Kybernetika 54 no. 2, 304-320, 2018

Consensus seeking of delayed high-order multi-agent systems with predictor-based algorithm

Cheng-Lin Liu and Fei LiuDOI: 10.14736/kyb-2018-2-0304


This paper investigates the high-order consensus problem for the multi-agent systems with agent's dynamics described by high-order integrator, and adopts a general consensus algorithm composed of the states' coordination control. Under communication delay, consensus algorithm in usual asynchronously-coupled form just can make the agents achieve a stationary consensus, and sufficient consensus condition is obtained based on frequency-domain analysis. Besides, a predictor-based consensus algorithm is constructed via multiplying the delayed neighboring agents' states by a delay-related compensation part. In our proposed algorithm, a compensating delay is introduced to match the communication delay. Specially, the original high-order consensus is regained when the compensating delay equals to the communication delay, but cannot be achieved if the compensating delay is not equivalent to the communication delay. Moreover, sufficient consensus convergence conditions are also obtained for the agents under our predictor-based algorithm with different compensating delay. Numerical studies for multiple quadrotors illustrate the correctness of our results.


consensus, high-order multi-agent system, communication delay, predictor-based consensus algorithm, multiple quadrotors


93A14, 93C85


  1. D. Bresch-Pietri and M. Krstic: Delay-adaptive predictor feedback for systems with unknown long actuator delay. IEEE Trans. Autom. Control 55 (2010), 2106-2112.   DOI:10.1109/tac.2010.2050352
  2. R. Cepeda-Gomez and N. Olgac: A consensus protocol under directed communications with two time delays and delay scheduling. Int. J. Control 87 (2014), 291-300.   DOI:10.1080/00207179.2013.829605
  3. A. Chamseddine, Y. Zhang and C. A. Rabbath: Trajectory planning and re-planning for fault tolerant formation flight control of quadrotor unmanned aerial vehicles    CrossRef
  4. Y. Cui and Y. Jia: Robust $L_2-L_{\infty}$ consensus control for uncertain highorder multi-agent systems with time-delay. Int. J. Syst. Sci. 45 (2014), 427-438.   DOI:10.1080/00207721.2012.724096
  5. W. He and J. Cao: Consensus control for high-order multi-agent systems. IET Control Theory Appl. 5 (2011), 231-238.   DOI:10.1049/iet-cta.2009.0191
  6. J. Hu and Y. Hong: Leader-following coordination of multi-agent systems with coupling time delays. Physica A 374 (2007), 853-863.   DOI:10.1016/j.physa.2006.08.015
  7. N. Huang, Z. Duan and G. Chen: Some necessary and sufficient conditions for consensus of second-order multi-agent systems with sampled position data. Automatica 63, 148-155.   DOI:10.1016/j.automatica.2015.10.020
  8. Z. Lin, B. Francis and M. Maggiore: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Autom. Control 50 (2005), 121-127.   DOI:10.1109/tac.2004.841121
  9. S. Li, H. Du and X. Lin: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47 (2011), 1706-1712.   DOI:10.1016/j.automatica.2011.02.045
  10. P. Lin and Y. Jia: Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica 45 (2009), 2154-2158.   DOI:10.1016/j.automatica.2009.05.002
  11. P. Lin, Z. Li, Y. Jia and M. Sun: High-order multi-agent consensus with dynamically changing topologies and time-delays. IET Control Theory Appl. 5 (2011), 976-981.   DOI:10.1049/iet-cta.2009.0649
  12. C.-L. Liu and F. Liu: Stationary consensus of heterogeneous multi-agent systems with bounded communication delays. Automatica 47 (2011), 2130-2133.   DOI:10.1016/j.automatica.2011.06.005
  13. C.-L. Liu and F. Liu: Dynamical consensus seeking of second-order multi-agent systems based on delayed state compensation. Syst. Control Lett. 61 (2012), 1235-1241.   DOI:10.1016/j.sysconle.2012.09.006
  14. C.-L. Liu and F. Liu: Consensus analysis for multiple autonomous agents with input delay and communication delay. Int. J. Control Automat. Syst. 10 (2012), 1005-1012.   DOI:10.1007/s12555-012-0518-y
  15. Y. Liu and Y. Jia: Consensus problem of high-order multi-agent systems with external disturbances: an $H_{\infty}$ analysis approach. Int. J. Robust Nonlin. Control 20 (2010), 1579-1593.   DOI:10.1002/rnc.1531
  16. C.-L. Liu and Y.-P. Tian: Formation control of multi-agent systems with heterogeneous communication delays. Int. J. Syst. Sci. 40 (2009), 627-636.   DOI:10.1080/00207720902755762
  17. G. Miao, S. Xun and Y. Zou: Consentability for high-order multi-agent systems under noise environment and time delays. J. Franklin Inst. 350 (2013), 244-257.   DOI:10.1016/j.jfranklin.2012.10.015
  18. U. Munz, A. Papachristodoulou and F. Allgower: Delay robustness in consensus problems. Automatica 46 (2010), 1252-1265.   DOI:10.1016/j.automatica.2010.04.008
  19. R. Olfati-Saber and R. Murray: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49 (2004), 1520-1533.   DOI:10.1109/tac.2004.834113
  20. J. M. Peng, , J. N. Wang and J. Y. Shan: Robust cooperative output tracking of networked high-order power integrators systems. Int. J. Control, published online.   CrossRef
  21. J. Qin, C. Yu and S. Hirche: Stationary consensus of asynchronous discrete-Time second-order multi-agent systems under switching topology. IEEE Trans. Ind. Inf. 8(2012), 986-994.   DOI:10.1109/tii.2012.2210430
  22. W. Ren, K. Moore and Y. Chen: High-order consensus algorithms in cooperative vehicle systems. In: Proc. IEEE International Conference on Networking Sensing and Control, Ft Lauderdale 2006, pp. 457-462.   DOI:10.1109/icnsc.2006.1673189
  23. H. Su, M. Z. Q. Chen, X. Wang and J. Lam: Semiglobal observer-based leader-following consensus with input saturation. IEEE Trans. Ind. Electron. 61 (2014), 2842-2850.   DOI:10.1109/tie.2013.2275976
  24. Y. Sun, L. Wang and G. Xie G: Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays. Syst. Control Lett. 57 (2008), 175-183.   DOI:10.1016/j.sysconle.2007.08.009
  25. Y. P. Tian and Y. Zhang: High-order consensus of heterogeneous multi-agent systems with unknown communication delays. Automatica 48 (2012), 1205-1212.   DOI:10.1016/j.automatica.2012.03.017
  26. T. Vicsek and A. Zafeiris: Collective motion. Physics Rep. 517 (2012), 71-140.   DOI:10.1016/j.physrep.2012.03.004
  27. W. Wang and J. J. E. Slotine: Contraction analysis of time-delayed communication delays. IEEE Trans. Autom. Control 51 (2006), 712-717.   DOI:10.1109/tac.2006.872761
  28. Y. Wang, Q. Wu and Y. Wang: Distributed consensus protocols for coordinated control of multiple quadrotors under a directed topology. IET Control Theory Appl. 7 (2013), 1780-1792.   DOI:10.1049/iet-cta.2013.0027
  29. J. Xi, Z. Xu, G. Liu and Y. Zhong: Stable-protocol output consensus for high-order linear swarm systems with time-varying delays. IET Control Theory Appl. 7 (2013), 975-984.   DOI:10.1049/iet-cta.2012.0824
  30. B. Yang: Stability switches of arbitrary high-order consensus in multiagent networks with time delays. Sci. World J. (2013), 514823.   DOI:10.1155/2013/514823
  31. W. Yang, A. L. Bertozzi and X. F. Wang: Stability of a second order consensus algorithm with time delay. In: Proc. 47th IEEE Conference on Decision and Control, Cancun 2008, pp. 2926-2931.   DOI:10.1109/cdc.2008.4738951
  32. T. Yang, Y. H. Jin, W. Wang and Y. J. Shi: Consensus of high-order continuous-time multi-agent systems with time-delays and switching topologies. Chin. Phys. B {\mi 20} (2011), 020511.   DOI:10.1088/1674-1056/20/2/020511
  33. W. Yu, G. Chen and M. Cao: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica 46 (2010), 1089-1095.   DOI:10.1016/j.automatica.2010.03.006
  34. W. Yu, G. Chen, W. Ren, J. Kurths and W. Zheng: Distributed higher order consensus protocols in multiagent dynamical systems. IEEE Trans. Circuits Syst. I Regul. Pap. 58 (2011), 1924-1932.   DOI:10.1109/tcsi.2011.2106032
  35. Z. Yu, H. Jiang, C. Hu and J. Yu: Leader-following consensus of fractional-order multi-agent systems via adaptive pinning control. Int. J. Control 88 (2015), 1746-1756.   DOI:10.1080/00207179.2015.1015807
  36. W. Yu, W. X. Zheng, G. Chen, W. Ren and J. Cao: Second-order consensus in multi-agent dynamical systems with sampled position data. Automatica 47 (2011), 1496-1503.   DOI:10.1016/j.automatica.2011.02.027
  37. W. Yu, L. Zhou, X. Yu, J. Lv and R. Lu: Consensus in multi-agent systems with second-order dynamics and sampled data. IEEE Trans. Ind. Inf. 9 (2013), 2137-2146.   DOI:10.1109/tii.2012.2235074
  38. Q. Zhang, Y. Niu, L. Wang, L. Shen and H. Zhu: Average consensus seeking of high-order continuous-time multi-agent systems with multiple time-varying communication delays. Int. J. Control Autom. Syst. 9 (2011), 1209-1218.   DOI:10.1007/s12555-011-0623-3
  39. W. Zhu and D. Cheng: Leader-following consensus of second-order agents with multiple time-varying delays. Automatica 46 (2010), 1994-1999.   DOI:10.1016/j.automatica.2010.08.003
  40. J. Zhu and L. Yuan: Consensus of high-order multi-agent systems with switching topologies. Linear Algebra Appl. 443 (2014), 105-119.   DOI:10.1016/j.laa.2013.11.017