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OF DETERMINISTIC FINITE AUTOMATA BASED UPON
THE APPROACH OF SEMI-TENSOR PRODUCT
OF MATRICES
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In this paper, the static output feedback stabilization (SOFS) of deterministic finite au-
tomata (DFA) via the semi-tensor product (STP) of matrices is investigated. Firstly, the
matrix expression of Moore-type automata is presented by using STP. Here the concept of the
set of output feedback feasible events (OFFE) is introduced and expressed in the vector form,
and the stabilization of DFA is defined in the sense of static output feedback (SOF) control.
Secondly, SOFS problem of DFA is investigated within the framework of STP, including single-
equilibrium-based SOFS, multi-equilibrium-based SOFS, and further limit cycle-based SOFS.
Then the necessary and sufficient conditions for the existence of the three types SOFS are
proposed respectively. Meanwhile the efficient and systematic procedures based on the matrix
theory to seek the corresponding SOF controller are provided for the three types SOFS problem.
Finally, two examples are presented to illustrate the effectiveness of the proposed approach.
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1. INTRODUCTION

Finite automata are one of the rapidly developing areas in systems and control. In finite
automata, states and events are a finite logical or discrete set. There are many kinds
of finite automata including deterministic finite automata (DFA) [12], non-deterministic
finite automata (NFA) [9] fuzzy finite automata [18] and other [7]. Among these finite
automata, DFA have been one of the most applied finite automata, and have been
shown to be a powerful and synthesis tool for modeling and analyzing discrete event
systems(DESs) [16].

There is an increasing interest in the problem of stability and stabilization of finite
automata, especially output feedback stabilization which has received so much attention
in the control theory. A variety of stability and stabilization of finite automata have
been studied by many researchers in some literature [15, 16]. For example, in [16], the
Lyapunov stability and asymptotic stability of finite automata is studied by proposing
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a Lyapunov function-based approach; in [15], the output stabilizability of DFA under
partial observation is investigated and a necessary and sufficient condition for output
stabilization has been proposed. In this case, the supervisor is of dynamic feedback
type by means of constructing a dynamic state observer. As we all know, static output
feedback (SOF) control is the simplest closed-loop control and it can be realized easier
than dynamic output feedback in practice. Now what is the static output feedback
stabilization (SOFS) of DFA? We set the SOF controller as u(t) = Ky(t), where y(t)
denotes the output of DFA and K is a constant feedback gain matrix. The problem
of SOFS aims at finding an SOF controller above to ensure the closed-loop system has
desirable behaviors [17]. There have been significant advances recently in the study
of SOFS of Boolean control network (BCN) which is a special form of DFA in [1, 13].
In [13], an sufficient condition (Theorem 2) has been proposed to seek the SOF matrix,
that is, designing SOF controller is converted to solving a matrix equation; And later, [1]
investigated the SOFS of BCN through both the time-invariant output feedback (TIOF)
law and the time-varying output feedback (TVOF) law, and proposed an sufficient and
necessary condition for the existence of the TIOF law. Meanwhile, two algorithms
to seek the SOF matrix have been given: algorithm 1 which is to solve the nilpotent
matrix is based on the matrix theory, and the other which is to find paths with no
TIOF-compatible cycle is based on the labeled digraph.

As can be seen, the literature [1, 13] use the theory of Semi-tensor product (STP)
[6] which provides a nice systematic approach to mix-valued logical network in recent
years. The research findings enrich and develop the theories and methods of various
other systems such as BCN [3, 8], nonlinear system [14], fuzzy control systems [21],
Petri net systems [10], networked evolutionary games [4] and so on. There have existed
some literature concerning the use of STP in finite automata. For example, in [19], the
matrix expression and the reachability for finite automata have been investigated; [11]
investigated the topological structure properties of DFA and proposed a necessary and
sufficient condition for DFA stabilized to a limit cycle by the state feedback controller.

Up to now, there is little result about the solution for the SOFS problem of DFA. In
this paper, the problem of SOFS of DFA is investigated via the STP and the algorithm
is introduced based on the matrix theory. We aim at finding the algebraic conditions
for the existence of SOFS. Compared with the literature [1, 13], a wider DFA system
is studied and the conditions and algorithms are given; on the other hand, the concept
of the set of output feedback feasible events (OFFE) is introduced and expressed in
the vector form, and then we investigate not only the single-equilibrium-based SOFS
of DFA, but also the multi-equilibriums and limit cycle. In summary, some of the key
contributions of the present paper include the following:

(1) The problem of single-equilibrium-based SOFS of DFA is investigated. A necessary
and sufficient condition and an efficient algorithm are proposed.

(2) A necessary and sufficient condition of multi-equilibrium-based SOFS is investi-
gated, and an efficient algorithm to seek the SOF controller is given here.

(3) The equilibrium is generalized to the limit cycle and the SOFS of limit cycle in
DFA is investigated. A necessary and sufficient condition for the problem and an
efficient algorithm are also proposed.
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The remainder section are organized as follows. In section 2, Some preliminaries
including STP theory, FEM and prereachability set are introduced. In section 3, the
main results of the paper are given here; In subsection 3.1, firstly, the definition of
SOFS of DFA is introduced and a necessary and sufficient condition about equilibrium-
based SOFS is presented and then we provide an efficient algorithm to seek the SOF
controller; In subsection 3.2, a necessary and sufficient condition and algorithm about
multi-equilibrium-based SOFS are presented; In subsection 3.3, we investigate the limit
cycle-based SOFS and give an efficient algorithm. In section 4, two illustrative examples
are given to validate the results, and the examples are analyzed in detail from many
different prospectives. In the final section, the present thesis is summarized and we give
an outlook of the future research on this topic.

Notation.
• N+ denotes the set of positive integers.
• |X| denotes the cardinality of set X.
• k ∈ [1, n] denotes 1 ≤ k ≤ n.
• Rm×n denotes an m× n real matrices, especially if n = 1,Rm := Rm×1.
• Col(A) is the set of all columns of matrix A, Coli(A) is the ith column of matrix A.
• δkn denotes the kth canonical vector of size k.
• δn[k1, k2, . . . kp] := [δk1n , δ

k2
n , . . . , δ

kp
n ].

• ∆n := {δ1n, δ2n, . . . , δnn}.
• A is a logical matrices if Coli(A) ∈ ∆n, Lm×n denotes a set of logical matrices

respectively..
•
∏∗ denotes the set of all finite strings of element of input event set

∏
.

• 1i denotes the i−dimensional vector with all entries equal to 1.
• D := {0, 1}.
• M(i,j) is the (i, j) element of matrix M , Ai is the ith element of vector A.
• A vector A is a Boolean vector if Ai ∈ D.
• Assume that A ∈ Rm, B ∈ Rm. Then A ∧ B := Ai ∧ Bi, where the symbol ∧

denotes the logical operator AND.

2. PRELIMINARIES

2.1. STP of matrices

STP which can convert a logical function into an algebraic function is first proposed by
Cheng [6]. The theory generalizes the use of conventional matrix product and all the
main properties of the conventional matrix product remain true for this generalization.
It provides a nice systematic approach to mix-valued logical network in recent years and
the brief introduction is given in the following.

Definition 2.1. (Cheng and Qi [6]) For M ∈ Rm×n, N ∈ Rm×n, the corresponding
STP is defined as:

M nN := (M ⊗ Ir/n)(N ⊗ Ir/p). (1)
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Where r denotes the least common multiple of n and p, and ⊗ is the Kronecker product.
n is the mathematical symbol of STP.

When n equals to p, the STP coincides with the conventional matrix product. The
symbol is omitted for convenience except for the special instructions in this paper. Here
some properties about STP which play a fundamental role in the following are presented
briefly.

(1) Pseudo-commutability: For x ∈ Rm, y ∈ Rn, y n x = W[m,n] n x n y, where the
matrix W[m,n] is the swap matrix.

(2) Power-reducing matrix: xnx = Φnnx for ∀x ∈ ∆n, and Φn := diag{δ1n, δ2n, . . . , δnn}.

2.1.1. Matrix expression for DFA

The matrix approach to DFA model has been proposed in [19], and this matrix ex-
pression provides an effective computational way for analysis of DFA. Some necessary
preliminaries are given as follows.

An Moore-type DFA can be defined as an five-tuple A = (X,Y,
∏
, f, h), where X

denotes a finite set of states; Y denotes a finite output collection or a set of output events;∏
is a finite set of events called alphabet; f : X×

∏
→ X denotes the transition function

which in general is a partial function on its domain,; the output function h : X → Y is
defined for each state.

Now we introduce the matrix expression based STP for Moore-type DFA. Firstly,
some basic symbols are listed, X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yp},

∏
= {e1, e2, . . .

. . . , em} and f : X×
∏
→ 2X , where 2X is the power set of X, xi ∼ δin, yj ∼ δjp, ek ∼ δkm,

and i ∈ [1, n], j ∈ [1, p], k ∈ [1,m].

Remark 2.2. A is said to be a DFA considered in this paper if for each xi ∈ X, ek ∈
∏

,
|f(xi, ek)| ≤ 1; When |f(xi, ek)| = 1, the transition function f(xi, ek) = xj means that
there is a transition labeled by input event ek from xi to the state xj , which is called
that the f(xi, ek) is defined. When |f(xi, ek)| = 0, the transition function f(xi, ek) = ∅
means the event ek cause no state transition from xi, which is called that the f(xi, ek)
is undefined.

Secondly, the transition structure matrix (TSM) associated with event is defined as:

F := [F1, F2, . . . , Fm] ∈Mn×mn. (2)

Where Fk ∈ Rn×nis defined as follows:

Fk(l,i) =
{

1, δln ∈ f(δin, δ
k
m)

0, otherwise. (3)

Finally, the dynamics of Moore-type automata are described by the algebraic equa-
tions in the following:

x(t+ 1) = Fu(t)x(t)
y(t) = Hx(t). (4)
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Where x(t) denotes the state which is reached in t steps from x(0), and x(0) is the initial
state, and y(t) is the corresponding output vector. u(t) is the input vector. H denotes
the output structure matrix.

Example 2.3. Consider DFA A = (X,Y,
∏
, f, h) shown in the following is taken from

[2], where X = {x1, x2, x3},
∏

= {e1, e2}, Y = {y1, y2}. The TSM and the output
structure matrix are constructed by the approach proposed in [19] as follows:
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Fig. 1. state transition diagram for Example 2.3.

F =

 0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 1 1 0

 , H =
[

1 0 0
0 1 1

]
.

2.1.2. Feasible event matrix of DFA

In this subsection, the concept of feasible event matrix (FEM) is introduced. The
feasible event function of each state is defined as Ψ(x) which is an input event set for
which f(x, e) is defined, that is, |f(xi, ek)| = 1. And using the STP theory, the feasible
event function can be equivalently represented in the following matrix form:

û(t) = Ex(t). (5)

Where û(t) = (û1(t), û2(t), . . . , ûm(t))T represents the corresponding vector of feasible
input event of x(t), and E can be defined as:

E(k,i) =
{

1, f(xi, ek) is defined
0, otherwise. (6)

There is an equivalent formula between the feasible events and the FEM , and the
feasible events with respect to the FEM can be calculated by the lemma below:

Lemma 2.4. (Han et al. [11]) Given a DFAA = (X,Y,
∏
, f, h), whereX = {x1, x2, . . . ,

xn},
∏

= {e1, e2, . . . , em}, and X ∼ ∆n,
∏
∼ ∆m respectively. The feasible events Ψ(x)

of A is:
Ψ(xi) = Ψ(δin) = Θ(Coli(E)), i ∈ [1, n]. (7)

Where Θ(x) for the nonempty Boolean vector x is defined as Θ(x) = {z ∈ ∆m |z ∧ x = z} .
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The feasible events matrix and the corresponding Ψ(x) in Example 2.3 can be written
as:

E =
[

1 0 1
1 1 0

]
,

Ψ(x1) = {δ12 , δ22}, Ψ(x2) = {δ22}, Ψ(x3) = {δ12}.

2.1.3. Prereachability set

In this subsection, we recall the definition of equilibrium point and the definition and
some properties of the prereachability set which is to find all permissible feedback input
of DFA.

Definition 2.5. Given a DFA A = (X,Y,
∏
, f, h), state x ∈ X is called an equilibrium

point of A if there exists e ∈
∏

such that f(x, e) = x.

Remark 2.6. In this paper, we assume that the equilibrium point always exists, and
the corresponding state is xr = δrn. If a state is an equilibrium point, there exists a
self-loop in state transition diagram, and let Ξr denote the set of all events satisfying
f(xr, e) = xr corresponding to the equilibrium state.

Let us denote by Ωt(s) the set of all the states that can be driven to xr = δrn in t
steps by a feasible transition sequence e = ek1ek2 . . . ekt ∈ Π∗. The prereachability set
Ωt(r) is defined as follows:

Ωt(r) := {x ∈ ∆n |there exist ek1ek2 . . . ekt
∈ Π∗ such that R(x, e, t) = δrn} . (8)

Where R(x, e, t) = δrn denotes a state xr = δrn that is reachable from x in t steps for A.

Lemma 2.7. (Han et al. [11]) Given a DFA A = (X,Y,
∏
, f, h) with the matrix form

(4) and let xr = δrn ∈ Ω1(r). Then Ωt(r) ⊆ Ωt+1(r), ∀t ≥ 1.

xr = δrn ∈ Ω1(r) if and only if xr = δrn is equilibrium point, so the lemma holds obvi-
ously according to the definition of equilibrium point and the definition of prereachability
set.

Lemma 2.8. (Han et al. [11]) Ωt(r) has two following properties:

(1) If Ω1(r) = {δrn}, then Ωt(r) = {δrn},∀t ≥ 1.

(2) If Ωi(r) = Ωi+1(r) for some i ≥ 1, then Ωt(r) = Ωi(r),∀t ≥ i .

3. SOFS FOR DFA

In this section, we investigate the SOFS of DFA based on STP theory. Firstly, single-
equilibrium-based SOFS is discussed, and the sufficient and necessary conditions for
single equilibrium point are given. Then we try to expand the discussion to the multi-
equilibrium-based SOFS and cycle-based SOFS.
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3.1. Single-equilibrium-based SOFS

In this subsection, SOFS based on the equilibrium point stability is investigated. At
the first, the concept of equilibrium point stability is introduced and then we give the
definition of the single-equilibrium-based SOFS. Meanwhile two necessary conditions
are presented, and to this end the corresponding sufficient and necessary conditions are
given.

Definition 3.1. Given a DFA A = (X,Y,
∏
, f, h) and an equilibrium point xr = δrn.

A state x ∈ X is said to be stable at xr = δrn if all state trajectories starting from x
arrive at xr = δrn in a finite number of transitions and stay at xr = δrn forever. A system
is said to be stable at xr = δrn if all states are stable at xr = δrn.

The definition of the SOFS of DFA is introduced in the following form:

Definition 3.2. A DFA is SOF stabilizable to the equilibrium point xr = δrn if there
exists the output feedback law u(t) = Ky(t), K ∈ Lm×p such that the every state
transition trajectory arrives at xr in a finite number of steps and stays at xr forever.

We observe that SOFS is in essence equilibrium point stability, and under what
conditions we can stabilize the DFA to equilibrium point by resorting to an output
feedback. Firstly consider system (4), for each integer j ∈ [1, p], let O(yj) denote the
set of all states that produce the output yj = δjp, that is

O(yj) = {δin : Coli(H) = yj}. (9)

Significantly, O(yj1)∩O(yj2) = ∅, ∀j1 6= j2, and
⋃j=p
j=1 O(yj) = ∆n . Let π(yj) denote

the set of output feedback feasible events (OFFE) corresponding to the output yj , we
can obtain that

π(yj) =

δkm :
⋂

δi
n∈O(yj)

Θ(Coli(E))

 . (10)

A necessary (but not sufficient) condition for SOFS is given as follows:

Theorem 3.3. Consider the DFA (4). If the system is SOF stabilizable to the equilib-
rium point xr = δrn, then π(yj) 6= ∅, ∀j ∈ [1, p].

P r o o f . If the system is said to be SOF stabilizable to the state xr, there must exist
an output feedback matrix K = δm[j1, j2, . . . , jp] and u(t) = Ky(t) = KHx(t). For each
integer i ∈ O(yj), the corresponding SOF events must be the same, namely, the set of
OFFE π(yj) 6= ∅. �

Another necessary (but not sufficient) condition for SOFS can also be given as follows:

Theorem 3.4. Consider the DFA (4). If the system is SOF stabilizable to the equilib-
rium point, then

(1) Ξr ∩ π(Hδrn) 6= ∅.



48 Z. ZHANG, Z. CHEN, X. HAN AND Z. LIU

(2) There exists an input value δkm ∈ (π(Hδrn) ∩ Ξr) such that xr = δrn ∈ O(Hδrn) is
the only equilibrium point.

P r o o f . If the system is SOF stabilizable to the equilibrium point xr = δrn, the set of
OFFE π(Hδrn) and the set Ξr must be nonempty. For the condition (2), if there exists
another equilibrium point xi = δin, δ

i
n ∈ O(Hδrn) for an input value δkm ∈ (π(Hδrn)∩Ξr),

then we cannot find a transition trajectory arrive at xr from xi, which contradicts the
definition of SOFS. �

Before proceeding, an example of the system showed in the following is considered to
illustrate the two necessary conditions.

Example 3.5. Consider DFA. Identifying xi ∼ δi6(i ∈ [1, 6]), yj ∼ δj2(j ∈ [1, 2]) and
ek ∼ δk3 (k ∈ [1, 3]). x1 = δ16 is the equilibrium point. Suppose that

F = δ6[1, 2, 1, 0, 6, 0, 3, 4, 0, 0, 0, 1, 2, 1, 2, 6, 0, 0]

H = δ2[1, 1, 1, 2, 2, 2].

For each integer j ∈ [1, 2],
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Fig. 2. state transition diagram for Example 3.5.

Ξ1 = {δ13}
O(Hδ16) = O(y1) = {δ16 , δ26 , δ36}
O(y2) = {δ46 , δ56 , δ66}

π(Hδ16) = π(y1) = {δ13 , δ33}
π(y2) = ∅.

And under the input value δ13 ∈ (π(Hδ19) ∩ Ξ1), x2 = δ26 is also an equilibrium point
belonging to O(Hδ16). The necessary conditions of both Theorem 3.3 and 3.4 are not sat-
isfied, so there no exists an output feedback law such that the system is SOF stabilizable
to the equilibrium point x1 = δ19 .

Based on the lemmas and definitions, the sufficient and necessary conditions of SOF
stabilization of DFA are presented in the following:
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Theorem 3.6. Consider the DFA (4). The system is SOF stabilizable to the equilib-
rium point xr = δrn if and only if there exists an SOF law u(t) = Ky(t),K ∈ Lm×p and
an integer τ ∈ [1, n− 1] such that the following conditions are satisfied:

(1) Coli(KH) ∈ π(yj), where δin ∈ O(yj) and π(yj) is the OFFE;

(2) Ωτ (r) = ∆n;

P r o o f . (Sufficiency) supposing the conditions (1) and (2) are satisfied, where τ ∈
[1, n − 1]. And namely, there exists an output feedback law u(t) = Ky(t),K ∈ Lm×p
which is a feasible transition sequence such that R(x, e, τ) = δrn. We prove that the
system is SOF stabilizable at xr = δrn. Using Lemma 2.7, if Ωτ (r) = ∆n, then ∆n =
Ωτ (r) ⊆ Ωτ+1(r) ⊆ ∆n, and then Ωτ (r) = Ωτ+1(r) = ∆n. And using Lemma 2.8,
Ωt(r) = Ωτ (r) is true for ∀t ≥ τ , which implies the sufficient conditions holds according
to the definition of the SOF stabilization.

(Necessity) If the system is SOF stabilizable to the equilibrium point, the output
feedback control must belong to the set of OFFE. Meanwhile based on the definition of
SOFS and the formula (9), the conditions (1) and (2) are significantly established. �

Remark 3.7. We generalize the SOFS conditions of BCN which has been proposed in
literature [13] and [1] to the DFA. There are some differences between the result and
the proposed conditions about the SOFS of DFA. Because the DFA is the generalization
of BCN, we add the condition (1), namely, the SOF matrices must ensure that closed
system transition sequence belongs to the set of feasible event.

In fact, the SOF matrices K ∈ Lm×p which satisfy the conditions of Theorem 3.6 can
be calculated by the following algorithm.

Algorithm a: By resorting the suitable permutations of the state and output com-
ponents, the equilibrium point is written as x1 = δ1n, and the output structure matrix
is presented as H = diag{1Tn1

,1Tn2
, . . . ,1Tnp

}, where n1 + n2 + · · · + np = n. And the
F nKHΦn can be presented as:

[blk1(Fv1), blk2(Fv2), . . . blkp(Fvp)] (11)

where
∣∣Fvj

∣∣ = nj . Let vqj , q ∈ [1, nj ] denotes the qth indices of Fvj , and the set of

OFFE corresponding to the output can be represented as π(yj) :=
⋂vnj

j

i=v1j
Θ(Coli(E)).

Especially for the equilibrium point x1 = δ1n, π(Hδ1n) = π(y1).

Step 1: Check whether or not π(yj) :=
⋂vnc

j

i=v1j
Θ(Coli(E)) 6= ∅, ∀j ∈ [1, p]. If yes, set

π(yj) = {δc
j
1
m , δ

cj
2
m , . . . , δ

cj
Mj
m }, where cjl , l ∈ [1,Mj ] denotes the lth index of π(yj), and go

to Step 2; otherwise STOP, there no exists an SOF law .

Step 2: Check whether or not Ξ1∩π(Hδ1n) 6= ∅ and whether there exists δc
1
l
m ∈ (π(Hδ1n)∩

Ξ1) such that x1 is the only equilibrium point. If yes, find all the events satisfying the



50 Z. ZHANG, Z. CHEN, X. HAN AND Z. LIU

conditions, and update the set π(Hδ1n) := {δc
1
1
m , δ

c12
m , . . . , δ

c1M1
m }. Then set j = 1, vj := 1

and go to Step 3; otherwise STOP, there no exists an SOF law.

Step 3: Check whether Fv11 is δ1n and the principal submatrix with row and column
indices [v2

1 , v
n1
1 ] is nilpotent or not. If yes, set j = 2, vj := 1 and go to the Step 4.

Otherwise set v1 := v1 + 1.
Case 1: If v1 ≤M1, repeat Step 3.
Case 2: If v1 > M1, then STOP: the SOF law doesn’t exist.

Step 4: Case 1: if j ≤ p and vj ≤ Mj , then check whether the principle submatrix
with row and column indices [v2

1 ,
∑j
c=1 nc] is nilpotent. If yes, set j := j + 1, vj := 1,

otherwise set vj := vj + 1. Repeat Step 4.
Case 2: if j ≤ p and vj > Mj , set j := j − 1 and vj := vj + 1. If j = 1 repeat Step 3,
otherwise repeat Step 4.
Case 3: if j > p, then STOP; there exists an SOF law and the SOF matrices is K =
δm[c1v1 , c

2
v2 , . . . , c

p
vp

].

Remark 3.8. The initialization is imperative and will help us make a better under-
standing of the algorithm. Step 1 and 2 correspond to the necessary conditions of
Theorem 1 and Theorem 2, which can help us reject some infeasible values of the indices
and decrease computation amount to enhance the efficiency of algorithm. Step 3 and
Step 4 explores all possible SOF matrices and substantially it is to find all nilpotent
matrices satisfying the condition.

Remark 3.9. The computational complexity of the proposed Algorithm is at most
o(
∏p
i=1Mi) which is acceptable.

3.2. Multi-equilibrium-based SOFS

In this subsection, SOFS based on the multi-equilibrium is investigated. Suppose a set
of equilibriums are given for the DFA, and we want to stabilize the DFA to the set of
equilibriums by the SOF controller. At the first, the definition of the multi-equilibrium-
based SOFS is introduced based on the literature [20]

Definition 3.10. A DFA is SOF stabilizable to a set of s equilibriums {x1 = δr1n , . . . , xs
= δrs

n } denoted by Xs and Xs ⊆ X if there exists the output feedback law u(t) = Ky(t),
K ∈ Lm×p such that the every state transition trajectory arrives at Xs in a finite number
of steps and stays at Xs forever.

Based on Theorem 3.3 and Theorem 3.4, two necessary conditions are presented here
to check the multi-equilibrium-based SOFS.

Theorem 3.11. Consider the DFA (4)and a set of s equilibriumsXs = {x1 = δr1n , . . . , xs
= δrs

n }. If the system is SOF stabilizable to one of Xs, then π(yj) 6= ∅, ∀j ∈ [1, p].

This theorem is proved in a similar way of Theorem 3.3, and the proof procedure is
omitted here.

Theorem 3.12. Consider the DFA (4) and a set of s equilibriums Xs. If the system is
SOF stabilizable to one of Xs, then ∀r ∈ [r1, r2, . . . , rs],Ξri

∩ π(Hδri
n ) 6= ∅.
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This necessary condition holds significantly and the proof procedure is omitted here.
Compared with the Theorem 3.4, the necessary condition (2) is reduced in Theorem
3.12. Because if there exists another equilibrium point xi = δin, i ∈ O(Hδrn) for an input
value δkm ∈ (π(Hδrn) ∩ Ξr), xi = δin can be defined as one of the set Xs.

Theorem 3.13. Consider the DFA (4). The system is SOF stabilizable to one of Xs =
{x1 = δr1n , . . . xs = δrs

n } if and only if there exists an SOF law u(t) = Ky(t),K ∈ Lm×p
and an integer τ ∈ [1, n− s] such that the following conditions are satisfied:

(1) Coli(KH) ∈ π(yj), where δin ∈ O(yi) and π(yj) is the OFFE;

(2) Colr(KH) ∈ (π(Hδrn) ∩ Ξr),∀r ∈ [r1, r2, . . . , rs];

(3) Ωτ (r) = ∆n;

P r o o f . (Sufficiency) Supposing the condition (1) and (2) is satisfied. The proof is
a simple extension of the proof Theorem 3.6, namely, by Using Lemma 2.7 and Lemma
2.8 we prove that the system is multi-equilibrium-based SOFS. One needs to consider the
additional condition τ ∈ [1, n− s] and Colr(KH) ∈ (π(Hδrn)∩Ξr), ∀r ∈ [r1, r2, . . . , rs],
which is straightforward on the strength of Definition 3.10.

(Necessity) Based on the Theorem 3.12 and Theorem 3.6, the conditions (1) and (2)
are significantly established �

We aim at designing the controller u(t) = Ky(t) to satisfy the conditions of Theorem
3.13. The corresponding SOF matrices K ∈ Lm×p can be calculated by the following
algorithm.

Remark 3.14. Here if there exist equilibriums belonging to O(yj), it is supposed to be
only. And next the assumption will be extended to more general case.

Algorithm b: By resorting the suitable permutations of the state and output compo-
nents, the output structure matrix is presented as H = diag{1Tn1

,1Tn2
, . . . ,1Tnp

}, where
n1 + n2 + · · · + np = n. and Cs is written as {xN1 = δN1

n , xN2 = δN2
n , . . . xNs

= δNs
n },

where

Ni =


1, i = 1
i−1∑
j=1

nj + 1, i > 1. (12)

The matrix F nKHΦn can be presented as:

[blk1(Fv1), blk2(Fv2), . . . blkp(Fvp
)]

where
∣∣Fvj

∣∣ = nj . Let vqj , q ∈ [1, nj ] denotes the qth indices of Fvj
, and the set of OFFE

can be represented as π(yj) :=
⋂vnj

j

i=v1j
Θ(Coli(E)).

Step 1: Check whether or not π(yj) :=
⋂vnc

j

i=v1j
Θ(Coli(E)) 6= ∅, ∀j ∈ [1, p]. If yes, set

π(yj) = {δc
j
1
m , δ

cj
2
m , . . . , δ

cj
Mj
m }, where cjl , l ∈ [1,Mj ] denotes the lth index of π(yj), and go
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to Step 2; otherwise STOP, there no exists a solution.

Step 2: Check whether or not ΞNi ∩ π(HδNi
n ) 6= ∅ for i ∈ [1, s]. If yes, update the set

π(HδNi
n ) := π(HδNi

n ) ∩ ΞNi
= {δc

i
1
m , δ

ci
2
m , . . . , δ

ci
Mi
m }. Then set j = 1, vj := 1 and go to

Step 3; otherwise STOP, there no exists an SOF law.

Step 3: Check whether F
v

Nj
j

is δNj
n and the principal submatrix with row and column

indices [vNj+1
j , v

nj

j ] is nilpotent or not. If yes, set j = s + 1, vj := 1, repeat Step 4.
Otherwise set vj := vj + 1.
Case 1: If vj ≤Mi, repeat Step 3;
Case 2: If vj ≥ Mi, set j := j + 1, if j ≤ s, repeat Step 3; Otherwise STOP: the SOF
law doesn’t exist.

Step 4: Case 1: if j ≤ p and vj ≤Mj , then check whether the principle submatrix with
row and column indices [v2

1 ,
∑j
c=1 nc] except for vNj

j , j ∈ [1, s] is nilpotent. If yes, set
j := j + 1, vj := 1, otherwise set vj := vj + 1. Repeat Step 4.
Case 2: if j ≤ p and vj > Mj , set j := j − 1 and vj := vj + 1. If j ≤ s repeat Step 3,
otherwise repeat Step 4.
Case 3: if j > p, then STOP; there exists an SOF law such that the DFA is SOF
stabilizable to Xs and the SOF matrices is K = δm[c1v1 , c

2
v2 , . . . , c

p
vp

].

Remark 3.15. If there exist multi-equilibriums belonging to O(yj), simply adjust the
formula (12) of the Algorithm. For example, there exist two equilibriums belonging to
O(y1), the parameters in the Algorithm are adjusted as following: N2 is equal to 2, and
Ni =

∑i−2
j=1 nj + 1 for i > 2.

3.3. Cycle-based SOFS

In this subsection, we investigate the problem of SOFS based on the cycle which is a
more common case. Firstly suppose that there exist a cycle or multi-cycles in DFA, and
we want to stabilize the DFA to the cycle by the SOF controller. And then the definition
of cycle-based SOFS is given and some theorems and the corresponding algorithm based
on the results are presented.

Definition 3.16. (Han et al. [11]) Given a DFA, an ordered set consisting of finite
distinct states Cs = {δr1n , δr2n , . . . δrs

n } ⊆ X is called a limit cycle with length s if there
exists a transition sequence δk1m δ

k2
m . . . δks

m ∈ Σ∗, where [r1, r2, . . . , rs] and [k1, k2, . . . , ks]
represent the sequence of state indices and event indices respectively such that δri

n =
f(δri−1

n , δki
m ), i = 2, 3, . . . , s, and δr1n = f(δrs

n , δ
js
m)

Limit cycle can be viewed as the generalization of equilibrium, namely, equilibrium
is a special cycle of length 1, and limit cycle is also a elementary cycle. Here we give the
definition of cycle-based SOFS.

Definition 3.17. A DFA is SOF stabilizable to a cycle of length s denoted by Cs if
there exists the output feedback law u(t) = Ky(t), K ∈ Lm×p such that the every state
transition trajectory arrives at Cs in a finite number of steps and stay at Cs forever.
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The detection and stabilization of limit cycle for DFA has been investigated in [11],
and the approach of calculating the limit cycles of different lengths has been given.
However, do there exist the difference between the cycle in [11] and the cycle this paper?
The answer is yes, this leads to the following definition and theorem.

Definition 3.18. Given a DFA and a cycle of length s denoted by Cs, namely, δr1n
δk1

m→ δr2n
δk2

m→

· · · δ
ks−1
m→ δrs

n

δks
m→ δr1n , if Hδri

n = Hδ
rj
n ⇒ δki

m = δ
kj
m for ∀i, j ∈ [1, s], the cycle Cs is SOF-

compatible.

Now based on definition above, a necessary condition is presented here to check the
cycle-based SOFS.

Theorem 3.19. Given a DFA and a cycle of length s denoted by Cs, If the system is
SOF stabilizable to the cycle Cs, then the cycle Cs must be SOF-compatible.

Another necessary (but not sufficient) condition for cycle-based SOFS can also be
given as follows:

Theorem 3.20. Consider the DFA (4) and a cycle denoted by Cs = {δr1n , δr2n , . . . δrs
n }

and the corresponding transition sequence is δk1m δ
k2
m . . . , δks

m . If the system is SOF stabi-
lizable to Cs, then

(1) ∀j ∈ [1, p], π(yj) 6= ∅;

(2) ∀i ∈ [1, 2, . . . s], δki
m ∈ π(Hδri

n ).

P r o o f . The necessary condition (1) holds significantly like the Theorem 3.3 and The-
orem 3.11. If the cycle has already been determined, the corresponding transition se-
quence is also fixed, and according to the Theorem 3.4 and Theorem 3.12, the condition
(2) is proved. �

Theorem 3.21. Consider the DFA (4)and a cycle denoted by Cs = {δr1n , δr2n , . . . , δrs
n }

and the corresponding transition sequence δk1m δ
k2
m . . . , δks

m . The system is SOF stabilizable
to Cs if and only if there exists an SOF law u(t) = Ky(t),K ∈ Lm×p and an integer
τ ∈ [1, n− s] such that the following conditions are satisfied:

(1) Coli(KH) ∈ π(yj), where δin ∈ O(yi) and π(yj) is the OFFE;

(2) Colri(KH) = δki
m , ∀i ∈ [1, s];

(2) Ωτ (r) = ∆n.

This theorem is proved in a similar way of Theorem 3.13, and the proof procedure is
omitted here.

Remark 3.22. Supposed that the DFA has already exist a cycle of length s which is
SOF-compatible. The algorithm to seek the SOF-compatible cycle is not discussed here.

The controller u(t) = Ky(t) is designed to satisfy the conditions of Theorem 3.21
where the corresponding SOF matrices K ∈ Lm×p can be calculated by the following
algorithm.
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Remark 3.23. For convenience and clear, supposed that the states in the cycle have
s − 1 different outputs which means that there exist two states of cycle with the same
output.

Algorithm c: By resorting the suitable permutations of the state and output com-
ponents, the output structure matrix is presented as H = diag{1Tn1

,1Tn2
, . . . ,1Tnp

}, where
n1 + n2 + · · · + np = n. and Xs is written as {xN1 = δN1

n , xN2 = δN2
n , . . . xNs = δNs

n },
where

Ni =


i, i = 1, 2
i−2∑
j=1

nj + 1, i > 2. (13)

The corresponding transition sequence of the cycle Cs is δk1m δ
k2
m . . . δks

m . The matrix
F nKHΦn can be presented as:

[blk1(Fv1), blk2(Fv2), . . . blkp(Fvp)]

where
∣∣Fvj

∣∣ = nj . Let vqj , q ∈ [1, nj ] denotes the qth indices of Fvj
, and the set of OFFE

can be represented as π(yj) :=
⋂vnj

j

i=v1j
Θ(Coli(E)).

Step 1: Check whether or not the cycle Cs {xN1 = δN1
n , xN2 = δN2

n , . . . xNs
= δNs

n } is
SOF-compatible. If yes, go to Step 2; otherwise STOP, there no exists an SOF law such
that the system is SOF stabilizable to cycle Cs.

Step 2: Check whether or not π(yj) :=
⋂vnc

j

i=v1j
Θ(Coli(E)) 6= ∅, ∀j ∈ [1, p]. If yes, set

π(yj) = {δc
j
1
m , δ

cj
2
m , . . . , δ

cj
Mj
m }, where cjl , l ∈ [1,Mj ] denotes the lth index of π(yj), and go

to Step 3; otherwise STOP, there no exists an SOF law.

Step 3: Check whether or not δki
m ⊆ π(HδNi

n ) for i ∈ [1, s]. If yes, update the set
π(HδNi

n ) := {δki
m}. And go to Step 4; otherwise STOP, there no exists an SOF law.

Step 4: Check whether the principal submatrix with row and column indices [vNj+1
j , v

nj

j ]

except for vNj

j , j ∈ [1, s− 1] is nilpotent or not. If yes, set j = s, vj := 1, and go to the
Step 5. Otherwise STOP: the SOF law doesn’t exist.

Step 5: Case 1: if j ≤ p and vj ≤Mj , then check whether the principle submatrix with
row and column indices [v2

1 ,
∑j
c=1 nc] except for vNj

j , j ∈ [1, s] is nilpotent. If yes, set
j := j + 1, vj := 1, otherwise set vj := vj + 1. Repeat Step 5.

Case 2: if j ≤ p and vj > Mj , set j := j− 1 and vj := vj + 1, repeat Step 5. If j ≤ s− 1
then STOP: the SOF law doesn’t exist.
Case 3: if j > p, then STOP; there exists an SOF law such that the DFA is SOF
stabilizable to Cs and the SOF matrices is K = δm[k1, k3, . . . , ks, c

s+1
vs+1

, . . . , cpvp
].

Remark 3.24. Now we extend the assumption to more general case. If the states of
the cycle Cs have s different outputs or other number different outputs, simply adjust
the formula (13) of the Algorithm c above. For example, if there exists s− 3 different
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outputs including three equal to y1 and two equal to y2, the parameters are adjusted as
following:

Ni =


i, i = 1, 2, 3
n1 + i− 3, i = 4, 5
i−5∑
j=1

nj + 1, i > 5.
(14)

4. ILLUSTRATIVE EXAMPLES

In this section, two examples are illustrated to validate the results and analyzed in
details from many different prospective.

Example 4.1. Consider DFA.X = {x1, x2, x3, x4, x5},
∏

= {e1, e2, e3, e4}, Y = {y1, y2,
y3, y4}. Identifying xi ∼ δi5(i ∈ [1, 5]), yj ∼ δj4(j ∈ [1, 4]) and ek ∼ δk4 (k ∈ [1, 4]).
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Fig. 3. state transition diagram for Example 4.1.

And by resorting to the suitable permutations of the state and output components,
we get the dynamics of Moore-type automata as follows:

x(t+ 1) = Fu(t)x(t)
y(t) = Hx(t). (15)

Where the transition structure matrix F , the output structure matrix H and the feasible
events matrix E are

F = δ5[0, 2, 0, 0, 4, 0, 5, 1, 0, 0, 3, 4, 0, 3, 0, 1, 1, 5, 0, 0],
H = δ4[1, 1, 2, 3, 4],

E =


0 1 0 0 1
0 1 1 0 0
1 1 0 1 0
1 1 1 0 0

 .
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A cycle exists in Example 4.1, so the considered automata are not stable to the
equilibrium point x1 = δ15 . Now we investigate the SOFS of the considered DFA at
equilibrium point. If we can find the SOF law u(t) = Ky(t),K ∈ Lm×p satisfying the
conditions of Theorem 3.6, the system will be SOFS to the equilibrium point.

According to the (9) and (10), we can obtain that for each integer j ∈ [1, 4],

Ξ1 = {δ44},
O(Hδ15) = O(y1) = {δ15 , δ25},
O(y2) = {δ35},
O(y3) = {δ45},
O(y4) = {δ55},

π(Hδ15) = π(y1) = {δ34 , δ44},
π(y2) = {δ24 , δ44},
π(y3) = {δ34},
π(y4) = {δ44}.

And the necessary conditions of theorem 3.3 and theorem 3.4 are satisfied. By
resorting to Algorithm a, we can calculate that the optimal SOF matrix is K =
δ4[4, 2, 3, 1]. All state transition trajectories arrive at the equilibrium point x1 = δ15 for
∀t ≥ 3, and the corresponding SOF paths with event string and SOF controller are:
x5

e1→
Ky4

x4
e3→
Ky3

x3
e2→
Ky2

x1 and x2
e4→
Ky1

x1.

Remark 4.2. The considered DFA is also a multi-equilibrium system, andXs = {x1, x2}.
We can find that π(Hδ25) = π(y1) = {δ44} is not belonging to the set Ξ2 = {δ14}, so the
necessary condition of theorem 3.12 is not satisfied, and then the system cannot be SOF
stabilizable to the set of multi-equilibrium Xs.

The considered DFA has a cycle C3 = {δ35 , δ55 , δ45} and the corresponding transition
sequence is δ44δ

1
4δ

3
4 . Now we investigate that whether the system is cycle-based SOFS.

Firstly, the states of cycle x3
e4→
y2
x5

e1→
y4
x4

e3→
y3
x3 have different outputs, which mean that

the cycle is SOF-compatible. By resorting to the Algorithm c, we can calculate that
the optimal SOF matrix is K = δ4[3, 4, 3, 1].

Example 4.3. Consider a traffic system. X = {x1, x2, x3, x4, x5, x6, x7, x8, x9} denotes
different locations in the map,

∏
= {e1, e2, e3, e4} denotes four different types of traffic

signal indicators, Y = {y1, y2, y3} represents the road names where the locations are.
The traffic system can be represented as the DFA transition diagram in the following.
The case that people in different locations get to x1 can be represented as the single-
equilibrium based stabilization.

And by resorting to the suitable permutations of the state and output components,
identifying xi ∼ δi9(i ∈ [1, 9]), yj ∼ δj3(j ∈ [1, 3]) and ek ∼ δk4 (k ∈ [1, 4]), and the
transition structure matrix F , the output structure matrix H and the feasible events
matrix E are

F = δ9[1, 5, 9, 3, 0, 0, 0, 0, 0, 7, 4, 5, 9, 4, 8, 9, 0, 0, 6, 8, 0, 0, 5, 2, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 2, 1],
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Fig. 4. state transition diagram for Example 4.3.

H = δ3[1, 1, 1, 1, 2, 2, 2, 3, 3],

E =


1 1 1 1 0 0 0 0 1
1 1 1 1 1 1 1 0 0
1 1 0 0 1 1 1 1 0
0 0 0 0 0 0 0 1 1

 .
A cycle exists in the considered DFA, so the DFA is not stable to the equilibrium

point x1 = δ19 . That is, people may be trapped in the cycle, and can not get to the
destination x1. Now we investigate the SOFS of the considered DFA at equilibrium
point. According to the (9) and (10), we can obtain that for each integer j ∈ [1, 3],

Ξ1 = {δ24},
O(Hδ19) = O(y1) = {δ19 , δ29 , δ39 , δ49},
O(y2) = {δ59 , δ69 , δ79},
O(y3) = {δ89 , δ99},

π(Hδ15) = π(y1) = {δ14},
π(y2) = {δ24 , δ34},
π(y3) = {δ34 , δ44}.

And the necessary conditions of theorem 3.3 and theorem 3.4 are satisfied. By
resorting to Algorithm a, we can calculate that the optimal SOF matrix is K =
δ4[1, 2, 4]. People can get to the location x1 = δ19 for ∀t ≥ 3, and the correspond-
ing SOF paths with event string and SOF controller are: x6

e3→
Ky2

x2, x7
e2→
Ky3

x9 and

x8
e4→
Ky3

x2
e1→
Ky1

x5
e2→
Ky2

x4
e1→
Ky1

x3
e1→
Ky1

x9
e4→
Ky3

x1.
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Remark 4.4. The SOF path with event string and SOF controller can be represented
as: people in the road y1 including the locations x1, x2, x3, x4 go along with the first type
of traffic signal indicator, and people in the road y2 including the locations x5, x6, x7 go
along with the second type of traffic signal indicator, and people in the road y3 including
the locations x8, x9 go along with the forth type of traffic signal indicator.

If we want that people in different locations get to the set Xs = {x1, x5}, the case
can be regarded as that the considered DFA is multi-equilibrium based stabilizable to
the Xs = {x1, x5}. We can find that the necessary conditions of theorem 3.11 and
Theorem 3.12 are satisfied, and by resorting to Algorithm b, the system can also be
SOF stabilizable to the set of multi-equilibrium Xs by the SOF matrix K = δ4[1, 3, 4].
The corresponding SOF paths with event string and SOF controller are: x6

e3→
Ky2

x2
e1→
Ky1

x5,

x8
e4→
Ky3

x2
e1→
Ky1

x5 and x7
e3→
Ky2

x1, x4
e1→
Ky1

x3
e1→
Ky1

x9
e4→
Ky3

x1.

If we want that people in different locations get to the cycle C3 = {δ39 , δ59 , δ49 , δ99}, the
case can be regarded as that the considered DFA is cycle-based stabilizable to the cycle.
The considered DFA has a cycle C3 = {δ39 , δ59 , δ49 , δ99} and the corresponding transition
sequence is δ24δ

1
4δ

2
4δ

2
4 . Now we investigate that whether the system is SOF stabilizable

to Cs. Firstly, the states of cycle x3
e2→
y1
x5

e2→
y2
x4

e2→
y1
x9

e3→
y3
x3 have 3 different outputs and

we can find that the cycle is SOF-compatible. The suitable permutations of the state
and output components can be found out and by resorting to the Algorithm c, we can
calculate that the optimal SOF matrix is K = δ4[2, 2, 4].

Remark 4.5. The parameters in the Algorithm c are adjusted as following:

Ni =


i, i = 1, 2
i−2∑
j=1

nj + 1, i > 2. (16)

4.1. Conclusion

In this paper, we investigate the equilibrium-based SOFS and cycle-based SOFS of
DFA by using STP of matrices. The sufficient and necessary algebraic conditions for
the existence of the SOFS are given, and then efficient algorithms to seek the SOF
controller are provided respectively. We generalize the SOFS results of BCN to the DFA
via the approach of STP of matrices, which helps the reader to the extended version
of SOFS problem of DFA and makes a better understanding of feedback stabilization.
Two examples are presented here to illustrate the effectiveness of the results.

A complete solution for the SOFS problem of DFA and how to reduce the compu-
tational complexity effectively of algorithms is still a challenging open problem. The
powerful ability of finite automata and its widely use deserve our continue exploration.
Future work will concentrate on the following directions:

(1) We try to find better result and the corresponding algorithm, and then generalize
the research to the set-based SOFS of DFA.
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(2) Automata theory is a synthesis tool for modeling and analyzing DESs, next we
will investigate the SOFS problem of DESs.
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