Kybernetika 54 no. 1, 96-109, 2018

Controlling the stochastic sensitivity in thermochemical systems under incomplete information

Irina BashkirtsevaDOI: 10.14736/kyb-2018-1-0096


Complex dynamic regimes connected with the noise-induced mixed-mode oscillations in the thermochemical model of flow reactor are studied. It is revealed that the underlying reason of such excitability is in the high stochastic sensitivity of the equilibrium. The problem of stabilization of the excitable equilibrium regimes is investigated. We develop the control approach using feedback regulators which reduce the stochastic sensitivity and keep the randomly forced system near the stable equilibrium. We consider also a case when the information about system state is incomplete. Our new mathematical technique is applied to the stabilization of operating modes in the flow chemical reactors forced by random disturbances.


stabilization, stochastic sensitivity, flow reactor, incomplete information


60H10, 93E20


  1. A. Albert: Regression and the Moore-Penrose Pseudoinverse. Academic Press, New York 1972.   DOI:10.1016/s0076-5392(08)x6167-3
  2. V. S. Anishchenko, V. V. Astakhov, A. B. Neiman, T. E. Vadivasova and L. Schimansky-Geier: Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development. Springer-Verlag, Berlin/Heidelberg 2007.   CrossRef
  3. K. J. Astrom: Introduction to the Stochastic Control Theory. Academic Press, New York 1970.   CrossRef
  4. I. Bashkirtseva and L. Ryashko: On control of stochastic sensitivity. Automat. Rem. Contr. 69 (2008), 1171-1180.   DOI:10.1134/s0005117908070084
  5. I. Bashkirtseva, G. Chen and L. Ryashko: Analysis of stochastic cycles in the Chen system. Int. J. Bifurcat. Chaos 20 (2010), 1439-1450.   DOI:10.1142/s0218127410026587
  6. I. Bashkirtseva, G. Chen and L. Ryashko: Stochastic equilibria control and chaos suppression for 3D systems via stochastic sensitivity synthesis. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3381-3389.   DOI:10.1016/j.cnsns.2011.12.004
  7. I. Bashkirtseva, G. Chen and L. Ryashko: Controlling the equilibria of nonlinear stochastic systems based on noisy data. J. Franklin Inst. 354 (2017), 1658-1672.   DOI:10.1016/j.jfranklin.2016.11.011
  8. L. Gammaitoni, P. Hanggi, P. Jung and F. Marchesoni: Stochastic resonance. Rev. Mod. Phys. 70 (1998), 223-287.   DOI:10.1103/revmodphys.70.223
  9. J. Gonzalez-Hernandez, R. R. Lopez-Martinez and J. A. Minjarez-Sosa: Approximation, estimation and control of stochastic systems under a randomized discounted cost criterion. Kybernetika 45 (2009), 737-754.   CrossRef
  10. L. Guo and H. Wang: Stochastic Distribution Control System Design: a Convex Optimization Approach. Springer-Verlag, New York 2010.   DOI:10.1007/978-1-84996-030-4
  11. W. Horsthemke and R. Lefever: Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology. Springer, Berlin 1984.   CrossRef
  12. H. A. Jakobsen: Chemical Reactor Modeling: Multiphase Reactive Flows. Springer, Berlin 2014.   DOI:10.1007/978-3-319-05092-8
  13. A. L. Kawczyński and B. Nowakowski: Stochastic transitions through unstable limit cycles in a model of bistable thermochemical system. Phys. Chem. Chem. Phys. 10 (2008), 289-296.   DOI:10.1039/b709867g
  14. H. J. Kushner: Stochastic Stability and Control. Academic Press, New York 1967.   CrossRef
  15. B. Lindner, J. Garcia-Ojalvo, A. Neiman and L. Schimansky-Geier: Effects of noise in excitable systems. Phys. Rep. 392 (2004), 321-424.   DOI:10.1016/j.physrep.2003.10.015
  16. L. Ryashko and I. Bashkirtseva: Analysis of excitability for the FitzHugh-Nagumo model via a stochastic sensitivity function technique. Phys. Rev. E 83 (2011), 061109.   DOI:10.1103/physreve.83.061109
  17. B. Shen, Z. Wang and H. Shu: Nonlinear Stochastic Systems with Incomplete Information, Filtering and Control. Springer, Berlin 2013.   DOI:10.1007/978-1-4471-4914-9
  18. J.-Q. Sun: Stochastic Dynamics and Control. Elsevier, Amsterdam 2006.   DOI:10.1016/s1574-6917(06)04001-3
  19. B. V. Volter and I. Y. Salnikov: Modeling and Optimization of Catalytic Processes (in Russian). Nauka, Moscow 1996.   CrossRef
  20. W. Wonham: On the separation theorem of stochastic control. SIAM J. Control 6 (1968), 312-326.   DOI:10.1137/0306023
  21. M. A. Zaks, X. Sailer and L. Schimansky-Geier: Noise induced complexity: From subthreshold oscillations to spiking in coupled excitable systems. Chaos 15 (2005), 026117.   DOI:10.1063/1.1886386
  22. J. Zhang, Y. Liu and X. Mu: Further results on global adaptive stabilisation for a class of uncertain stochastic nonlinear systems.    DOI:10.1080/00207179.2014.956339
  23. Y. Zheng, Q. Wang and M.-F. Danca: Noise-induced complexity: patterns and collective phenomena in a small-world neuronal network. Cogn. Neurodyn. 8 (2014), 143-149.   DOI:10.1007/s11571-013-9257-x