i=0

(A0(t− i) + et−i−1A1(t− i))

}
Xt−m−1,
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and consider the decompositions Xt(m) = U t(m) + V t(m) and Xt(m) = H ′Xt(m).
Then, it is clear that (U t(m))t≥0 is an (m+ 1)−dependent process and under the as-
sumption A.2, V t(m) (resp. U t(m)) converges in probability to O (resp. to Xt) as

m→ +∞. Let λ :=
(
λ′1, λ

′
2, . . . , λ

′
p, µ1, µ

′
2
. . . , µ′

p

)′
be a constant vector in Rd such that

λ′λ 6= 0 and let

Sn = n−1/2λ′
n∑
t=1

∂lt
∂θ

(
θ0
)

= n−1/2
n∑
t=1

{λ′1
∂lt
∂a1

(
θ0
)

+ λ′2
∂lt
∂a2

(
θ0
)

+ . . .+ λ′p
∂lt
∂ap

(
θ0
)

+ µ1
∂lt
∂σ2

(
θ0
)

+ µ′
2

∂lt
∂φ

2

(
θ0
)

+ . . .+ µ′
p

∂lt
∂φ

p

(
θ0
)
}

= n−1/2
n∑
t=1

st,

where

st =

(
λ′1
∂µt

(
a0
)

∂a1

+ . . .+ λ′p
∂µt

(
a0
)

∂ap

)
ξt (1)√
ht
(
φ0
) (3.6)

+

(
µ1

ht
(
φ0
)

σ2
+ µ′

2

∂ht
(
φ0
)

∂φ
2

+ . . .+ µ′
p

∂ht
(
φ0
)

∂φ
p

)
ξt (2)

ht
(
φ0
) ,

with

ξt (1) =
−2√
ht
(
φ0
)
et + et−1

p∑
j=2

φ0
j (t)Xt−j

 ,

ξt (2) = 1− 1

ht
(
φ0
)
et + et−1

p∑
j=2

φ0
j (t)Xt−j

2

.

Clearly, (sn, n ≥ 1) is a centred, 2−dependent, SPS process with E {snsn+k} = 0 for
any |k| > 2, so we have almost surely as n→∞,

V ar

{
1√
n

n∑
t=1

st

}
→

s−1∑
v=0

E
{
s2
st+v + 2sst+vsst+v−1

}
= λ′Ωλ > 0.

Now, let us combine the arguments used to prove the central limit theorem for stationary
m−dependent sequence with those used to prove the central limit theorem for sequence
of independent but not identically distributed random variables. For this purpose we
show the following lemma
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Lemma 3.6. Under the conditions A.2 –A.4, the sequence (sn)n≥1 defined by (3.6) is

Lr near-epoch dependent (NED) process in the sense that E

{∣∣∣sn − E {sn|=(m)
n

}∣∣∣2} =

O (m−r), for any r > 2 and m enough large where =(m)
n = σ {Xn−j , 0 ≤ j ≤ m}.

P r o o f . The proof follows essentially the same arguments as in Ling et al. [27]. �

P r o o f of Theorem 3. First, all the hypotheses of Theorem 21.1 of Billingsley [12]

are verified. Consequently, we have 1√
n

n∑
t=1

∂lt
∂θ

(
θ0
)
 N

(
O,Ω

(
θ0
))

. Second, the con-

vergence p lim
n→∞

1
n

n∑
t=1

∂2lt

∂θ∂θ′
(θ∗) = J follows upon the observation that for all i, j ∈

{1, . . . , d}, almost surely

1

n

n∑
t=1

∂2lt
∂θi∂θj

(θ∗) =
1

n

n∑
t=1

∂2lt
∂θi∂θj

(
θ0
)

+
1

n

n∑
t=1

∂

∂θ′

{
∂2lt
∂θi∂θj

(
θ̃
)}(

θ∗ − θ0
)
, (3.7)

for some random vector θ̃ such that almost surely
∥∥∥θ0 − θ̃

∥∥∥ ≤ ∥∥θ0 − θ∗
∥∥ ≤ ∥∥∥θ0 − θ̂n

∥∥∥.

From the strong consistency of θ̂n, the periodic ergodicity and assertion 4 of Lemma 3.5
imply that

lim sup
n→∞

∥∥∥∥∥ 1

n

n∑
t=1

∂

∂θ′

{
∂2lt
∂θi∂θj

(
θ̃
)}∥∥∥∥∥ ≤ lim sup

n→∞

1

n

n∑
t=1

sup
θ∈V(θ0)

∥∥∥∥ ∂

∂θ′

{
∂2lt
∂θi∂θj

(θ)

}∥∥∥∥
= Eθ0

{
sup

θ∈V(θ0)

∥∥∥∥ ∂

∂θ′

{
∂2lt
∂θi∂θj

(θ)

}∥∥∥∥
}
< +∞.

Therefor, since
∥∥∥θ0 − θ̂n

∥∥∥→ 0, a.s. as n→ +∞, the second term in the right-hand side

of (3.7) converges a.s. to 0, the first one converges to J and hence by Slutsky’s theorem,
the results of theorem follow. �

4. ASYMPTOTIC PROPERTIES OF QMLE FOR PARMAS MODELS WITH
PBLS INNOVATIONS

As already stated in introduction, the PBLs is a general class of non linear models.
Among others, one of interesting model which is nested in PBLs is defined by

et =

r∑
i=2

φi (t) et−iηt−1 + ηt (4.1)

where (ηt)t∈Z is an i.i.d. sequence with zero mean and variance σ2 > 0, and φi (t) are
periodic in t with period s. Hence, if (et)t∈Z is a PC process, then we have E {et} = 0,
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Cov (et, et−h) = 0 for all h 6= 0 and

E
{
e2
t |=

(e)
t−2

}
= σ2

1 +

(
r∑
i=2

φi (t) et−i

)2


where =(e)
t = σ (et−i, i ≥ 0), and hence the solution process (et)t∈Z of (4.1) is martingale

difference conditionally heteroscedastic and can therefore be used as the innovation of an
PARMAs process (PARMAs − PBLs for short) previously introduced by Francq [19]
(in non periodic context). In this section, we focus on the estimation of the parameters
of PARMAs − PBLs. Besides further tedious but simple technical manipulations, the
extension of ARMA − BL to its periodic counterpart doesn’t entail any substantial
difficulty. As for the PARMAs − PGARCHs case (cf. Aknouche and Bibi [3]), the
consistency of QMLE for PARMAs − PBLs will be proved without any additional
moment restriction but for asymptotic normality, we need a fourth moment condition
on the PBLs component. For this purpose let {X1, X2, . . . , Xn, n = sN} be a realization
of causal time series (Xt)t∈Z generated by a PARMAs(p, q)−PBLs(0, 0, r, 1) stochastic
difference equation, i. e.,

∀t ∈ Z : Xt − µ (t) =

p∑
i=1

ϕi (t) (Xt−i − µ (t− i)) + et +

q∑
j=1

ψj (t) et−j (4.2)

where (et)t∈Z is defined by (4.1) and where µ (t), ϕi (t), ψj (t) and φi (t) are periodic in

t with period s. For ϕ = (ϕ′ (1) , ϕ′ (2) , . . . , ϕ′ (s))′ and φ =
(
φ′(1), . . . , φ′ (s) , σ2

)′
with

ϕ(v) = (µ (v) , ϕ1(v), . . . , ϕp (v) , ψ1 (v) , . . . , ψq(v))′ and φ (v) = (φ2(v), . . . , φr(v))
′
, 1 ≤

v ≤ s, denote by π = (ϕ′, φ′)′ the model parameter and π0 = (ϕ0′, φ0′)′ its true value

which is supposed to belong to a same compact parameter space Π ⊂ Rs(p+q+r)+1.
Conditionally on the given initial values

X0 = . . . = X1−p = e0 = . . . = e1−q−r = η0 = η−1 = 0, (4.3)

the QMLE of π0 denoted by π̂n is defined as any measurable solution of π̂n of

π̂n = Argmax
π∈Π

L̃n (π) = Argmin
π∈Π

(−L̃n (π)),

where L̃n (π) (ignoring the constants) is L̃sN (π) = − 1
sN

N∑
t=1

s−1∑
v=0

l̃st+v (π) with l̃t (π) =(
Xt − µ̃t

(
ϕ
))2

h̃t
(
φ
) + log h̃t

(
φ
)

in which µ̃t
(
ϕ
)

and h̃t
(
φ
)

are constructed under the initial

values (4.3) with

µ̃t
(
ϕ
)

= E
{

(Xt − µ (t)) |=(e)
t−1

}
=

p∑
i=1

ϕi (t) (Xt−i − µ (t− i)) +

q∑
j=1

ψj (t) et−j ,

h̃t
(
φ
)

= V ar
{

(Xt − µ (t)) |=(e)
t−1

}
= σ2

(
1 + β2

t

(
φ
))

with βt
(
φ
)

=

r∑
i=2

φi (t) et−i,
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and hence, the model (4.2) maybe rewritten as Xt − µ (t) = µ̃t
(
ϕ
)

+ et.

4.1. Strong consistency

For the strong consistency of π̂sN , we make the following additional assumptions.

A.5 For all π ∈ Π, ρ

(
s−1∏
v=0

Φs−v

)
< 1 where Φv are the companion matrices associated

with the AR (p) part.

A.6 The polynomials ϕ0
v (z) = 1 −

p∑
i=1

ϕ0
i (v) zi and ψ0

v (z) = 1 −
q∑
j=1

ψ0
j (v) zj have no

common roots and ϕp (v)ψq (v) 6= 0 for all 1 ≤ v ≤ s.

Assumption A.5, is made in order to ensure the causality of the PARMAs component
given by (4.2). This condition is also equivalent to the associated top-Lyapunov exponent
is strictly negative and hence the existence of finite moment of some order. Moreover,

under this assumption we have Xst+v = µ (v)+
∞∑
j=0

δj (v) est+v−j where (δj (v))j≥0 satisfy

sup
0≤v≤s−1

|δj (v)| = O(ρj) for some 0 < ρ < 1. A.6, is an identifiability assumption.

As in the PBLs case, we approximate
(
l̃t (π)

)
t≥1

by its SPS version (lt (π))t∈Z where

lt (π) =

(
Xt − µt

(
ϕ
))2

ht
(
φ
) + log ht

(
φ
)

. (4.4)

The following theorem establishes the strong consistency of π̂n

Theorem 4.1. Under A.1, A.2, A.5 and A.6, we have π̂n → π0 a.s. as n→∞.

Up till now, the process (et)t∈Z and hence (Xt)t∈Z need not have a finite second
order moment. For the case of PARMAs models with i.i.d. innovations our result is
a complement to the asymptotic inference for PARMAs models given by Basawa and
Lund [4] which have not established the strong consistency of the Gaussian MLE. Along
the lines of proof of Theorem 3.1, Theorem 4.1 will be proved whenever establishing the
following lemmas.

Lemma 4.1. Under A.2 and A.5, we have almost surely

sup
π∈Π

∣∣∣LsN (π)− L̃sN (π)
∣∣∣→ 0, as N →∞.

P r o o f . The proof is similar to that of lemma 3.1 (see also Aknouche and Bibi [3]). �

Lemma 4.2. Under A.1, A.2, A.5 and A.6, the model (4.2) is identifiable in the
sense that, distinct values of π should correspond almost surely to distinct values of
their associated log quasi-likelihood function lt (π) in (4.4) for some t ≥ 0.
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P r o o f . The proof follows essentially the same arguments used in proving Lemma 3.2.
�

Lemma 4.3. If π 6= π0 then
S∑
v=1

Eπ0 {lv (π)} >
S∑
v=1

Eπ0

{
lv
(
π0
)}

.

P r o o f . We have

s∑
v=1

Eπ0 {lv (π)} − Eπ0

{
lv
(
π0
)}

=

s∑
v=1

(
Eπ0

{
log

hv
(
φ
)

hv
(
φ0
) +

hv
(
φ0
)

hv
(
φ
) − 1

}
+ Eπ0

{(
Xv − µv

(
ϕ
))2

hv
(
φ
) −

(
Xv − µv

(
ϕ0
))2

hv
(
φ0
) })

.

Using the inequality x − 1 ≥ log x with equality if and only if x = 1, we obtain,
S∑
v=1

Eπ0 {lv (π)} ≥
S∑
v=1

Eπ0

{
lv
(
π0
)}

with equality if and only if µv
(
ϕ
)

= µv
(
ϕ0
)

and

hv
(
φ
)

= hv
(
φ0
)

and hence π = π0. �

Lemma 4.4. For all π 6= π0 there is a neighborhood V (π) such that

lim
N→∞

inf inf
π̃∈V(π)

(
−L̃sN (π̃)

)
>

s∑
v=1

Eπ0

{
lv
(
π0
)}
.

P r o o f . The proof is similar to that of Lemma 3.4 and hence it will be omitted. �

4.2. Asymptotic normality

While strong consistency of π̂sN follows irrespective of any moment requirements, this
isn’t the case for the asymptotic normality. Indeed, as in PARMAs − PGARCHs case
(cf. Aknouche and Bibi [3]), we will prove asymptotic normality of π̂sN under the fourth
moment condition on the (et)t∈Z. It can be shown that such an assumption is expressed

by ρ

(
s−1∏
v=0

E
(
Φ⊗4
s−v
))

< 1 where Φv are the companion random matrices associated with

the state-space representation of BLs (0, 0, r, 1) model. Thus, we make the following
assumptions.

A.7 ρ

(
s−1∏
v=0

E
(
Ψ⊗4
s−v
))

< 1 for all π ∈ Π.

A.8 π0 is in the interior of Π.

Assumption A.7, clearly implies that E
(
e4
t

)
<∞ and A.8, is an adaptation of A.3 to

the PARMAs − PBLs. The following theorem establishes
√
n−consistency of π̂n.
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Theorem 4.2. Under A.2 –A.8, we have
√
N
(
π̂sN − π0

)
 N

(
0,Σ

(
π0
))

, as N →∞,

where Σ
(
π0
)

:= J−1
(
π0
)
I
(
π0
)
J−1

(
π0
)
, the matrices I

(
π0
)

and J
(
π0
)

are given by

I
(
π0
)

=

s∑
v=1

Eπ0

{
∂lv
(
π0
)

∂π

∂lv
(
π0
)

∂π′

}
, J

(
π0
)

=

s∑
v=1

Eπ0

{
∂2lv

(
π0
)

∂π∂π′

}
,

which may be partitioned as

I
(
π0
)

=

(
Iϕϕ Iϕφ
Iφϕ Iφφ

)
, J

(
π0
)

=

(
Jϕϕ Jϕφ
Jφϕ Jφφ

)
,

such that the sub-matrices Iϕϕ, Iϕφ, Iφφ, Jϕϕ, Jϕφ and Jφφ are s−block diagonal.

P r o o f . The proof follows essentially the same arguments as in Aknouche and Bibi [3].
�

Remark 4.1. The fact that the submatrices Iϕϕ, Iϕφ, Iφφ, Jϕϕ, Jϕφ and Jφφ are s-
block diagonal implies the asymptotic independence of the estimates for each season
1 ≤ v ≤ s which isn’t a surprising result in periodic time-varying models. Moreover, the
asymptotic independence also appears for the estimates of the PARMAs component
with symmetric distribution innovations.

Remark 4.2. It is clear from Theorem 4.2 that when et = ηt for all t, our asymptotic
results coincide with those for the pure PARMAs model with i.i.d. innovations (cf.
Basawa and Lund [4] ).

5. CONCLUDING REMARKS

This paper extends the superdiagonal standard bilinear (SBL) models to periodic one
(PSBLs) which allows the coefficients to vary periodically over the time. Hence, neces-
sary and sufficient conditions ensuring the existence of such process are given. Our aim
is the estimation of PSBLs models, this problem has been previously resolved in the
statistical literature for the usual causal and invertible standard case using a distribution-
free approach based on QMLE which is also applied in some special PSBLs models.
Hence, we have established under mild assumptions, the strong consistency and asymp-
totic normality of the QMLE for causal and not necessarily invertible a PSBLs model.
Moreover, it is observed that special case of PSBLs have some interesting properties
that makes it able to use as a weak white noise. This finding leads us to consider the
asymptotic properties of QMLE of PARMAs models with PSBLs as innovation.
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