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ADAPTIVE TRACKING VIA PINNING
IN NETWORKS OF NONIDENTICAL NODES

Juan Gonzalo Barajas-Raḿırez

We investigate the control of dynamical networks for the case of nodes, that although dif-
ferent, can be make passive by feedback. The so-called V-stability characterization allows for
a simple set of stabilization conditions even in the case of nonidentical nodes. This is due to
the fact that under V-stability characterization the dynamical difference between node of a
network reduces to their different passivity degrees, that is, a measure of the required feedback
gain necessary to make the node stable at a desired solution. We propose a pinning control
strategy that extends this approach to solve the tracking problem, furthermore using an adap-
tive controller approach we provide a methodology to impose a common reference trajectory to
a network of different nodes by pinning only a few of them to the desired solution. We illustrate
our results with numerical simulation of well-known benchmark systems.
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1. INTRODUCTION

Many complex systems of interest can be modeled as networks, including the Internet,
WWW, genetic regulation, social groups and metabolic reactions, amount many other
interesting examples [3, 10]. The dynamical analysis of the different collective behaviors
that can occur in networks have become of great interest in recent years. The analysis of
networks differs from that of general dynamical systems in the fact that the behavior is
determine by two components: The rules governing the evolution of the individual nodes;
and the information flows traveling along the connecting structure of the network. In
other words, isolated dynamics of its nodes and its network topology [1, 13, 14]. This is
further complicated in the case of networks with different node dynamics [6, 18]. In the
literature the issue of nonidentical nodes has been addressed in different ways. One can
see, for example the synchronization problem in almost identical or structurally different
systems as both part of the nonidentical problem setting, yet they are significantly
different problems [2]. In this contribution, we focus on nonidentical nodes that although
different are of the same dimension and more significantly can be make passive by
feedback.
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Conventionally the first thing one does when analyzing the dynamics of a system is
to determine its stability. Therefore, we start by analyzing the stability properties of
the nodes in isolation, then the effect of the structural characteristics of its connections
are determine. To this end, we use a basic concept in nonlinear dynamical systems, e. g.,
its energy. Consider that there is an amount of feedback control that makes the node
passive. Then, there is an among of coupling required to preserve the overall dissipa-
tive nature of the nodes once they are interconnected. Briefly, we look for a common
Lyapunov function V (x) for all nodes in the network, which is constructed such that for
each node one can determine a passivity degree, that is, a scalar parameter indicating
the effort needed to stabilize the node by feedback, which allows to construct a Lya-
punov function for the coupled nodes that has its derivative along the node’s trajectories
negative definitive. Describing the network dynamics in this way we obtain its so-called
V-stability characterization of the network [4, 17]. Then, the effect of the network topol-
ogy can be derived from the eigenspectrum of its Laplacian matrix. In particular, for
nonidentical nodes, the V-stability characterization of the network has the advantage
that replaces the actual node dynamics by its degree of passivity independently of its
actual dynamical, under mild conditions of existence. Despite the conservativeness as-
sociated with Lyapunov stability analysis, using the V-stability characterization of the
network has the marked advantage of providing simple conditions for stabilization of
network. Furthermore, using the pinning control strategy, stabilization can be achieved
even when only a small fraction of the nodes are controlled [8, 15, 16]. The pinning
strategy has been used in the synchronization of networks [11, 19] and even for the lag
synchronization between two distinct networks [12]. In this contribution we propose an
adaptive version of the pinning strategy design to stabilize a network of nonidentical
nodes, and show that the proposed adaptive pinning strategy can be use to force the
network to track a desired solution.

The remainder of this paper is organized as follows: In Section 2, a detail description
of the V-stability characterization of a networks with nonidentical nodes is presented.
The pinning control problem for networks along with some of its variants including our
proposed adaptive pinning strategy are described in Section 3, where previous results
are extended to the tracking problem, that is imposition of a desired trajectory in the
network. A numerical illustration of the approach proposed is presented in Section 4.
Finally, the contribution is concluded with final comments in Section 5.

2. V-STABILITY OF DYNAMICAL NETWORKS

Consider a network of N linearly and diffusively coupled n-dimensional dynamical sys-
tems, its state equation is given by

ẋi(t) = fi(xi(t)) +
N∑

j=1,j 6=i

cijΓ[xj(t)− xi(t)], for i = 1, 2, . . . , N (1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))> ∈ Rn is the state variable of the ith node, and
fi : Rn → Rn is at least locally Lipschitz and describes the dynamics of the ith node in
isolation. The internal coupling between nodes is given by the zero-one diagonal matrix
Γ ∈ Rn×n, while the weighted connection between nodes is described by the external
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coupling matrix C = {cij} ∈ RN×N in the following way: if the ith node is connected to
the jth node (j 6= i), then cij = cji > 0; otherwise cij = cji = 0. The diagonal elements
satisfy the diffusive condition: cii = −

∑N
j=1,j 6=i cij , for ∀i. That is C is zero-sum by

rows and columns
∑N

j=1 cij =
∑N

j=1 cji = 0. Under these conditions, the network can
be rewritten as:

ẋi(t) = fi(xi(t)) +
N∑

j=1

cijΓxj(t), for i = 1, 2, . . . , N (2)

Our first assumption is that there is a common equilibrium state.

Assumption 1. For each node in the network there is an common equilibrium state,
x̄ ∈ Rn, satisfying fi(x̄) = 0, for i = 1, 2, . . . , N , such that, for the entire network there
is a stationary homogeneous equilibrium state

X̄ = (x̄>, x̄>, . . . , x̄>)> ∈ RnN (3)

Locally the stability of equilibrium state solution of the network can be determine
linearizing its dynamics around X̄ [16]. To characterize the stability of the equilibrium
solution we make the following assumption.

Assumption 2. There is a continuously differentiable Lyapunov function V (x(t)) :
D ⊆ Rn → R+ satisfying V (x̄) = 0 with D =

⋃N
i=1Di, Di = {xi(t) : ‖xi(t)− x̄‖ < α},

α > 0 and x̄ ∈ D, such that for each node function fi(xi(t)), there is a scalar θi

guaranteeing
∂V (xi(t))
∂xi(t)

(fi(xi(t))− θiΓ(x̄− xi(t))) < 0 (4)

for all xi(t) ∈ Di, xi(t) 6= x̄, i = 1, 2, . . . , N . Where for each node the value θi is called
its passivity degree [17].

For simplicity let X̄ = 0. Then, a Lyapunov function for the entire network is given
by:

Vall(X(t)) =
N∑

i=1

V (xi(t)) (5)

with X(t) = (x1(t)>, x2(t)>, . . . , xN (t)>)> ∈ RnN . Its time derivative along the trajec-
tories of X(t) is given by

V̇all(X(t)) =
N∑

i=1

∂V (xi(t))
∂xi

fi(xi(t)) +
N∑

i=1

∂V (xi(t))
∂xi

N∑
j=1

cijΓxj(t). (6)

From Assumption 2 one has Vall(X̄) = 0 and V̇all(X̄) = 0. Then, for X(t) 6= X̄ = 0,
the following inequality is found

V̇all(X(t)) < −
∑N

i=1
∂V (xi(t))

∂xi
θiΓxi(t) +

∑N
i=1

∂V (xi(t))
∂xi

∑N
j=1 cijΓxj(t)

V̇all(X(t)) < M(X(t))
(7)
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where

M(X(t)) =
N∑

i=1

∂V (xi(t))
∂xi

−θiΓxi(t) +
N∑

j=1

cijΓxj(t)

 . (8)

Then, it follows that the network (2) is asymptotically stable about its equilibrium point
if M(X(t)) < 0 for all x(t) ∈ D, with D = D1 × D2 × . . . × DN ⊆ RnN . That is, the
network (2) is locally exponentially stable about its equilibrium point if

M(X(t)) ≤ −µ1‖X(t)‖2
µ2‖X(t)‖2 ≤ Vall(X(t)) ≤ µ3‖X(t)‖2 (9)

for some constants µ1, µ2, µ3 > 0 for all X(t) ∈ D. Moreover, the region of attraction
is given by

Ω = {X(t) : Vall(X(t)) < r} (10)

with r = infX(t)∈D Vall(X(t)). In the case of Ω = RnN , the stability becomes global.
Lets consider that there is a common monomial quadratic Lyapunov function V (x(t)) =

1
2x(t)>Qx(t) where Q = Q> > 0, that satisfies Assumption 2, with θi the passivity de-
gree value of the ith node in the network. Then, ∂V (xi(t))

∂xi
= xi(t)>Q, and (8) becomes

M(X(t)) =
N∑

i=1

xi(t)>

−θiQΓxi(t) +
N∑

j=1

cijQΓxj(t)

 (11)

which in Kronecker product notation becomes

M(X(t)) = X(t)>[(−Θ + C)⊗QΓ]X(t) (12)

where Θ = Diag(θ1, θ2, . . . , θN ) ∈ RN×N . For the time derivative of the Lyapunov func-
tion to be definitive negative (−Θ+C)⊗QΓ must be definitive negative, or equivalently
the following inequalities must hold [17]:

QΓ + Γ>Q ≥ 0 (13)

−Θ + C ≤ 0. (14)

An important remark is that using this approach the stability of the equilibrium
solution of the network can be determine from the passivity degree of the nodes. In
particular, if all the passivity degree values are positive θi > 0, then the network is
V-stable about its equilibrium point. In particular, for nodes that don’t have a positive
passivity degree a pinning control strategy can be use to make the entire network V-
stable [4, 17, 11].

3. V-STABILITY BY PINNING CONTROL

Without loss of generality, assume that the first l nodes in the network are pinning to
the desired equilibrium solution (x̄ = 0) via controllers of the form

ui(t) = −Kixi(t), for i = 1, 2, . . . , l. (15)
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In [5] it was shown that a network of identical nodes can be pinned to a common
equilibrium point by a single pinning controller, with the shortcoming of requiring an
extremely large gain. In the case of nonidentical nodes, this result has not been establish,
as the difference between nodes can be arbitrary and these differences may require control
actions beyond what a single controller can provide, even at very large gain values. Using
the V -stability approach in [17] a bound on the number of controllers related to the
passivity degree is argued to be the number of eigenvalues that need to change to made
M(X(t)) negative definitive. However, since the performance of the controlled network
depends on the coupling structure and node dynamics, to determine the optimal control
gains becomes a multifactoral problem, which must additionally take into account the
amount of energy required to achieved the desired control objective.

Under the action of (15) the dynamics of an isolated node in close-loop becomes

ẋi(t) = fi(xi(t))−BiKixi(t) (16)

where Ki ∈ Rm×n and Bi ∈ Rn×m are the pinning gain and the input matrices of the
ith node, respectively.

Following a similar derivation as above, the passivity degree of a controlled nodes can
be determine from Assumption 2, then we have

∂V (xi(t))
∂xi

(fi(xi(t))−BiKixi(t)− θiΓ(x̄− xi(t)) + κiΓxi(t)) < 0 (17)

for all xi(t) ∈ Di ⊆ D, xi(t) 6= 0, with i = 1, 2, . . . , l and x̄ = 0. T Where the additional
constants κi ≥ 0 represent the effect of the local controller on the level of passivity of
ith node. Then, we have

∂V (xi(t))
∂xi

(fi(xi(t))−BiKixi(t) + (θi + κi)Γxi(t)) < 0. (18)

Assuming that the Lyapunov function is quadratic, the previous derivation holds
and the V-stability condition becomes that the characteristic matrix of the controlled
network be negative definitive

P = −Θ + C −K (19)

where K ∈ RN×N is a diagonal matrix with l elements given by κi, i = 1, 2, . . . , l, and
its remaining N − l diagonal elements zeros.

The contribution of the pinning controllers can make the entire network V-stable. The
questions of which and how many nodes must be chosen to make the network V-stable
are of great interest and remain open problems that can be addressed from different
perspectives like control energy and structural features [4, 11, 9]. Using simple linear
algebra arguments, in [17] an argument is made to chose as many nodes as nonnegative
eigenvalues of the matrix −Θ + C, provided that the coupling strength be sufficiently
large.

The above approach can be extended to address the tracking problem in networks of
nonidentical nodes. To that end, we first assume the following:
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Assumption 3. The control objective for the entire network is that each node tracks
the reference dynamics

ṡ(t) = f(s(t)) (20)

where f : Rn → Rn is at least locally Lipschitz.

It is further assume that:

Assumption 4. For each node in the network there are real constants γi such that

‖f(s(t))− fi(xi(t))‖ ≤ γi‖s(t)− xi(t)‖, for ∀t and i = 1, 2, . . . , N. (21)

The inequality (21) is perhaps restrictive, yet is satisfied by different benchmark chaotic
systems like the ones used in the numerical simulation. Furthermore, this assumption
can be replace by the QUAD condition as in [7] with similar results.

The dynamics of the tracking errors ei(t) = s(t)−xi(t) is obtained from (2) and (20)
to be

ėi(t) = f(s(t))−

fi(xi(t)) +
N∑

j=1

cijΓej + νi(t)

 for i = 1, 2, . . . , N (22)

where the controllers νi(t) are design such that the entire network be V -stable about
the solution S(t) =

[
s(t)>, . . . , s(t)>

]> ∈ RnN . As shown above, this can be achieved
by applying the controllers only to l nodes in the network. In particular, we propose to
use the following feedback controller

νi(t) = −Ki(t)Γei(t), (23)

where the control gains are generated by the adaptive law:

K̇i(t) = αiei(t)>ei(t), for i = 1, 2, . . . , l (24)

note that the controller gains for l + 1, l + 2, . . . , N are set to zero.
We endeavor to use the V -stability approach to design the controllers νi, therefore we

make the additional assumption that each tracking error has a passivity degree. That
is:

Assumption 5. Consider that for each tracking error (22) there exist a Lyapunov
function such that

∂V (xi(t))
∂xi

(Fi(ei(t), s(t))− Θ̂iΓei(t)) < 0, for i = 1, 2, . . . , N (25)

where Fi(ei(t), s(t)) = f(s(t))−
[
fi(xi(t)) +

∑N
j=1 cijΓej + νi(t)

]
and Θ̂i is the passitivy

degree of the ith tracking error.
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The main restriction to solve the tracking problem using the V -stability approach is in
fact the existence of the passivity degree Θ̂i for the tracking errors. The existence of Θ̂i

is directly related to the reference solution, in the case of identical nodes if the reference
solution is a solution of the nodes, this problem is similar to pinning synchronization as
presented in [11].

Following the same procedure as before, the stability of the zero solution of the
tracking error dynamics can be determine using the Lyapunov function

Vall(E(t)) =
1
2

N∑
i=1

(ei(t)>ei(t) +
1
αi

(Ki(t)−K∗)2 (26)

with E(t) = (e1(t)>, e2(t)>, . . . , eN (t)>)> ∈ RnN . Its time derivative along the trajec-
tories of E(t) is given by

V̇all(E(t)) =
N∑

i=1

ei(t)>

Θ̂iΓ +
N∑

j=1

cijΓ + (Ki(t)−K∗)

 ei(t). (27)

Then, following a similar derivation as before, for a sufficiently large K∗ > 0 the
adaptive pinning controller will stabilize the zero fixed point of the tracking error making
the characteristic matrix P̂ = −Θ̂ + C − K̂ negative definitive where the first l diagonal
elements of K̂ are the contribution of the pinning controllers and the remaining N − l
are zero.

4. NUMERICAL SIMULATIONS
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Fig. 1. Stabilizing a network of N = 30 nonidentical nodes with one

controller per type (l = 3) to a common fixed point (x̄ = [0, 0, 0]>).

To illustrate our theoretical results we consider a network with thirty nodes of three
different types. In particular, ten are Lorenz dynamical systems [6], ten are Chen systems
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[14], and the remaining ten nodes are dimensionless Chua’s circuits [13]. The equations
that describe these systems are (28), (29), and (30), respectively.

ẋL(t) =

 aL(xL2(t)− xL1(t))
cLxL1(t)− xL2(t)− xL1(t)xL3(t)
xL1(t)xL2(t)− bLxL3(t)

 (28)

ẋC(t) =

 aC(xC2(t)− xC1(t))
(cC − aC)xC1(t) + cCxC2(t)− xC1(t)xC3(t)
xC1(t)xC2(t)− bCxC3(t)

 (29)

ẋc(t) =

 Ac1xc(t) +Bc1, if xc1(t) > 1
Ac2xc(t) +Bc2, if |xc1(t)| ≤ 1
Ac3xc(t) +Bc3, if xc1(t) < −1

(30)

where the parameter values are chosen to be aL = 10, bL = 8
3 , and cL = 28 for

the Lorenz system; aC = 35, bC = 3, and cC = 28 for the Chen systems; while

for the Chua’s circuit the parameters are Ac1 = Ac3 =

 −α(1 +m0) α 0
1 −1 1
0 −β 0

,

Ac2 =

 −α(1 +m1) α 0
1 −1 1
0 −β 0

, Bc1 = [−α(m1 −m0), 0, 0]>, Bc2 = [0, 0, 0]>, Bc3 =

[α(m1 −m0), 0, 0]> with α = 9, β = 100
7 , m0 = − 5

7 , and m1 = − 8
7 . Is important to

remark that for these parameter set the solutions of all nodes in isolation are bounded
and evolve in their well-known chaotic attractors [6].

A common Lyapunov function for all the nodes in the network is given by

V (x(t)) =
1
2
x(t)>Qx(t), with Q = Diag(1, 1, 1). (31)

The passivity degree θ for each system type is easily calculated from (4). In the case
of the Lorenz systems, with Γ = I3, the inequality becomes

38xL1xL2 − (10x2
L1 − θLx

2
L1 + x2

L2 − θLx2
L2 +

8
3
x2

L3 − θLx
2
L3) < 0 (32)

which is negative for θL ≤ −15.5. For the Chen system, using the same V (x(t)) and Γ,
the inequality becomes:

28xC1xC1 + 28x2
L2 + θCx

2
C2 − 35x2

C1 + θCx
2
C1 − 3x2

C3 + θCx
2
C3 < 0. (33)

For θC < −28 is negative. Finally, for the Chua system (30) the inequlity becomes

− 2.5713x2
c1 + 10xc1xc2 − x2

c2 − 13.28xc2xc3 + θcx
2
c1 + θcx2

c2 + θcx
2
c3) < 0 (34)

in this case, for θc < −5 the inequality is satisfied. With these passivity degrees the
basin of attraction is given by {x(t) ∈ R3 : |x(t)| < r = 10}.
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Fig. 2. Tracking the behavior of xC(t) on a network of N = 30

nonidentical nodes with one controller per type (l = 3).

Using the Barabási-Albert scale-free algorithm as described in [13], a network form
by linear and diffusively coupling ten of each Lorenz, Chen, and Chua systems is con-
structed. Therefore in all the network has N = 3. Without loss of generality, the nodes
in the network are ordered from largest to lowest node degree. Additionally, we have one
node of each type for the first three indexes. Then, we propose to applied the adaptive
controllers of the form (23) only to the first three nodes in the network, that is, l = 3
with one controller for each type of node.

In the first case, the pinning objective is x̄ = 0, which is a common fixed point to
all the nodes in the network. With the control action applied at t = 10, the results are
shown in Figure 1.

In our second case, the reference is to track the isolated behavior of the Chen system
(29), that is, s(t) = xC(t). Again, the control action is applied at t = 10. The results
are shown in Figure 2.

5. CONCLUSIONS

In this contribution we use the V -stability characterization of a dynamical network with
different nodes as the bases from which to proposed a solution to the tracking problem as
an extension of the stabilization solution that V -stability provides. The use of pinning
controllers and the way this selected actions make the entire network V -stable around a
given solution is also shown. The main shortcoming in the application of this approach
is the requirement that a passivity degree exist for the systems or error dynamics under
consideration, however this restriction is not necessary unsurmountable, as many chaotic
benchmarks are dissipative and passiviable by feedback as shown in the numerical exam-
ples. An additional restriction of the approach is the inherited conservativeness of the
Lyapunov approach, in this sense, using an adaptive control law is proposed as a simple
solution that provides a effective way to avoid the need for extremely large feedback
gains.

(Received May 31, 2017)
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