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GENERALIZED PUBLIC TRANSPORTATION SCHEDULING
USING MAX-PLUS ALGEBRA

Subiono, Kistosil Fahim and Dieky Adzkiya

In this paper, we discuss the scheduling of a wide class of transportation systems. In partic-
ular, we derive an algorithm to generate a regular schedule by using max-plus algebra. Inputs
of this algorithm are a graph representing the road network of public transportation systems
and the number of public vehicles in each route. The graph has to be strongly connected, which
means there is a path from any vertex to every vertex. Let us remark that the algorithm is
general in the sense that we can allocate any number of vehicles in each route. The algorithm
itself consists of two main steps. In the first step, we use a novel procedure to construct the
model. Then in the second step, we compute a regular schedule by using the power algorithm.
We describe our proposed framework for an example.
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1. INTRODUCTION

The increase of population in a large city needs good and reliable transportation sys-
tems. Such transportation systems are characterized by the existence of an assurance
to the passengers in the form of a regular schedule. The construction of a schedule for
transportation systems has been discussed in the literature, for example in [4, 10, 18, 20].
There are many techniques to generate a schedule. One of them is using mathe-
matical models. In the literature, there are many models of transportation systems
[1, 5, 7, 8, 9, 16, 17, 18]. Max-plus algebra [2, 15] is a modeling framework that can
be used to design a schedule for a transportation system. In this work, we construct
a regular schedule for a wide class of transportation systems by using max-plus alge-
bra. The regular schedule is constructed by using the spectral properties over max-plus
algebra. Let us remark that although max-times algebra and max-plus algebra are iso-
morphic, it is not straightforward to leverage the spectral properties over max-times
algebra discussed in [14] to spectral properties over max-plus algebra.

Some works on the scheduling of some systems using max-plus algebra have been
discussed in the literature. In particular, the design of timetable of the train system in
the Netherlands has been studied in [3]. The model only considers the case of intercity
trains. Thus the corresponding model has a dimension of moderate size. As a follow-up,
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the whole Dutch railway system with all train types has been investigated in [22]. The
thesis [13] discussed the analysis of railway timetables. Besides that, [11] has addressed
scheduling problem of monorail and tram in Surabaya city of East Java province. Finally,
the scheduling of supply chain systems has been discussed in [23].

The procedure to construct a regular schedule using max-plus algebra requires a
model in the form of Max-Plus-Linear (MPL) systems. In general, constructing such
model is complicated and time-consuming. The complexity increases when the initial
number of vehicles in each route is different. By using techniques in the literature
[2, 15], we can construct the model in two steps: develop a higher-order MPL system
and transform the model into a first-order MPL system. However, when we transform
the higher-order MPL system into a first-order MPL system, we introduce some state
variables when there exists a route containing more than one vehicles. As a consequence,
the schedule generated from such model has more information than we need. Choos-
ing the right information is a difficult task, especially when we work on a large-scale
transportation network. The previous problem motivates us to propose a systematic
framework to construct a regular schedule for any public transportation network by us-
ing max-plus algebra. The framework allows us to synthesize a regular schedule from
a large-scale transportation network because the procedure can be implemented as a
software tool.

Our framework requires that the graph of public transportation networks is strongly
connected. This means we can travel from any place to every destination. Thus this
requirement is not restrictive. Our framework consists of three main steps. In the first
step, we construct an implicit higher-order MPL system from a public transportation
network. Then we show that the obtained model has a unique max-plus eigenvalue.
Then in the second step, we transform the implicit higher-order MPL system into an
explicit first-order MPL system using a novel approach. The new approach allows us
to design a systematic procedure to reduce the obtained model. To the best of our
knowledge, by using the standard approach [2, 15], we cannot design such systematic
procedure. Finally, in the third step, we determine the regular schedule by using the
power algorithm [21]. In each step, we provide detailed explanations in order to convince
the reader that those steps are systematic. As such, we can implement those steps as a
computer program.

The paper is structured as follows. Section 2 discusses the models and some related
notions. Then Section 3 describes the contributions of this paper. The main contribution
is the procedure to construct a regular schedule in Section 3.3. Each step in the procedure
is based on the discussions in Sections 3.1 and 3.2. In Section 3.1, we construct the model
of public transportation systems and analyze its properties. Then, we reduce the size of
the model in Section 3.2. The procedure is then illustrated on a case study in Section
3.4. Finally, Section 4 concludes the paper.

2. MODELS AND PRELIMINARIES

In this section, we briefly introduce max-plus algebra and some related notions [2, 15].
Furthermore, we also describe synchronization features in public transportation schedul-
ing [11].
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2.1. Max-plus algebra

We define R and N as the set of real numbers and natural numbers {1, 2, . . . }, respec-

tively. The max-plus algebra is defined as Rmax = (Rε,⊕,⊗), where Rε
def
= R ∪ {ε} and

ε
def
= −∞. The binary operators ⊕ and ⊗ are defined as follows:

x⊕ y def
= max{x, y} and x⊗ y def

= x+ y

for every x, y ∈ Rε. Thus in max-plus algebra, the addition and multiplication operations
are replaced by maximization and the usual addition operation. Notice that ε is the

neutral element of ⊕. The neutral element of ⊗ is defined as e
def
= 0. Furthermore, in

the context of max-plus algebra, a⊗b = b×a, where × is the conventional multiplication
operator. In this paper, the conventional multiplication operator × is usually omitted,
whereas the max-plus multiplication operator ⊗ is always written explicitly. Let us
remark that in max-plus algebra, every element x ∈ R has an inverse under the ⊗
operation, denoted by −x.

Next, we introduce matrices over Rmax. The set of matrices of size m × n over the

max-plus algebra is denoted by Rm×n
ε . For n ∈ N, we define n

def
= {1, 2, . . . , n}. An

element in the ith row and jth column of matrix A ∈ Rm×n
ε is denoted by [A]i,j for

i ∈ m and j ∈ n. The max-plus identity matrix of size n× n is denoted by En, i. e. the
elements on the main diagonal of the matrix are equal to e and the other elements are
equal to ε. A max-plus zero matrix of size m × n is denoted by Em,n, i. e. all elements
of the matrix are equal to ε.

Let A,B ∈ Rm×n
ε , the max-plus addition A ⊕ B is defined by [A ⊕ B]i,j

def
= [A]i,j ⊕

[B]i,j = max{[A]i,j , [B]i,j}, for i ∈ n and j ∈ m. For matrix A ∈ Rm×n
ε and scalar

α ∈ Rε, max-plus scalar multiplication α ⊗ A is defined by [α ⊗ A]i,j
def
= α ⊗ [A]i,j , for

i ∈ n and j ∈ m.
For matrices A ∈ Rm×p

ε and B ∈ Rp×n
ε , max-plus multiplication A⊗B is defined by

[A ⊗ B]i,j
def
=
⊕p

k=1[A]i,k ⊗ [B]k,j = maxk∈p{[A]i,k + [B]k,j}, for i ∈ m and j ∈ n. For

matrix A ∈ Rn×n
ε and positive integer k, the kth max-plus power of A is denoted by

A⊗k and defined as A⊗k
def
= A⊗A⊗ · · · ⊗A︸ ︷︷ ︸

k times

. Similar with the conventional algebra, we

have A⊗0
def
= En, for A ∈ Rn×n

ε . For ease of notations, we introduce A+ def
=
⊕∞

k=1A
⊗k

and A∗
def
= En ⊕A+ =

⊕∞
k=0A

⊗k, where A ∈ Rn×n
ε .

2.2. Max-plus-linear systems

An autonomous Max-Plus-Linear (MPL) system that characterizes the dynamics of au-
tonomous timed event graphs is given by [2, Th. 2.58]:

x(k + 1) = A0 ⊗ x(k + 1)⊕A1 ⊗ x(k)⊕ · · · ⊕Al ⊗ x(k + 1− l), (1)

where As ∈ Rn×n
ε , x(k + 1− s) = [x1(k + 1− s) . . . xn(k + 1− s)]T ∈ Rn for k ∈ N

and s ∈ {0, 1, . . . , l}. Vectors are written using the bold typeset, whereas the entries are
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denoted by the normal typeset with the same name and index, e. g. the ith component
of vector x(k) is denoted by xi(k). The independent variable k denotes an increasing
occurrence index, whereas the state variable x(k) defines the (continuous) time of kth
occurrence of all events. In particular, the state component xi(k) denotes the (continu-
ous) time of kth occurrence of ith event. Autonomous MPL systems are characterized
by deterministic dynamics, namely they are unaffected by exogenous inputs in the form
of control signals or of environmental non-determinism.

If A0 6= En,n, the MPL system is called implicit. Otherwise if A0 = En,n, the MPL
system is called explicit. An implicit MPL system (1) can be transformed into an
explicit MPL system (2) under some condition (cf. Proposition 2.1). If the condition in
Proposition 2.1 is satisfied, A∗0 exists and the explicit MPL system is given by

x(k + 1) = A∗0 ⊗A1 ⊗ x(k)⊕ · · · ⊕A∗0 ⊗Al ⊗ x(k + 1− l). (2)

MPL systems of the forms (1) and (2) are called of order l. If l > 1, the MPL
systems are called higher order, whereas if l = 1, the MPL systems are called first order.
An explicit higher-order MPL system (2) can be transformed into the following explicit
first-order autonomous MPL system [2, Rem. 2.75]:

x̃(k + 1) = Ã⊗ x̃(k), (3)

where x̃(k) = [x(k)T . . . x(k + 1− l)T ]T ∈ Rnl and

Ã =


A∗0 ⊗A1 . . . A∗0 ⊗Al−2 A∗0 ⊗Al−1 A∗0 ⊗Al

En . . . En,n En,n En,n
...

. . .
...

...
...

En,n . . . En En,n En,n
En,n . . . En,n En En,n

 ∈ Rnl×nl

for k ∈ N.
Transportation systems usually operate according to a timetable demanding that a

public vehicle is not allowed to depart before its scheduled departure time. A timetable
can be incorporated in the MPL system (3) by adding an inhomogeneous term:

x̃(k + 1) = Ã⊗ x̃(k)⊕ d̃(k + 1),

where d̃(k + 1) = [d(k + 1)T . . . d(k + 2− l)T ]T ∈ Rnl is a vector containing the
scheduled (k + 1)th, kth, . . . , (k + 2− l)th departure times. The dynamics of d(k) are
assumed to be periodic (or regular), i. e. there exists a positive number T ∈ R such that
d(k) = T⊗k ⊗ d(0). Let us restate the objective of this paper by using the previous
notions. Our objective is determining period T and time of initial departure d(0) for
any strongly connected public transportation network.

2.3. Graph representation of max-plus matrices

In this subsection, we briefly introduce graph representation of a max-plus matrix and
some related notions [15].
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A directed graph G is a pair (V,D), where V is the set of vertices (or nodes) and
D ⊆ V × V is the set of edges. Notation (j, i) ∈ D denotes an edge from node j to node
i. Node j is called the origin of edge (j, i), whereas node i is called the destination of
edge (j, i). Given a matrix A ∈ Rn×n

ε , a directed graph G(A) is defined as a graph where

the set of vertices V def
= {1, 2, . . . , n} and the set of edges D def

= {(j, i) : [A]i,j 6= ε}. The
entry [A]i,j represents the weight of edge (j, i) ∈ D, for i, j ∈ n. In the literature, this
graph is called precedence or communication graph.

A path p from node i to node j in a graph is a sequence of nodes p = (i1, i2, . . . , is+1)
with i1 = i and is+1 = j such that (ik, ik+1) ∈ D, for each k ∈ s. This path has length
s, which is denoted by ||p||l = s. The set of paths from i to j of length k is denoted by
P (i, j, k). A vertex j is said to be reachable from a vertex i, denoted by iRj, if there
exists a path from i to j. A strongly connected graph is a graph such that every vertex
is reachable from any vertex. A matrix A ∈ Rn×n

ε is irreducible if G(A) is strongly
connected.

A circuit of length s is a closed path, namely a path p = (i1, i2, . . . , is+1) such that
i1 = is+1. A loop is a circuit consisting of one edge. An elementary circuit is a circuit in
which i1, i2, . . . , is are distinct. The following proposition describes the relation between
the power of a square matrix A and the existence of circuits in G(A).

Proposition 2.1. (Heidergott et al. [15]) Given A ∈ Rn×n
ε , the graph G(A) does not

have any circuit if and only if A⊗k = En,n for all k ≥ n.

2.4. Spectral and generalized eigenvalue problems

In this subsection, we introduce spectral problems, cycle-time vectors, periodic regimes
and generalized eigenvalue problems over the max-plus algebra. The max-plus spectral
problem is a problem of determining the max-plus eigenvalue and corresponding max-
plus eigenvectors of a given square matrix A ∈ Rn×n

ε [2, 15]. This problem is related
to the explicit first-order autonomous MPL systems (3) and can be solved by using the
power algorithm [21].

Definition 2.2. (Eigenvalue and eigenvectors Baccelli et al. [2], Heidergott et al. [15])
Let A ∈ Rn×n

ε be a max-plus matrix. Scalar λ ∈ Rε and vector v ∈ Rn
ε that contains

at least one finite element are a max-plus eigenvalue and a corresponding max-plus
eigenvector of A if A⊗ v = λ⊗ v holds.

The power algorithm developed in [21] can be used to determine the max-plus eigen-
value and a corresponding max-plus eigenvector of matrix A ∈ Rn×n

ε . The algorithm
leverages recurrence relation x(k + 1) = A ⊗ x(k) and uses finite initial condition
x(0) ∈ Rn. Given matrix A ∈ Rn×n

ε , the following algorithm computes the max-plus
eigenvalue λ and a corresponding max-plus eigenvector v:

1. Choose an arbitrary initial vector x(0) ∈ Rn;

2. Iterate x(k + 1) = A⊗ x(k) until there are integers p > q ≥ 0 and a real number
c such that a periodic behavior occurs, i. e. x(p) = c⊗ x(q);

3. Compute the eigenvalue λ =
c

p− q
;
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4. Compute one of the corresponding eigenvectors

v =

p−q⊕
i=1

(
λ⊗(p−q−i) ⊗ x(q + i− 1)

)
.

Let us determine the computational complexity of the power algorithm. We count the
number of usual addition, usual multiplication, maximization and comparison operations
in steps 2–4.

Step 2 This step consists of usual addition, maximization and comparison operations.
In max-plus multiplication A ⊗ x, where A ∈ Rn×n

ε and x ∈ Rn
ε , the number of

usual addition and maximization operations is n2 and (n−1)n, respectively. Since
we compute x(1) until x(p), the total number of usual addition and maximization
operations in this step is n2p and (n−1)np, respectively. The comparison operation
is used to find the value of q. When we compare two vectors of size n, there are
n comparison operations. In the algorithm: x(1) is compared with x(0), x(2) is
compared with x(1) and x(0), . . . , x(p) is compared with x(0) until x(p−1). Thus
the number of comparison operations associated with x(1), x(2), . . . , x(p) is n,
2n, . . . , pn, respectively. The total number of comparison operations in this step
is p(p+ 1)n/2.

Step 3 In this step, there are one usual addition and one usual multiplication opera-
tions.

Step 4 This step consists of usual addition, usual multiplication and maximization
operations. For a particular value of i, there are n+ 4 usual addition operations:
2 operations in p − q − i, 2 operations in q + i − 1, n operations in max-plus
multiplication of a scalar and an n-dimensional vector. Thus for each i, the number
of usual addition operations is n + 4. It follows that the total number of usual
addition operations in this step is (n + 4)(p − q). The usual multiplication is
used to compute the max-plus power of λ, which is done once at each value of i.
Thus the total number of usual multiplication operations in this step is p− q. The
maximization operation is used to compute the max-plus addition of p−q vectors of
size n. Notice that there are p−q−1 maximization operations in computing max-
plus addition of p− q scalars. Thus the total number of maximization operations
is (p− q − 1)n.

For the power algorithm, the number of usual addition operations is pn2+1+(n+4)(p−q),
the total number of usual multiplication operations is 1 + (p − q), the total number of
maximization operations is (n − 1)np + (p − q − 1)n, the total number of comparison
operations is (p+ 1)pn/2.

Notice that the max-plus eigenvalue and corresponding max-plus eigenvectors exist
if state matrix A is irreducible. If the state matrix is reducible, we can determine the
cycle-time vector, under the condition that the state matrix is regular. A max-plus
matrix is called regular if there exists at least a finite element in each row. Cycle-time
vector η ∈ Rn is defined as

η = lim
k→∞

x(k)

k
,
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where x(0) ∈ Rn. Notice that the cycle-time vector does not depend on the initial state
x(0). The cycle-time vector is associated with the periodic regime. The periodic regime
is defined as the set of states such that the dynamics are periodic with period η, i. e.

{x | x(k + 1) = η + x(k)}.

If all entries of η are the same, we can use the power algorithm to determine the entry
of cycle-time vector and one of the states in the periodic regime. This can be done by
replacing the terms “max-plus eigenvalue” and “the corresponding max-plus eigenvec-
tor” by “entry of cycle-time vector” and “a state in the periodic regime,” respectively.
The interested reader is referred to [12] for the details.

Generalized max-plus eigenvalue problem is an extension of max-plus spectral prob-
lem in the sense that it is related to the implicit higher-order autonomous MPL sys-
tems (1). More precisely, generalized max-plus eigenvalue problem is a problem of
determining max-plus eigenvalue of a given collection of finitely many square matrices
{A0, A1, A2, . . . , Al} ⊆ Rn×n

ε [6, 19]. Let us discuss the problem in more detail. First
we define Rε[γ] as the collection of max-plus polynomials over γ, where the coefficients

belong to Rε. Then we define the mapping A : R → Rn×n
ε as A(γ) =

⊕l
s=0As ⊗ γ⊗s.

Notice that the mapping is parameterized by A0, . . . , Al and can be equivalently repre-
sented as a max-plus polynomial matrix with entries in set Rε[γ], i. e. A ∈ (Rε[γ])n×n.

Definition 2.3. (Generalized eigenvalue problem Baccelli et al. [2], Cochet-Terrasson
et al. [6], Soto y Koelemeijer [19]) Given a max-plus polynomial matrix A ∈ (Rε[γ])n×n,
determine λ(A) ∈ R and vector v ∈ Rn such that A(λ(A)⊗−1)⊗ v = v. Alternatively,
given As ∈ Rn×n

ε , for s ∈ {0, 1, . . . , l}, determine λ(A) ∈ R and vector v ∈ Rn such that⊕l
s=0As ⊗ λ(A)⊗−s ⊗ v = v.

A max-plus polynomial matrix A(γ) is irreducible if max-plus matrix A(0) is irre-
ducible, i. e. G(A(0)) is a strongly connected graph [2, Th. 3.28]. The following proposi-
tion states the sufficient conditions for the existence of generalized max-plus eigenvalues.

Proposition 2.4. (Baccelli et al. [2], Cochet-Terrasson et al. [6], Soto y Koelemeijer

[19]) If A(γ) =
⊕l

s=0As⊗γ⊗s is an irreducible max-plus polynomial matrix and G(A0)
does not have any circuit, then A has a unique generalized max-plus eigenvalue, which
is equal to the maximum cycle mean of G(A(0)).

2.5. Synchronization rules

Before constructing a schedule, first we have to define some synchronization rules. The
aim of using synchronization rules is to ensure that passengers can travel from any posi-
tion to any destination in the transportation system. Synchronization rule is explained
in the following definition.

Definition 2.5. (Synchronization rules Fahim et al. [11]) All vehicles arriving at any
station (public transportation stop) have to wait for each other to allow passengers to
change vehicles.
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Fig. 1. A simple train network.

Let us consider the train network depicted in Figure 1. There are two stations (station
1 and station 2) and four trains (train 1, train 2, train 3 and train 4). The time needed
by train 1 to go from station 1 to station 1 is 3 minutes. The complete traveling time
can be seen in Figure 1. According to Definition 2.5, the synchronization rules are as
follows:

• (k + 1)th departure from station 1 to station 1 has to wait kth arrival train from
station 1 to station 1 and from station 2 to station 1.

• (k + 1)th departure from station 1 to station 2 has to wait kth arrival train from
station 1 to station 1 and from station 2 to station 1.

• (k + 1)th departure from station 2 to station 2 has to wait kth arrival train from
station 2 to station 2 and from station 1 to station 2.

• (k + 1)th departure from station 2 to station 1 has to wait kth arrival train from
station 2 to station 2 and from station 1 to station 2.

According to above rules and assuming that all trains depart as soon as possible, the
dynamics of departure time of all trains can be written as an explicit first-order au-
tonomous MPL system (3):

x1(k + 1) = max{x1(k) + 3, x4(k) + 5} = x1(k)⊗ 3⊕ x4(k)⊗ 5
x2(k + 1) = max{x1(k) + 3, x4(k) + 5} = x1(k)⊗ 3⊕ x4(k)⊗ 5
x3(k + 1) = max{x2(k) + 4, x3(k) + 6} = x2(k)⊗ 4⊕ x3(k)⊗ 6
x4(k + 1) = max{x2(k) + 4, x3(k) + 6} = x2(k)⊗ 4⊕ x3(k)⊗ 6

where x1(k+ 1), x2(k+ 1), x3(k+ 1), x4(k+ 1) are the time of (k+ 1)th departure from
station 1 to station 1, from station 1 to station 2, from station 2 to station 2 and from
station 2 to station 1, respectively. As it will be clear in Section 3.3, the MPL system
will be used to determine a regular schedule of train departure.

3. MODELING AND SCHEDULING OF PUBLIC TRANSPORTATION NETWORKS

In this section, first we construct a model of public transportation networks as MPL
systems and analyze its properties (cf. Section 3.1). Then we reduce size of the model
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and analyze the impact of reduction w.r.t. the max-plus eigenvectors in Section 3.2.
In Section 3.3, we describe a procedure to construct a regular schedule. Finally, we
illustrate the procedure on a case study (cf. Section 3.4).

3.1. Modeling of public transportation networks

Initially we define the formal representation of a public transportation network. Then
we construct a model of public transportation networks as an implicit higher-order
MPL system (1). Next we show that the corresponding max-plus polynomial matrix
is irreducible. It follows that the max-plus polynomial matrix has a unique generalized
max-plus eigenvalue. Finally we transform the model as an explicit first-order MPL
system (3) by using a novel technique.

Definition 3.1. (Road network of public transportations) The road network of public
transportations is represented as max-plus matrix N ∈ Rm×m

ε , where m denotes the
number of stations. The entries of N represent the traveling time. More precisely if
[N ]i,j 6= ε, it denotes the traveling time from station j to i, otherwise if [N ]i,j = ε, there
is no direct route from station j to i. We define V = {1, 2, . . . ,m} and D = {(i, j) |
[N ]j,i 6= ε} as the set of vertices and edges of G(N), respectively. Let {e1, e2, . . . , en}
represents the set of routes. The origin and destination of route eu are denoted by iu
and ju respectively, for u ∈ n. In other words, eu = (iu, ju) for u ∈ n. Finally let pu be
the number of public vehicles serving route eu initially, for u ∈ n.

In the following lemma, we construct an MPL system from a road network of public
transportations. The event is defined as the vehicle departure on a route. Since the
number of routes in the network is n, we obtain an n-dimensional MPL system.

Lemma 3.2. Let N ∈ Rm×m
ε denotes a road network of public transportations where

G(N) is strongly connected. The time of vehicle departures in all routes can be modeled
as the following implicit higher-order MPL system

xu(k + 1) =

n⊕
q=1
jq=iu

[N ]jq,iq ⊗ xq(k + 1− pu), u ∈ n (4)

where xu(k+ 1) is the time of (k+ 1)th departure on route eu, i. e. from station (vertex)
iu to station (vertex) ju, for u ∈ n. In matrix notation, (4) can be rewritten as

x(k + 1) =

pmax⊕
s=0

As ⊗ x(k + 1− s) (5)

where x(k) = [x1(k) . . . xn(k)]T ∈ Rn, pmax = max{p1, p2, . . . , pn} and

[As]a,b =

{
[N ]ia,ib , if pa = s,

ε , otherwise.
(6)

P r o o f . We show that for any route, we obtain the model in (4). More precisely, we
consider three route categories depending on the initial number of public vehicles serving
the route: pu = 0, pu = 1 and pu ≥ 2.
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(pu = 1) In the first case, we assume that the initial number of public vehicles serving
route eu is 1. This case is illustrated in Figure 2. In this figure, the routes
eu1

, eu2
, . . . , eur

are edges in D such that ju1
= ju2

= · · · = jur
= iu and b1 is the

vehicle serving route eu initially.

iu1

iu2

...

iur

iu b1 ju

e
u
1

eu2

e u
r

eu

Fig. 2. The routes that go to vertex iu are eu1 , eu2 , . . . , eur .

Initially, the number of public vehicles serving route eu is 1.

By using Definition 2.5, the departure schedule of route eu depends on other routes
which go to vertex iu. More precisely, the (k + 1)th departure from station iu to
station ju has to wait the kth arrival from stations iu1 , iu2 , . . . , iur . Thus we
obtain

xu(k + 1) = [N ]iu,iu1
⊗ xu1

(k)⊕ [N ]iu,iu2
⊗ xu2

(k)⊕ · · · ⊕ [N ]iu,iur
⊗ xur

(k)

which can be rewritten as

xu(k + 1) =

n⊕
q=1
jq=iu

[N ]jq,iq ⊗ xq(k + 1− pu)

where pu = 1.

(pu ≥ 2) In the second case, we assume that the initial number of public vehicles serving
route eu is t, where t ≥ 2. This case is illustrated in Figure 3. In this figure, the



Generalized public transportation scheduling using max-plus algebra 253

iu1

iu2

...

iur

iu
s0

b1 s1 b2 s2 st−1 bt ju
st

e
u
1

eu2

e u
r

e′1 e′2 . . . e′t

eu

Fig. 3. The routes that go to iu are eu1 , eu2 , . . . , eur . Initially, the

number of public vehicles serving route eu is t.

routes eu1 , eu2 , . . . , eur are edges in D such that ju1 = ju2 = · · · = jur = iu and
b1, b2, . . . , bt are vehicles serving route eu initially.

Our approach to construct the model consists of two steps. In the first step, we
construct a first-order model by defining new stations and routes. More precisely,
we define t− 1 virtual stations s1, s2, . . . , st−1 which are located between iu and
ju (cf. Figure 3). Furthermore we define t routes e′1, e′2, . . . , e′t where e′i is the
route from si−1 to si for i ∈ t. Notice that iu = s0 and ju = st. The traveling
time of route e′i is 0 if i ∈ t− 1 and [N ]ju,iu if i = t. Initially vehicle bi is serving
route e′i for i ∈ t. Then we introduce new departure variables x′1, x′2, . . . , x′t where
x′i(k) is the time of the kth departure in route e′i for i ∈ t. By using Definition
2.5, we obtain the following recurrence relation

x′1(k + 1) = [N ]iu,iu1
⊗ xu1

(k)⊕ · · · ⊕ [N ]iu,iur
⊗ xur

(k)

x′2(k + 1) = x′1(k)

x′3(k + 1) = x′2(k)

...

x′t(k + 1) = x′t−1(k).

In the second step, we construct a higher-order model which describes the dynamics
of departure time in route e′t. More precisely, we construct an expression for x′t
that is a function of xu1 , xu2 , . . . , xur . To obtain such expression, we substitute
the above equations to the last equation:

x′t(k + 1) = [N ]iu,iu1
⊗ xu1(k + 1− t)⊕ [N ]iu,iu2

⊗ xu2(k + 1− t)
⊕ · · · ⊕ [N ]iu,iur

⊗ xur (k + 1− t).
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We define the departure time in route eu as the departure time in route e′t, i. e.
xu(k + 1) = x′t(k + 1). It follows that the previous equation can be rewrittens

xu(k + 1) =

n⊕
q=1

jq=iu

[N ]jq,iq ⊗ xq(k + 1− pu)

(pu = 0) In the third case, we assume that the initial number of public vehicles serving
route eu is 0. This case is illustrated in Figure 4. In this figure, the routes eu1

,
eu2 , . . . , eur are edges in D such that ju1 = ju2 = · · · = jur = iu.

iu1

iu2

...

iur

iu ju

e
u
1

eu2

e u
r

eu

Fig. 4. The routes that go to iu are eu1 , eu2 , . . . , eur . Initially, the

number of public vehicles serving route eu is 0.

By using Definition 2.5, the departure schedule of route eu depends on other routes
which go to vertex iu. More precisely, the (k + 1)th departure from station iu to
station ju has to wait the (k + 1)th arrival from stations iu1

, iu2
, . . . , iur

. Thus
we obtain

xu(k + 1) = [N ]iu,iu1
⊗ xu1

(k + 1)⊕ [N ]iu,iu2
⊗ xu2

(k + 1)

⊕ · · · ⊕ [N ]iu,iur
⊗ xur

(k + 1)
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which can be rewritten as

xu(k + 1) =

n⊕
q=1
jq=iu

[N ]jq,iq ⊗ xq(k + 1− pu)

where pu = 0.

Notice that in all cases, we obtain a model defined in (4). �

Next we derive the uniqueness of generalized max-plus eigenvalue in the above model
(5). Lemma 3.3 proves that G(A0) does not have any circuit. Lemma 3.4 shows that
max-plus polynomial matrix A(γ) is irreducible. Finally according to Proposition 2.4,
the model (5) has a unique generalized max-plus eigenvalue.

Lemma 3.3. Graph G(A0) does not have any circuit where A0 is defined in (5).

P r o o f . We prove the lemma by contradiction. We assume that graph G(A0) has a
circuit. Suppose that the circuit consists of the following edges eu1

, eu2
, . . . , eur

where
ju1

= iu2
, ju2

= iu3
, . . . , jur−1

= iur
and jur

= iu1
. Notice that pu1

= pu2
= · · · =

pur
= 0. From (4), we know that

xu1(k + 1) =

 n⊕
q=1

jq=iu1
,iq 6=iur

[N ]jq,iq ⊗ xq(k + 1)

⊕ [N ]jur ,iur
⊗ xur (k + 1)

= <1 ⊕ [N ]jur ,iur
⊗ xur

(k + 1) (7)

xu2
(k + 1) =

 n⊕
q=1

jq=iu2
,iq 6=iu1

[N ]jq,iq ⊗ xq(k + 1)

⊕ [N ]ju1 ,iu1
⊗ xu1

(k + 1)

= <2 ⊕ [N ]ju1
,iu1
⊗ xu1(k + 1) (8)

xu3
(k + 1) =

 n⊕
q=1

jq=iu3
,iq 6=iu2

[N ]jq,iq ⊗ xq(k + 1)

⊕ [N ]ju2
,iu2
⊗ xu2

(k + 1)

= <3 ⊕ [N ]ju2 ,iu2
⊗ xu2

(k + 1) (9)

...

xur
(k + 1) =

 n⊕
q=1

jq=iur ,iq 6=iur−1

[N ]jq,iq ⊗ xq(k + 1)

⊕ [N ]jur−1
,iur−1

⊗ xur−1
(k + 1)

= <r ⊕ [N ]jur−1
,iur−1

⊗ xur−1
(k + 1). (10)



256 SUBIONO, K. FAHIM AND D. ADZKIYA

First we substitute (7) to (8), which yields

xu2(k + 1) = <2 ⊕ [N ]ju1
,iu1
⊗<1 ⊕ [N ]ju1

,iu1
⊗ [N ]jur ,iur

⊗ xur (k + 1). (11)

Then we substitute (11) to (9), which produces

xu3
(k + 1) = <3 ⊕ [N ]ju2

,iu2
⊗<2 ⊕ [N ]ju2

,iu2
⊗ [N ]ju1

,iu1
⊗<1

⊕[N ]ju2
,iu2
⊗ [N ]ju1

,iu1
⊗ [N ]jur ,iur

⊗ xur
(k + 1).

If we continue the substitution process until (10), we obtain

xur
(k + 1) =

(
r−1⊕
k=0

<r−k ⊗
k⊗

s=1

[N ]jur−s
,iur−s

)
⊕ xur

(k + 1)

r⊗
s=1

[N ]jus ,ius

= <⊕ [N ]ju1
,iu1
⊗ [N ]ju2

,iu2
⊗ · · · ⊗ [N ]jur ,iur

⊗ xur (k + 1).

From the above equation, we can infer that

[N ]ju1
,iu1
⊗ [N ]ju2

,iu2
⊗ · · · ⊗ [N ]jur ,iur

⊗ xur (k + 1) ≤ xur (k + 1),

which is equivalent with [N ]ju1
,iu1
⊗ [N ]ju2

,iu2
⊗ · · · ⊗ [N ]jur ,iur

≤ 0. This contradicts
the fact that the traveling time is a positive number. �

Lemma 3.4. Max-plus polynomial matrix A(γ) =
⊕pmax

s=0 As⊗γ⊗s is irreducible where
A0, A1, . . . , Apmax

are defined in (5).

P r o o f . In this proof, we define V(A(0)) = {1, 2, . . . , n} as the set of vertices of graph
G(A(0)). Notice that the set of vertices of graph G(A(0)) corresponds to the set of edges
of graph G(N). Let V(N) = {i1, j1, i2, j2, . . . , in, jn} be the set of vertices of graph G(N).

Remember that A(γ) is irreducible if G(A(0)) is strongly connected (cf. Section 2.4).
We will prove that G(A(0)) is strongly connected. Let l,m be arbitrary vertices in
G(A(0)). We will show that there exists a path from l to m in G(A(0)). Since G(N)
is strongly connected and il, im are vertices in G(N), there exists a path from il to im
in G(N). Without loss of generality, we assume the path consists of the following edges
(il, ir1), (ir1 , ir2), (ir2 , ir3), . . . , (irt−1

, irt), (irt , im). This means [N ]ir1 ,il , [N ]ir2 ,ir1 ,
[N ]ir3 ,ir2 , . . . , [N ]irt ,irt−1

, [N ]im,irt
are finite. Since A(0) = A0 ⊕ A1 ⊕ . . . Apmax

, ac-

cording to (6), we know that [A(0)]a,b = [N ]ia,ib for a, b ∈ n. It follows that [A(0)]r1,l,
[A(0)]r2,r1 , [A(0)]r3,r2 , . . . , [A(0)]rt,rt−1

, [A(0)]m,rt are finite. In other words, there
exists a path (l, r1, r2, r3, . . . , rt−1, rt,m) from l to m in G(A(0)). �

In order to synthesize a regular schedule, the MPL system has to be explicit and first
order. Thus in the remainder of this section, we will construct an explicit first-order
MPL system. The approach consists of two steps. In the first step, we transform the
explicit MPL system to an implicit MPL system (cf. Section 2.2). In the second step, we
use a novel approach to transform the higher-order MPL system to a first-order MPL
system. The motivation of using the novel approach is that we are able to construct
a systematic procedure for the reduction process (cf. Section 3.2). To the best of our
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knowledge, it is not possible to construct such procedure using the well-known approach
(cf. Section 2.2).

Let us focus on the first step. Proposition 2.1 and Lemma 3.3 imply A∗0 exists. Thus
the implicit higher-order MPL system (5) can be transformed as the following explicit
higher-order MPL system

x(k + 1) =

pmax⊕
s=1

A∗0 ⊗As ⊗ x(k + 1− s). (12)

With regards to the second step, the explicit first-order MPL system is constructed
by defining augmented state z̃(k) = [z1(k)T . . . zpmax

(k)T ]T ∈ Rn(pmax). The state
equation is defined as

z̃(k + 1) = W̃ ⊗ z̃(k), (13)

where the state matrix is given by

W̃ =


A∗0 ⊗A1 En En,n . . . En,n
A∗0 ⊗A2 En,n En . . . En,n

...
...

...
. . .

...
A∗0 ⊗Apmax−1 En,n En,n . . . En

A∗0 ⊗Apmax
En,n En,n . . . En,n


for k ∈ N. As a side note, notice that W̃ ∈ Rn(pmax)×n(pmax).

Proposition 3.5. The dynamics of z1(k + 1) in (13) coincide with the dynamics of
x(k + 1) in (12) for k + 1 ≥ pmax.

P r o o f . From the first n equations in (13), we know that

z1(k + 1) = A∗0 ⊗A1 ⊗ z1(k)⊕ z2(k).

Then we substitute the (n + 1)th equation until (2n)th equation in (13) to the term
z2(k) in the above equation. The result is

z1(k + 1) = A∗0 ⊗A1 ⊗ z1(k)⊕A∗0 ⊗A2 ⊗ z1(k − 1)⊕ z3(k − 1).

If we continue the substitution until the last n equations, we obtain

z1(k+ 1) = A∗0⊗A1⊗ z1(k)⊕A∗0⊗A2⊗ z1(k− 1)⊕· · ·⊕A∗0⊗Apmax ⊗ z1(k+ 1− pmax),

which is the same with (12). Notice that the equation above is well defined since k+1 ≥
pmax, or equivalently k + 1− pmax ≥ 0. �

Proposition 3.5 implies the max-plus eigenvalue and max-plus eigenvectors of z1(k+1)
in (13) coincide with the max-plus eigenvalue and max-plus eigenvectors in (12). Since
the model in (12) has a unique max-plus eigenvalue, z1(k+ 1) in (13) also has a unique
max-plus eigenvalue. Let us note that the dynamics of z(k + 1) for k + 1 < pmax do
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not affect the max-plus eigenvalue and eigenvectors because both max-plus eigenvalue
and max-plus eigenvectors are associated with the steady-state behavior. Notice that
the steady-state behavior is related with behavior of the state when k →∞.

By using substitution similar to the proof of Proposition 3.5, one can show that the
dynamics for z1, . . . , zpmax

are given by

zi(k + 1) =

pmax⊕
j=i

A∗0 ⊗Aj ⊗ z1(k + 2− j), for all i ∈ pmax. (14)

3.2. Reduced model of public transportation networks

In this section, we describe two reduction procedures. Initially we describe the first
procedure to reduce size of the state matrix of an MPL system. Then we determine
size of the state matrix in the MPL system that models a public transportation network
under some condition. Finally we discuss the second reduction procedure.

Lemma 3.6. Let H ∈ Rn×n
ε where all entries in the tth row are ε, i. e. [H]t,j = ε for

all j ∈ n. We define H ′ as the matrix obtained by removing the tth row and the tth
column of matrix H. The following statements hold:

1. If λ ∈ R and v = [v1 v2 . . . vn]T ∈ Rn
ε are a max-plus eigenvalue and a

corresponding max-plus eigenvector of matrix H respectively, then the tth entry
of v is ε, i. e. vt = ε.

2. Scalar λ ∈ R and vector v = [v1 v2 . . . vn]T ∈ Rn
ε are a max-plus eigenvalue

and a corresponding max-plus eigenvector of matrix H respectively if and only if
λ and v′ = [v1 . . . vt−1 vt+1 . . . vn]T ∈ Rn−1

ε are a max-plus eigenvalue
and a corresponding max-plus eigenvector of matrix H ′ respectively.

P r o o f .

1. Since λ and v = [v1 v2 . . . vn]T are a max-plus eigenvalue and a corresponding
max-plus eigenvector of matrix H respectively, from Definition 2.2 we know that

n⊕
j=1

[H]i,j ⊗ vj = λ⊗ vi, for all i ∈ n.

For i = t, we obtain
⊕n

j=1[H]t,j ⊗ vj = λ ⊗ vi. Because [H]t,j = ε for all j ∈ n,
then the preceding equation becomes λ⊗ vt = ε. Since λ ∈ R, we obtain vt = ε.

2. First we focus on the “if” part. Let λ and v = [v1 v2 . . . vn]T be a max-plus
eigenvalue and a corresponding max-plus eigenvector of matrix H, respectively.
From Definition 2.2, we obtain

n⊕
j=1

[H]i,j ⊗ vj = λ⊗ vi, for all i ∈ n. (15)
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Equation (15) can be written as t−1⊕
j=1

[H]i,j ⊗ vj

⊕ ([H]i,t ⊗ vt)⊕

 n⊕
j=t+1

[H]i,j ⊗ vj

 = λ⊗ vi. (16)

From the proof of the first item, we know that vt = ε. Thus (16) is equivalent with t−1⊕
j=1

[H]i,j ⊗ vj

⊕
 n⊕

j=t+1

[H]i,j ⊗ vj

 = λ⊗ vi, (17)

for i ∈ {1, 2, . . . , t−1, t+1, . . . , n}. By using matrix notation, (17) can be rewritten
as

H ′ ⊗ v′ = λ⊗ v′.

Finally by reversing the direction, i. e. from bottom to up, we can prove the “only
if” part.

�

Lemma 3.6 can be used to reduce the size of W̃ in (13). Let a route u ∈ n be arbitrary
but fixed. Notice that the uth, (u+n)th, . . . (u+(pmax−1)n)th rows are associated with
the uth route. If we can find t ∈ {0, 1, . . . , pmax − 1} such that the entries in (u+ tn)th,
(u+ (t+ 1)n)th, . . . (u+ (pmax − 1)n)th rows for the first n columns are ε, then we can
remove those rows, i. e. the (u + tn)th, (u + (t + 1)n)th, . . . (u + (pmax − 1)n)th rows.
Given state matrix W̃ , the procedure to determine the rows that can be removed is as
follows:

Require: W̃ the state matrix
Ensure: R the set of row indices that can be removed
R := ∅
for u := 1 to n do
t := pmax − 1
while t ≥ 0 and [W̃ ]u+tn,j = ε for all j ∈ n do
R := R ∪ {u+ tn}
t := t− 1

end while
end for

The above procedure works in all cases. Let us determine the worst-case computa-
tional complexity of the above procedure w.r.t. the comparison, usual addition and usual
multiplication operations:

• First we focus on comparison operations. There are two comparison statements
t ≥ 0 and [W̃ ]u+tn,j = ε. Comparison statement t ≥ 0 is executed for each value of
u and t. Thus, comparison statement t ≥ 0 is executed pmaxn times. Comparison
statement [W̃ ]u+tn,j = ε is executed for each value of u, t and j. Thus, comparison

statement [W̃ ]u+tn,j = ε is executed pmaxn
2 times. As a consequence, the total

number of comparison operations is pmaxn+ pmaxn
2.
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• Then we continue to usual addition operations. There are three usual addition
operations pmax − 1, u + tn and t − 1. Usual addition operation pmax − 1 is
executed once. Usual addition operations u + tn and t − 1 are executed for each
value of u and t. Thus, the number of usual addition operations is 2pmaxn. Finally,
the total number of usual addition operations is 2pmaxn+ 1.

• We focus on usual multiplication operations. There is one usual multiplication
operation tn, which is executed pmax times. Thus, the total number of usual
multiplication operations is pmax.

As a special case, if min{p1, p2, . . . , pn} = 1, we can determine size of the reduced
matrix, as shown in the following lemma.

Lemma 3.7. Matrix W̃ in (13) can be reduced to W̃r of size (
∑n

u=1 pu)× (
∑n

u=1 pu) if
min{p1, p2, . . . , pn} = 1.

P r o o f . Since min{p1, p2, . . . , pn} = 1, then A0 = En,n. It follows that A∗0 = En. Thus

matrix W̃ becomes

W̃ =


A1 En En,n . . . En,n
A2 En,n En . . . En,n
...

...
...

. . .
...

Apmax−1 En,n En,n . . . En

Apmax
En,n En,n . . . En,n


Let u ∈ n be an arbitrary but fixed route index. Remember that pu is the initial number
of vehicles in the uth route. From (6), the uth row of Apu has at least a finite entry.

Equivalently, the (u+ (pu − 1)n)th row of W̃ in the first n columns has at least a finite
entry. Furthermore for t ∈ {pu, . . . , pmax − 1}, the (u + tn)th row of W̃ does not have
any finite element in the first n columns. Thus those rows can be removed. We conclude
that the uth route needs pu rows. It follows that the whole routes require (

∑n
u=1 pu)

rows. �

The second approach to reduce size of the state matrix is based on the dynamics. If
there are more than one states with the same dynamics, those states can be merged.
Let us illustrate this by using the MPL system in Section 2.5:

x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =


3 ε ε 5
3 ε ε 5
ε 4 6 ε
ε 4 6 ε

⊗

x1(k)
x2(k)
x3(k)
x4(k)


Notice that the dynamics of x1 and x2 are the same. The value of x1(0) and x2(0)
can be different. However starting from k = 1, we can guarantee that x1(k) = x2(k).
Thus we can merge x1 and x2. By using a similar reasoning, we can merge x3 and x4.
The interpretation is as follows. Notice that there are two trains that depart from each
station. The previous observations mean that the departure time of both trains in any
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station is the same. Thus we can represent the departure time of both trains from a
station as a single variable, rather than two variables. Since there are two stations, we
need two state variables, called x′1 and x′2. We define x′1 = x1 = x2 and x′2 = x3 = x4.
Thus the state equation for x1 and x3 in the original model can be written as follows:

x′1(k + 1) = 3⊗ x′1(k)⊕ ε⊗ x′1(k)⊕ ε⊗ x′2(k)⊕ 5⊗ x′2(k)
= (3⊕ ε)⊗ x′1(k)⊕ (ε⊕ 5)⊗ x′2(k)
= 3⊗ x′1(k)⊕ 5⊗ x′2(k)

x′2(k + 1) = ε⊗ x′1(k)⊕ 4⊗ x′1(k)⊕ 6⊗ x′2(k)⊕ ε⊗ x′2(k)
= (ε⊕ 4)⊗ x′1(k)⊕ (6⊕ ε)⊗ x′2(k)
= 4⊗ x′1(k)⊕ 6⊗ x′2(k)

By using matrix notation, the reduced model can be re-written as[
x′1(k + 1)
x′2(k + 1)

]
=

[
3 5
4 6

]
⊗
[
x′1(k)
x′2(k)

]
As mentioned previously, x′1(k+1) is the time of (k+1)th departure of both trains from
station 1, whereas x′2(k + 1) is the time of the (k + 1)th departure of both trains from
station 2. We do not write the general reduction procedure because one can generalize
the reduction procedure from this simple example without any difficulty.

3.3. Scheduling of public transportation networks

This section discusses an algorithm to construct a periodic (or regular) schedule for
public transportation networks. We cannot guarantee that the state matrix of the MPL
system is irreducible. Thus we assume that the state matrix is reducible. As mentioned
in Section 2.4, the algorithm requires that all elements of the cycle-time vector are the
same if the state matrix is reducible. Lemma 3.8 shows that all elements of the cycle-time
vector of the MPL system are the same.

Lemma 3.8. All elements of the cycle-time vector of the MPL system in (13) are the
same.

P r o o f . Let η̃ = [ηT
1 . . . ηT

pmax
]T ∈ Rn(pmax) denotes the cycle-time vector and

z̃(k) = [z1(k)T . . . zpmax
(k)T ]T ∈ Rn(pmax) be a vector in the periodic regime for

some value of k. Since z1 has a unique max-plus eigenvalue (cf. Section 3.1), all entries
of η1 are the same. The entry of η1 is denoted by η1. Since η1 is the max-plus eigenvalue
of z1, the following relation holds

z1(k + 1) = η1 ⊗ z1(k). (18)

We will show that all entries of ηi for i ∈ {2, . . . , pmax} are equal to η1. From the
property of cycle-time vector and periodic regime, we know that z̃(k + 1) = η̃ + z̃(k),
equivalently

zi(k + 1) = ηi + zi(k), for all i ∈ pmax. (19)
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From (14) and (18), we obtain

zi(k + 1) =

pmax⊕
j=i

A∗0 ⊗Aj ⊗ z1(k + 2− j)

=

pmax⊕
j=i

A∗0 ⊗Aj ⊗ η1 ⊗ z1(k + 1− j)

= η1 ⊗
pmax⊕
j=i

A∗0 ⊗Aj ⊗ z1(k + 1− j)

= η1 ⊗ zi(k). (20)

The conclusion is derived from (19) and (20). �

The procedure to synthesize a regular schedule for public transportation networks is
as follows:

1. Construct an MPL system according to Lemma 3.2;

2. Transform the MPL system to an explicit first-order model as in (13);

3. Reduce size of the model by using the reduction procedure based on Lemma 3.6;

4. Determine an entry η of the cycle-time vector and a vector d̃ in the periodic regime
by using the power algorithm (cf. Section 2.4);

5. Define d∗ = [d̃1 . . . d̃n]T where n represents the number of routes in the public
transportation network;

6. Use the scalar η and vector d∗ as the period and initial departure for the schedule.

Let us determine the computational complexity of the algorithm. We count the
number of usual addition, usual multiplication, maximization and comparison operations
in steps 1–4.

Step 1 In this step, there is only one kind of operations, namely the comparison oper-
ation. We need one comparison operation to determine an entry of matrix As, for
a particular value of s. Thus, for each s, the number of comparison operations to
construct As is n2 because the size of As is n× n. Since s ranges from 0 to pmax,
the total number of comparison operations is (pmax + 1)n2.

Step 2 This step consists of maximization and usual addition operations. Recall that
A∗ =

⊕n−1
k=0 A

⊗k [15, p. 42]. Before computing A∗, we need to determine A⊗2,
A⊗3, . . . , A⊗(n−1), which consist of n − 2 max-plus matrix multiplications. For
each max-plus matrix multiplication, there are (n− 1)n2 maximization operations
and n3 usual addition operations. Thus, the number of maximization operations is
n2(n−1)(n−2) and the number of usual addition operations is n3(n−2). Then we
compute the max-plus matrix addition of n matrices, where the size of each matrix
is n× n. In order to determine an entry, we need n− 1 maximization operations.
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Thus, the number of maximization operations is n2(n − 1). The computation of
W̃ consists of pmax max-plus matrix multiplications (13), i. e. A∗0 ⊗ A1, A∗0 ⊗ A2,
. . . , A∗0 ⊗ Apmax

. Notice that the size of each matrix is n × n. Thus, the number
of maximization operations is pmax(n − 1)n2 and the number of usual addition
operations is pmaxn

3. As a summary, the total number of maximization operations
is n2(n − 1)(n − 1 + pmax) and the total number of usual addition operations is
n3(n− 2 + pmax).

Step 3 According to the discussion after the reduction procedure, the total number
of comparison operations is pmaxn(n + 1), the total number of usual addition
operations is 2pmaxn+ 1 and the total number of usual multiplication operations
is pmax.

Step 4 In general, dimension of the model is pmaxn (13). However, in many cases
dimension of the model can be reduced (cf. Section 3.2). If min{p1, p2, . . . , pn} = 1,
we have shown that size of the reduced model is (

∑n
u=1 pu) (cf. Lemma 3.7). Since

we compute the worst-case complexity, we assume dimension of the system is
pmaxn. The complexity of this step is obtained by replacing the term n in the
complexity of power algorithm by pmaxn. Thus, the total number of comparison
operations is (p + 1)ppmaxn/2, the total number of maximization operations is
(pmaxn−1)pmaxnp+(p−q−1)pmaxn, the total number of usual addition operations
is pp2maxn

2 + 1 + (pmaxn+ 4)(p− q) and the total number of usual multiplication
operations is 1 + p− q.

The worst-case complexity of the procedure for synthesizing a regular schedule is as
follows. The total number of comparison operations is n2(pmax+1)+pmaxn(n+1)+(p+
1)ppmaxn/2. The total number of maximization operations is n2(n− 1)(n− 1 + pmax) +
(pmaxn − 1)pmaxnp + (p − q − 1)pmaxn. The total number of usual addition operations
is n3(n− 2 + pmax) + 2pmaxn+ 1 + pp2maxn

2 + 1 + (pmaxn+ 4)(p− q). The total number
of usual multiplication operations is pmax + 1 + p− q.

Notice that the schedule is regular because period η is a scalar, i. e. not a vector.
Furthermore the schedule for kth departure is given by kη + d∗. Let us remark that η
is identical to T defined in Section 2.2.

3.4. Case study

Consider the train network depicted in Figure 5. In this section, we will construct
a regular schedule for the train network by using the algorithm in Section 3.3. The
max-plus matrix representing the transportation network is given by

N =

[
3 6
4 5

]
Notice that there are two stations {station 1, station 2} and four routes {e1 = (1, 1),
e2 = (1, 2), e3 = (2, 2), e4 = (2, 1)}. Thus, m = 2 and n = 4. The initial number of
public vehicles in all routes is p1 = 1, p2 = 2, p3 = 1 and p4 = 0.

Let us construct an implicit higher-order MPL system by using Lemma 3.2. First, we
focus on the dynamics of state x1 that corresponds to route e1. Thus we restrict ourself
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Fig. 5. A simple train network.

on the first row. Since p1 = 1, we can restrict our attention to matrix A1. The origin of
route e1 is station 1. Thus we have to find all routes such that the destination is station
1. Those routes are e1 and e4. Finally, we define A1(1, 1) as the traveling time of route
e1 and A1(1, 4) as the traveling time of route e4. The dynamics of other states can be
determined similarly. The resulting implicit higher-order MPL system is

x(k + 1) = A0 ⊗ x(k + 1)⊕A1 ⊗ x(k)⊕A2 ⊗ x(k − 1),

where

A0 =


ε ε ε ε
ε ε ε ε
ε ε ε ε
ε 4 5 ε

 , A1 =


3 ε ε 6
ε ε ε ε
ε 4 5 ε
ε ε ε ε

 , A2 =


ε ε ε ε
3 ε ε 6
ε ε ε ε
ε ε ε ε

 .
Next we transform the above system to an explicit higher-order MPL system. In

order to do that, we need to compute A∗0. Since A⊗20 = E4,4, it follows that

A∗0 = E4 ⊕A0 =


0 ε ε ε
ε 0 ε ε
ε ε 0 ε
ε ε ε 0

⊕

ε ε ε ε
ε ε ε ε
ε ε ε ε
ε 4 5 ε

 =


0 ε ε ε
ε 0 ε ε
ε ε 0 ε
ε 4 5 0

 .
The explicit higher-order MPL system is given by

x(k + 1) = A∗0 ⊗A1 ⊗ x(k)⊕A∗0 ⊗A2 ⊗ x(k − 1),

where

A∗0 ⊗A1 =


3 ε ε 6
ε ε ε ε
ε 4 5 ε
ε 9 10 ε

 , A∗0 ⊗A2 =


ε ε ε ε
3 ε ε 6
ε ε ε ε
7 ε ε 10

 .
Then we construct an explicit first-order MPL system as discussed in the end of
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Section 3.1, as follows

z̃(k + 1) =

[
A∗0 ⊗A1 E4

A∗0 ⊗A2 E4,4

]
⊗ z̃(k)

=



3 ε ε 6 0 ε ε ε
ε ε ε ε ε 0 ε ε
ε 4 5 ε ε ε 0 ε
ε 9 10 ε ε ε ε 0
ε ε ε ε ε ε ε ε
3 ε ε 6 ε ε ε ε
ε ε ε ε ε ε ε ε
7 ε ε 10 ε ε ε ε


⊗ z̃(k).

According to Lemma 3.6, we can remove the fifth and seventh rows because all entries
in those rows are infinite. The reduced MPL system is

z̃1(k + 1)
z̃2(k + 1)
z̃3(k + 1)
z̃4(k + 1)
z̃6(k + 1)
z̃8(k + 1)

 =


3 ε ε 6 ε ε
ε ε ε ε 0 ε
ε 4 5 ε ε ε
ε 9 10 ε ε 0
3 ε ε 6 ε ε
7 ε ε 10 ε ε

⊗

z̃1(k)
z̃2(k)
z̃3(k)
z̃4(k)
z̃6(k)
z̃8(k)

 .

Next we determine an entry of the cycle-time vector η and a state d̃ of the preceding
state matrix by using the power algorithm (cf. Section 2.4). We obtain η = 5 and d̃ =
[6 1 0 5 6 10]T . As mentioned in the algorithm in Section 3.3, initial schedule
d∗ is defined as [6 1 0 5]T . The regular schedule for the first few train departures
can be seen in Table 1.

kth departure S1 to S1 S1 to S2 S2 to S2 S2 to S1

1 06.06 06.01 06.00 06.05
2 06.11 06.06 06.05 06.10
3 06.16 06.11 06.10 06.15
4 06.21 06.16 06.15 06.20
5 06.26 06.21 06.20 06.25

Tab. 1. Schedule of the first 5 departures, where the earliest

departure is 06.00 and the unit for traveling time is minute.

4. CONCLUSIONS

We have derived an algorithm to construct a regular schedule for public transportation
network by using max-plus algebra. The network is assumed to be strongly connected.
The input of this algorithm is the graph of the public transportation network, the trav-
eling time of each route and the number of public vehicles serving each route. We have
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proposed a novel technique to transform an explicit higher-order MPL system into an
explicit first-order MPL system. This technique allows us to construct a systematic
procedure to reduce the MPL system. Furthermore, we have used the so-called power
algorithm to determine a period and initial departure of the regular schedule of trans-
portation systems.

(Received October 16, 2016)
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