Kybernetika 54 no. 2, 268-278, 2018

On $\star$-associated comonotone functions

Ondrej Hutník and Jozef PócsDOI: 10.14736/kyb-2018-2-0268

Abstract:

We give a positive answer to two open problems stated by Boczek and Kaluszka in their paper \cite{BK}. The first one deals with an algebraic characterization of comonotonicity. We show that the class of binary operations solving this problem contains any strictly monotone right-continuous operation. More precisely, the comonotonicity of functions is equivalent not only to $+$-associatedness of functions (as proved by Boczek and Kaluszka), but also to their $\star$-associatedness with $\star$ being an arbitrary strictly monotone and right-continuous binary operation. The second open problem deals with an existence of a pair of binary operations for which the generalized upper and lower Sugeno integrals coincide. Using a fairly elementary observation we show that there are many such operations, for instance binary operations generated by infima and suprema preserving functions.

Keywords:

binary operation, Sugeno integral, comonotone functions, $\star $-associatedness

Classification:

26A48, 28E10

References:

  1. M. Boczek and M. Kaluszka: On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application. Kybernetika 52 (2016), 3, 329-347.   DOI:10.14736/kyb-2016-3-0329
  2. M. Boczek and M. Kaluszka:  Fuzzy Sets and Systems 326 (2017), 81-88.   DOI:10.1016/j.fss.2017.06.004
  3. D. Denneberg: Non-Additive Measure and Integral. Kluwer Academic Publishers, Dordrecht/Boston/London, 1994.   DOI:10.1007/978-94-017-2434-0
  4. M. Grabisch: Set Functions, Games and Capacities in Decision Making. Theory and Decision Library C 46, Springer International Publishing 2016.   CrossRef
  5. R. Halaš, R. Mesiar and J. Pócs: Congruences and the discrete Sugeno integrals on bounded distributive lattices. Inform. Sci. 367-368 (2016), 443-448.   DOI:10.1016/j.ins.2016.06.017
  6. R. Halaš, R. Mesiar and J. Pócs: Generalized comonotonicity and new axiomatizations of Sugeno integrals on bounded distributive lattices. Int. J. Approx. Reason. 81 (2017), 183-192.   DOI:10.1016/j.ijar.2016.11.012
  7. A. Kandel and W. J. Byatt: Fuzzy sets, fuzzy algebra and fuzzy statistics. Proc. IEEE 66 (1978), 1619-1639.   DOI:10.1109/proc.1978.11171
  8. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Trends in Logic. Studia Logica Library 8, Kluwer Academic Publishers, 2000.   DOI:10.1007/978-94-015-9540-7
  9. D. S. Mitrinović, J. E. Pečarić and A. M. Fink: Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dordrecht/Boston/London, 1993.   DOI:10.1007/978-94-017-1043-5
  10. G. Puccetti and M. Scarsini: Multivariate comonotonicity. J. Multivariate Anal. 101 (2010), 1, 291-304.   DOI:10.1016/j.jmva.2009.08.003
  11. F. Suárez-García and P. Álvarez-Gil: Two families of fuzzy integrals.    DOI:10.1016/0165-0114(86)90028-x
  12. M. Sugeno and T. Murofushi: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122 (1987), 197-222.   DOI:10.1016/0022-247x(87)90354-4
  13. Z. Wang and G. Klir: Generalized Measure Theory. IFSR International Series on Systems Science and Engineering, Vol. 25, Springer, 2009.   DOI:10.1007/978-0-387-76852-6