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PASSIVITY ANALYSIS OF UNCERTAIN STOCHASTIC
NEURAL NETWORK WITH LEAKAGE AND
DISTRIBUTED DELAYS UNDER IMPULSIVE
PERTURBATIONS

Senthil Raj, Raja Ramachandran, Samidurai Rajendiran, Jinde Cao and
Xiaodi Li

In this paper, the problem of passivity analysis for a class of uncertain stochastic neural
networks with mixed delays and impulsive control is investigated. The mixed delays include
constant delay in the leakage term, discrete and distributed delays. The discrete delays are
assumed to be time-varying and belong to a given interval, which means that the lower and
upper bounds of interval time-varying delays are available. By using Lyapunov stability theory,
stochastic analysis, linear matrix inequality techniques and introducing some free-weighting ma-
trices, several novel sufficient conditions are derived to guarantee the passivity of the suggested
system in the sense of mean square under two cases: with known or unknown parameters. It
is believed that these results are significant and useful for the design and applications of im-
pulsive stochastic neural networks. Finally, two numerical examples are provided to show the
effectiveness of the theoretical results.
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1. INTRODUCTION

Neural networks can imitate the human brain, and they have been used for a wide vari-
ety of applications, for example, target tracking, machine learning, system identification
and so on [7, 25, 30]. Moreover, as we know, the applications of neural networks heavily
depend on their dynamic behaviors. On the other hand, time delays are always unavoid-
ably encountered in the implementation of neural networks due to the finite switching
speed of neurons and amplifiers. Therefore, increasing attention has been paid to the
problem of neural networks with various delays have been reported in [3, 4, 18, 12, 33].
Some criteria have been proposed to ensure the fixed-time synchronization for memris-
tive neural network [3]. The H∞ filtering problem for delayed discrete-time switched
neural networks has been considered in [4].

On the other hand, due to modeling and measurement errors, neural network is often
disturbed by stochastic factors and the parameter uncertainties. Because in real nervous
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system, synaptic transmission is a noisy process and the connection weights of the neu-
rons depend on certain resistance and capacitance values which include uncertainties.
Hence, their presence must be considered in realistic dynamics and some results related
to this problem have recently published in [8, 11, 14, 29].

The concept of passivity has played an important role in the analysis of the stability
of dynamical systems, nonlinear control, and other research areas. The essence of the
passivity theory is that the passive properties of a system can keep the system internal
stability. So it gives a way to study nonlinear system only by means of the general
characteristics of the input-output dynamics. Recently, passivity analysis problem for
various neural networks was widely investigated in the literature [5, 15, 20, 34, 37]. Cao
and Li have investigated the stability of memristive neural networks with leakage delay,
and the uncertainties was also considered [15]. In [5], Chen et al. presented, both delay-
independent and delay-dependent passivity conditions for stochastic neural network in
the sense of mean square. Very recently Raja et al.[28], discussed the passivity analysis
for stochastic BAM neural networks with time-varying structured uncertainties.

As we know, time delay in the stabilizing negative feedback term has a tendency to
destabilize a system [6, 16]. Like the traditional time delays, the leakage delays also
have a great impact on the dynamics of neural networks and many works appeared in
the literature, see [13, 17, 22, 31]. Based on this work, [31] pay attention to the passivity
analysis of uncertain neural networks. In [22], authors studied the equilibrium point of
two classes fuzzy neural networks with delays in leakage terms; By use of the topological
degree theory, delay-dependent stability conditions of neural networks of neutral type
with time delay in the leakage term was proposed in [13]. Therefore, it is considerable
to investigate the passivity analysis of neural networks with time delays in the leakage
term and very little existing works appeared in the literature [1, 31, 36]. The passivity
properties of uncertain neural networks with leakage delay and time-varying delay has
been studied in [31]. In [1], authors investigated the problem for passivity analysis
of neutral type neural networks with Markovian jumping parameters and time delays
in the leakage term. Unfortunately, in these works, authors neglected the effects of
stochastic disturbances, which has also an important effect on the passivity analysis of
neural networks. But in [36], Zhao et al. presented the passivity problem for stochastic
neural networks with time-varying delays and leakage delay using Lyapunov functional
and free-weighting matrix method.

In addition, many physical systems undergo unexpected changes at certain moments
due to instantaneous perturbations, which leads to impulsive effects [19, 21]. It is worth
pointing out that neural networks are often subject to impulsive perturbations that
in turn affect dynamical behaviors of the system. It frequently occurs in fields such
as economics, mechanics, electronics, telecommunications, medicine and biology, etc.
Therefore, it is necessary to consider the impulsive effects to the passivity problem of
stochastic neural networks to reflect more realistic dynamics and several interesting
results have been reported for continuous-time and discrete-time neural networks [26,
27, 19, 35]. More recently, in [27], Raja et al. derived the dissipativity results for a
class of uncertain discrete-time stochastic neural networks with impulsive parameters.
However, to the best of our knowledge, the passivity analysis problem for stochastic
neural network with the effects of leakage delays and impulsive perturbations has not
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been investigated in the previous literature. This motivates our present study.
In this paper, we deal with the passivity problem of impulsive stochastic neural net-

works with leakage, discrete and distributed delays. Then by using Lyapunov functional,
Free weighting matrix method and stochastic analysis techniques, some sufficient con-
ditions that dependent on the delays for passivity are obtained in terms of LMIs, which
can be readily verified by using standard numerical software. Finally, two numerical
examples are given to illustrate the effectiveness of the proposed criteria.

Notations. Throughout this paper, Rn and Rn×m denote the n-dimensional Euclidean
space and the set of all n×m real matrices, respectively. The notation X ≥ 0 (respec-
tively, X > 0), where X is symmetric matrices, means that X is positive semi-definite
(respectively, positive definite). Let (Ω,F , {Ft}t≥0,P) be the complete probability space
with a filtration {Ft}t≥0 satisfying the usual conditions (i. e. the filtration contains all
P- null sets and is right continuous). ω(t) be a scalar Brownian motion defined on the
probability space. E[·] is the mathematical expectation operator with respect to the
given probability measure P.

2. PROBLEM FORMULATION

Consider the following uncertain stochastic neural networks with both discrete and dis-
tributed time-varying delays described by

dx(t) =
[
−Ax(t− δ) +Bg(x(t)) + Cg(x(t− τ(t))) +D

∫ t

t−d(t)

g(x(s)) ds+ u(t)
]

dt

+σ(t, x(t), x(t− τ(t)), x(t− d(t))) dω(t), t 6= tk

y(t) = g(x(t)),

∆x(tk) = −Ik
{
x(t−k )−A

∫ tk

tk−δ
x(s) ds

}
, t = tk, k ∈ Z+, (1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the state vector associated with the neu-
rons, g(x(t)) = [g1(x1(t)), g2(x2(t)), . . . , gn(xn(t))]T is the activation function, u(t) =
[u1(t), u2(t), . . . , un(t)]T is the input, y(t) = [y1(t), y2(t), . . . , yn(t)] is the output. σ ∈
Rn×q is the diffusion coefficient vector and w(t) = (w1(t), w1(t), . . . , wq(t))T is a q-
dimensional Brownian motion defined on a complete probability space
(Ω,F , {Ft}t≥0,P) be the complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions (i. e.the filtration contains all P- null sets and is right continuous).
The matrix A=diag(a1, a2, . . . , an) is a diagonal matrix with positive entries ai > 0.
B,C,D are the interconnection matrices representing the weight coefficients of the neu-
rons. Ik ∈ Rn×n, k ∈ Z+ denotes the impulsive matrix. The discrete delay τ(t) and
distribute delay d(t) satisfies

0 ≤ τ1 ≤ τ(t) ≤ τ2, τ̇(t) ≤ µ, 0 < d(t) ≤ d (2)

where τ1, τ2, d and µ are constants. The initial condition associated with model (1) is
given by

x(t) = φ(t), ∀t ∈ [−max{δ, τ1, τ2, d}, 0].



6 SENTHIL RAJ, RAJA RAMACHANDRAN, SAMIDURAI RAJENDIRAN, J. CAO, X. LI

Throughout this paper, it is assumed that the activation functions satisfy the follow-
ing assumptions:

(H1) For any j ∈ 1, 2, . . . , n, fj(0) = 0 and there exist constants F−j and F+
j such

that

F−j ≤
fj(α1)− fj(α2)

α1 − α2
≤ F+

j (3)

for all α1 6= α2.

(H2) Assume that σ : Rn ×Rn ×R+ × S → Rn is locally Lipschitz continuous and
satisfies the linear growth condition [24]. Moreover, σ satisfies

trace[σT (x1, x2, t, i)σ(x1, x2, t, i)] ≤ xT1 Σ1ix1 + xT2 Σ2ix2 (4)

for all x1, x2 ∈ Rn and x(t) = i, i ∈ S, where Σ1i and Σ2i are known positive constant
matrices with appropriate dimensions.

(H3) The impulsive time instant tk satisfy 0 = t0 < t1 < · · · < tk → ∞ and
infk∈z+{tk − tk−1} > 0.

Definition 1. The stochastic neural networks (1) is said to be stochastically passive
from input u(t) to output y(t), if there exists a scalar γ ≥ 0 such that the following
inequality holds:

2E
[∫ tf

0

yT (s)u(s) ds
]
≥ −γE

[∫ tf

0

uT (s)u(s) ds
]

(5)

for the solution of (1) with x(0) = 0. We introducing the following lemmas which are
useful in the proof of the main results.

Lemma 2.1. (Gu [9]) For any positive definite matrixM ∈ Rn×n, scalars h2 > h1 > 0,
vector function w : [h1, h2]→ Rn such that the integrations concerned are well defined,
the following inequality holds:

−(h2 − h1)
∫ t−h1

t−h2

wT (s)Mw(s) ds ≤ −
(∫ t−h1

t−h2

w(s) ds
)T

M

(∫ t−h1

t−h2

w(s) ds
)

−1
2

(h2
2 − h2

1)
∫ −h1

−h2

∫ t

t+θ

wT (s)Mw(s) dsdθ ≤ −
(∫ −h1

−h2

∫ t

t+θ

wT (s) dsdθ
)
M

×
(∫ −h1

−h2

∫ t

t+θ

w(s) dsdθ
)



Passivity analysis of uncertain stochastic neural network 7

Lemma 2.2. (Schur complement Boyd et al. [2]) For a symmetric matrix S =[
S11 S12

ST12 S22

]
, the following conditions are equivalent:

(1) S < 0,

(2) S11 < 0, and S22 − ST12S
−1
11 S12 < 0,

(3) S22 < 0, and S11 − S12S
−1
22 S

T
12 < 0.

Lemma 2.3. (Boyd et al. [2]) For any matrices X, Y , the following matrix inequality
holds:

XTY + Y TX ≤ XTX + Y TY.

3. MAIN RESULTS

In this section, we will present passivity criteria for stochastic neural networks with both
discrete and distributed time delays in (1). Based on Lyapunov function and stochastic
analysis approach, delay-dependent passivity condition with impulsive perturbations is
presented in the following theorem. For presentation convenience, we denote

F1 = diag(F−1 F
+
1 , F

−
2 F

+
2 , . . . , F

−
n F

+
n ), F2 = diag

(
F−1 + F+

1

2
,
F−2 + F+

2

2
, . . . ,

F−n + F+
n

2

)
.

Theorem 3.1. Assume that assumptions (H1) – (H3) hold. For given scalars τ1, τ2, d,
δ and µ the stochastic neural network described by (1) is stochastically passive in the
sense of Definition 1, for any time varying delay τ(t) and d(t) satisfying (2), if there
exist constant scalars λi > 0 (i = 1, 2, 3), γ > 0, positive definite symmetric matrices

Pi (i = 1, 2, . . . , 5), Qi, Ti (i = 1, 2, . . . , 4), X1, X2, ∠ =
[
L1 L2

LT2 L3

]
, < =

[
R1 R2

RT2 R3

]
,

= =
[
S1 S2

ST2 S3

]
, positive diagonal matrices L, S, real matrices Z1, Z2,Mi, Ni, Ui (i =

1, 2, . . . , 8) such that the following LMI’s holds:

P1 < λ1I, (6)
X1 < λ2I, (7)
X2 < λ3I, (8)

[
P1 (I − Ik)TP1

∗ P1

]
≥ 0, k ∈ Z+, (9)

and

Ψ =

266666664

Ψ1
√
τ1M

√
τ2 − τ1N

√
τ2 − τ1U M N U

∗ −T1 0 0 0 0 0
∗ ∗ −T2 0 0 0 0
∗ ∗ ∗ −T2 0 0 0
∗ ∗ ∗ ∗ −X1 0 0
∗ ∗ ∗ ∗ ∗ −X2 0
∗ ∗ ∗ ∗ ∗ ∗ −X2

377777775
< 0, (10)
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where

Ψ1 = (Ψij)20×20

Ψ11 = −P1A−ATP1 + P2 + δ2P3 + P4 + L1 + τ2
1Q1 + (τ2 − τ1)2Q2 − F1L+M1

+MT
1 + [λ1 + τ1λ2 + (τ2 − τ1)λ3]ΣT1 Σ1, Ψ12 = MT

2 −N1 + U1,

Ψ13 = MT
3 −M1 +N1, Ψ14 = MT

4 − U1, Ψ15 = P1B + L2 + F2L+ Z1B +MT
5 ,

Ψ16 = P1C + Z1C +MT
6 , Ψ17 = MT

7 , Ψ18 = MT
8 , Ψ19 = −Z1A, Ψ110 = ATP1A,

Ψ112 = −Z1, Ψ113 = P1 + Z1, Ψ114 = P1D + Z1D,

Ψ22 = −(1− µ)R1 − F1S −N2 −NT
2 + U2 + UT2 + [λ1 + τ1λ2 + (τ2 − τ1)λ3]ΣT2 Σ2,

Ψ23 = −M2 +N2 −NT
3 + UT3 , Ψ24 = −NT

4 + UT4 − U2, Ψ25 = −NT
5 + UT5 ,

Ψ26 = −(1− µ)R2 + F2S −NT
6 + UT6 , Ψ27 = −NT

7 + UT7 , Ψ28 = −NT
8 + UT8 ,

Ψ33 = −L1 +R1 + S1 −M3 −MT
3 +N3 +NT

3 , Ψ34 = −MT
4 +NT

4 − U3,

Ψ35 = −MT
5 +NT

5 , Ψ36 = −MT
6 +NT

6 , Ψ37 = −L2 +R2 + S2 −MT
7 +NT

7 ,

Ψ38 = −MT
8 +NT

8 ,Ψ44 = −S1 − U4 − UT4 , Ψ45 = −UT5 , Ψ46 = −UT6 , Ψ47 = −UT7 ,
Ψ48 = −S2 − UT8 , Ψ55 = d2P5 + L3 + τ2

1Q3 + (τ2 − τ1)2Q4 − L, Ψ510 = −BTP1A,

Ψ512 = BTZT2 , Ψ513 = −I, Ψ66 = −(1− µ)R3 − S, Ψ610 = −CTP1A, Ψ612 = CTZT2 ,

Ψ77 = −L3 +R3 + S3, Ψ88 = −S3, Ψ99 = −P2, Ψ912 = −ATZT2 , Ψ1010 = −P3,

Ψ1013 = −ATP1, Ψ1014 = −ATP1D, Ψ1111 = −P4 + [λ1 + τ1λ2 + (τ2 − τ1)λ3]ΣT3 Σ3,

Ψ1212 = τ1T1 + (τ2 − τ1)T2 +
τ4
1

4
T3 +

(τ2
2 − τ2

1 )2

4
T4 − Z2 − ZT2 , Ψ1213 = Z2,

Ψ1214 = Z2D, Ψ1313 = −γI, Ψ1414 = −P5, Ψ1515 = −Q1, Ψ1616 = −Q2,

Ψ1717 = −Q3, Ψ1818 = −Q4, Ψ1919 = −T3, Ψ2020 = −T4

MT =
ˆ
MT

1 MT
2 MT

3 MT
4 MT

5 MT
6 MT

7 MT
8 0 0 0 0 0 0 0 0 0 0 0 0

˜
NT =

ˆ
NT

1 NT
2 NT

3 NT
4 NT

5 NT
6 NT

7 NT
8 0 0 0 0 0 0 0 0 0 0 0 0

˜
UT =

ˆ
UT1 UT2 UT3 UT4 UT5 UT6 UT7 UT8 0 0 0 0 0 0 0 0 0 0 0 0

˜

P r o o f . For simplicity, we denote

g(t) = −Ax(t− δ) +Bg(x(t)) + Cg(x(t− τ(t))) +D

∫ t

t−d(t)

g(x(s)) ds+ u(t), (11)

α(t) = σ(t, x(t), x(t− τ(t)), x(t− d(t))), (12)

then system (1) can be rewritten as

dx(t) = g(t)dt+ α(t)dw(t). (13)
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Choose a Lyapunov functional candidate for the system (1) to be

V (xt) =
9∑
i=1

Vi(xt) (14)

where

V1(xt) =
[
x(t)−A

∫ t

t−δ
x(s) ds

]T
P1

[
x(t)−A

∫ t

t−δ
x(s) ds

]

V2(xt) =
∫ t

t−δ
xT (s)P2x(s) ds+ δ

∫ 0

−δ

∫ t

t+θ

xT (s)P3x(s) dsdθ

V3(xt) =
∫ t

t−d(t)

xT (s)P4x(s) ds+ d

∫ 0

−d

∫ t

t+θ

gT (x(s))P5g(x(s)) dsdθ

V4(xt) =
∫ t

t−τ1
ϕT (s) ∠ ϕ(s) ds+

∫ t−τ1

t−τ(t)

ϕT (s) < ϕ(s) ds

+
∫ t−τ1

t−τ2
ϕT (s) = ϕ(s) ds

V5(xt) = τ1

∫ 0

−τ1

∫ t

t+θ

xT (s)Q1x(s) dsdθ + (τ2 − τ1)
∫ −τ1
−τ2

∫ t

t+θ

xT (s)Q2x(s) dsdθ

V6(xt) = τ1

∫ 0

−τ1

∫ t

t+θ

gT (x(s))Q3g(x(s)) dsdθ

+(τ2 − τ1)
∫ −τ1
−τ2

∫ t

t+θ

gT (x(s))Q4g(x(s)) dsdθ

V7(xt) =
∫ 0

−τ1

∫ t

t+θ

gT (s)T1g(s) dsdθ +
∫ −τ1
−τ2

∫ t

t+θ

gT (s)T2g(s) dsdθ

V8(xt) =
τ2
1

2

∫ 0

−τ1

∫ 0

θ

∫ t

t+λ

gT (s)T3g(s) dsdλdθ

+
τ2
2 − τ2

1

2

∫ −τ1
−τ2

∫ 0

θ

∫ t

t+λ

gT (s)T4g(s) dsdλdθ

V9(xt) =
∫ 0

−τ1

∫ t

t+θ

tr(αT (s)X1α(s)) dsdθ +
∫ −τ1
−τ2

∫ t

t+θ

tr(αT (s)X2α(s)) dsdθ

and

ϕ(s) =
[
x(s)
g(x(s))

]
.

Then, it can be obtained by Itô’s formula that

dV (xt, t) = LV (xt, t)dt+ 2xT (t)P1α(t) dω(t) (15)
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where

LV1(xt, t) = 2
[
x(t)−A

∫ t

t−δ
x(s) ds

]T
P1

[
−Ax(t) +Bg(x(t)) + Cg(x(t− τ(t))

+D
∫ t

t−d(t)

g(x(s)) ds+ u(t)
]
+ tr(αT (t)P1α(t)) (16)

LV2(xt, t) = xT (t)[P2 + δ2P3]x(t)− xT (t− δ)P2x(t− δ)− δ
∫ t

t−δ
xT (s)P3x(s) ds (17)

LV3(xt, t) = xT (t)P4x(t)− xT (t− d(t))P4x(t− d(t)) + d2gT (x(t))P5g(x(t))

−d
∫ t

t−d
gT (x(s))P5g(x(s)) ds (18)

LV4(xt, t) = ϕT (t)∠ϕ(t)− ϕT (t− τ1)∠ϕ(t− τ1) + ϕT (t− τ1)<ϕ(t− τ1)
−(1− µ)ϕT (t− τ(t))<ϕ(t− τ(t)) + ϕT (t− τ1)=ϕ(t− τ1)
−ϕT (t− τ2)=ϕ(t− τ2)

≤
[
x(t)
g(x(t))

]T [
L1 L2

LT2 L3

] [
x(t)
g(x(t))

]
−
[
x(t− τ1)
g(x(t− τ1))

]T [
L1 L2

LT2 L3

] [
x(t− τ1)
g(x(t− τ1))

]
+
[
x(t− τ1)
g(x(t− τ1))

]T [
R1 R2

RT2 R3

] [
x(t− τ1)
g(x(t− τ1))

]
−(1− µ)

[
x(t− τ(t))
g(x(t− τ(t)))

]T [
R1 R2

RT2 R3

] [
x(t− τ(t))
g(x(t− τ(t)))

]
+
[
x(t− τ1)
g(x(t− τ1))

]T [
S1 S2

ST2 S3

] [
x(t− τ1)
g(x(t− τ1))

]
−
[
x(t− τ2)
g(x(t− τ2))

]T [
S1 S2

ST2 S3

] [
x(t− τ2)
g(x(t− τ2))

]
(19)

LV5(xt, t) = xT (t)[τ2
1Q1 + (τ2 − τ1)2Q2]x(t)− τ1

∫ t

t−τ1
xT (s)Q1x(s) ds

−(τ2 − τ1)
∫ t−τ1

t−τ2
xT (s)Q2x(s) ds (20)

LV6(xt, t) = gT (x(t))[τ2
1Q3 + (τ2 − τ1)2Q4]g(x(t))− τ1

∫ t

t−τ1
gT (x(s))Q3g(x(s)) ds

−(τ2 − τ1)
∫ t−τ1

t−τ2
gT (x(s))Q4g(x(s)) ds (21)

LV7(xt, t) = gT (t)[τ1T1 + (τ2 − τ1)T2]g(t)−
∫ t

t−τ1
gT (s)T1g(s) ds−

∫ t−τ1

t−τ2
gT (s)T2g(s) ds

= gT (t)[τ1T1 + (τ2 − τ1)T2]g(t)−
∫ t

t−τ1
gT (s)T1g(s) ds

−
∫ t−τ1

t−τ(t)

gT (s)T2g(s) ds−
∫ t−τ(t)

t−τ2
gT (s)T2g(s) ds (22)
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LV8(xt, t) =
τ4
1

4
gT (t)T3g(t)− τ2

1

2

∫ 0

−τ1

∫ t

t+θ

gT (s)T3g(s) dsdθ +
(τ2

2 − τ2
1 )2

4
gT (t)T4g(t)

−
(
τ2
2 − τ2

1

2

)∫ −τ1
−τ2

∫ t

t+θ

gT (s)T4g(s) dsdθ (23)

LV9(xt, t) = τ1 tr(αT (t)X1α(t)) + (τ2 − τ1) tr(αT (t)X2α(t))

−
∫ t

t−τ1
tr(αT (s)X1α(s)) ds−

∫ t−τ1

t−τ2
tr(αT (s)X2α(s)) ds

≤ τ1λ2 tr(αT (t)X1α(t)) + (τ2 − τ1)λ3 tr(αT (t)X2α(t))

−
∫ t

t−τ1
tr(αT (s)X1α(s)) ds

−
∫ t−τ1

t−τ(t)

tr(αT (s)X2α(s)) ds−
∫ t−τ(t)

t−τ2
tr(αT (s)X2α(s)) ds. (24)

From Lemma 2.1, one can obtain

− δ
∫ t

t−δ
xT (s)P3x(s) ds ≤ −

(∫ t

t−δ
x(s) ds

)T
P3

(∫ t

t−δ
x(s) ds

)
(25)

−d
∫ t

t−d
gT (x(s))P5g(x(s))) ds ≤ −

(∫ t

t−d(t)

g(x(s)) ds
)T

P5

(∫ t

t−d(t)

g(x(s)) ds
)

(26)

−τ1
∫ t

t−τ1
xT (s)Q1x(s) ds ≤ −

(∫ t

t−τ1
x(s) ds

)T
Q1

(∫ t

t−τ1
x(s) ds

)
(27)

−(τ2 − τ1)
∫ t−τ1

t−τ2
xT (s)Q2x(s) ds ≤ −

(∫ t−τ1

t−τ2
x(s) ds

)T
Q2

(∫ t−τ1

t−τ2
x(s) ds

)
(28)

−τ1
∫ t

t−τ1
gT (x(s))Q3g(x(s)) ds ≤ −

(∫ t

t−τ1
g(x(s)) ds

)T
Q3

(∫ t

t−τ1
g(x(s)) ds

)
(29)

− (τ2 − τ1)
∫ t−τ1

t−τ2
gT (x(s))Q4g(x(s)) ds ≤ −

(∫ t−τ1

t−τ2
g(x(s)) ds

)T
Q4

×
(∫ t−τ1

t−τ2
g(x(s)) ds

)
(30)

−τ
2
1

2

∫ 0

−τ1

∫ t

t+θ

gT (s)T3g(s) dsdθ ≤ −
(∫ 0

−τ1

∫ t

t+θ

g(s) dsdθ
)T

× T3

(∫ 0

−τ1

∫ t

t+θ

g(s) dsdθ
)

(31)

−
(
τ2
2 − τ2

1

2

)∫ −τ1
−τ2

∫ t

t+θ

gT (s)T4g(s) dsdθ ≤ −
(∫ −τ1
−τ2

∫ t

t+θ

g(s) dsdθ
)T

× T4

(∫ −τ1
−τ2

∫ t

t+θ

g(s) dsdθ
)
. (32)
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For positive diagonal matrices L and S, we can get from Assumption (H1) that

0 ≤
[
x(t)
g(x(t))

]T [−F1L F2L
F2L −L

] [
x(t)
g(x(t))

]
, (33)

0 ≤
[
x(t− τ(t))
g(x(t− τ(t)))

]T [−F1S F2S
F2S −S

] [
x(t− τ(t))
g(x(t− τ(t)))

]
. (34)

From (11) – (13) the following equations are true for any matricesM,N,U,Zi (i = 1,2,3,4)
we have the following equations:

0 = 2ζT (t)M
[
x(t)− x(t− τ1)−

∫ t

t−τ1
f(s) ds−

∫ t

t−τ1
α(s) dω(s)

]
(35)

0 = 2ζT (t)N
[
x(t− τ1)− x(t− τ(t))−

∫ t−τ1

t−τ(t)

f(s) ds−
∫ t−τ1

t−τ(t)

α(s) dω(s)
]

(36)

0 = 2ζT (t)U
[
x(t− τ(t))− x(t− τ2)−

∫ t−τ(t)

t−τ2
f(s) ds−

∫ t−τ(t)

t−τ2
α(s) dω(s)

]
(37)

0 = 2[xT (t)Z1 + gT (t)Z2]× [−Ax(t− δ) +Bg(x(t)) + Cg(x(t− τ(t))

+D
∫ t

t−d(t)

g(x(s)) ds+ u(t)− g(t)] (38)

where

ζT (t) =

[
xT (t) xT (t− τ(t)) xT (t− τ1) xT (t− τ2) gT (x(t)) gT (x(t− τ(t)))

gT (x(t− τ1)) gT (x(t− τ2)) xT (t− δ)
∫ t

t−δ
xT (s) ds xT (t− d(t))

gT (t) uT (t)
(∫ t

t−d(t)

g(x(s)) ds
)T (∫ t

t−τ1
x(s) ds

)T (∫ t−τ1

t−τ2
x(s) ds

)T
(∫ t

t−τ1
g(x(s)) ds

)T(∫ t−τ1

t−τ2
g(x(s)) ds

)T (∫ 0

−τ1

∫ t

t+θ

g(s) dsdθ
)T

(∫ −τ1
−τ2

∫ t

t+θ

g(s) dsdθ
)T]

From the formula (35) – (37), we have

− 2ζT (t)M
∫ t

t−τ1
α(s) dω(s) ≤ ζT (t)MX−1

1 MT ζ(t) +
(∫ t

t−τ1
α(s) dω(s)

)T
X1

×
(∫ t

t−τ1
α(s) dω(s)

)
(39)



Passivity analysis of uncertain stochastic neural network 13

−2ζT (t)N
∫ t−τ1

t−τ(t)

α(s) dω(s) ≤ ζT (t)NX−1
2 NT ζ(t) +

(∫ t−τ1

t−τ(t)

α(s) dω(s)
)T

X2

×
(∫ t−τ1

t−τ(t)

α(s) dω(s)
)

(40)

−2ζT (t)U
∫ t−τ(t)

t−τ2
α(s) dω(s) ≤ ζT (t)UX−1

2 UT ζ(t) +
(∫ t−τ(t)

t−τ2
α(s) dω(s)

)T
X2

×
(∫ t−τ(t)

t−τ2
α(s) dω(s)

)
. (41)

On the other hand, from the Itô isometry in [24], we can obtain

E

(»Z t

t−τ1
α(s) dω(s)

–T
X1

»Z t

t−τ1
α(s) dω(s)

–)
= E

(Z t

t−τ1
tr[αT (s)X1α(s)] ds

)
(42)

E

(»Z t−τ1

t−τ(t)
α(s) dω(s)

–T
X2

»Z t−τ1

t−τ(t)
α(s) dω(s)

–)
= E

(Z t−τ1

t−τ(t)
tr[αT (s)X2α(s)] ds

)
(43)

E

(»Z t−τ(t)

t−τ2
α(s) dω(s)

–T
X2

»Z t−τ(t)

t−τ2
α(s) dω(s)

–)
= E

(Z t−τ(t)

t−τ2
tr[αT (s)X2α(s)] ds

)
(44)

Substituting (16) – (44) into (15), and by the mathematical expectation

E
{
LV (xt, t)− 2yT (t)u(t)− γuT (t)u(t)

}
≤ EζT (t)

{
Ψ1 + τ1MT−1

1 MT + (τ2 − τ1)NT−1
2 NT + (τ2 − τ1)UT−1

2 UT

+MX−1
1 MT +NX−1

2 NT + UX−1
2 UT

}
ζ(t)

−
∫ t

t−τ1

[
ζT (t)M + gT (s)T1

]
T−1

1

[
MT ζ(t) + T1g(s)

]
ds

−
∫ t−τ1

t−τ(t)

[
ζT (t)N + gT (s)T2

]
T−1

2

[
NT ζ(t) + T2g(s)

]
ds

−
∫ t−τ(t)

t−τ2

[
ζT (t)U + gT (s)T2

]
T−1

2

[
UT ζ(t) + T2g(s)

]
ds (45)

where Ψ1 is defined in (10).
Since last three terms in (45) are less than 0 , and we can obtain

E
{
LV (xt, t)− 2yT (t)u(t)− γuT (t)u(t)

}
≤ EζT (t)

{
Ψ1 + τ1MT−1

1 MT + (τ2 − τ1)NT−1
2 NT + (τ2 − τ1)UT−1

2 UT

+MX−1
1 MT +NX−1

2 NT + UX−1
2 UT

}
ζ(t). (46)

Now we consider the change of V (xt) at impulse time t = tk, k ∈ Z+. From (1) we have

x(tk)−A
∫ tk

tk−δ
x(s) ds = x(t−k )− Ik

[
x(t−k )−A

∫ tk

tk−δ
x(s) ds

]
−A

∫ tk

tk−δ
x(s) ds
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= (I − Ik)
[
x(t−k )−A

∫ tk

tk−δ
x(s) ds

]
. (47)

Moreover, it follows that from (9) that[
P1 (I − Ik)TP1

∗ P1

]
≥ 0

⇔
[
I −(I − Ik)T

0 I

] [
P1 (I − Ik)TP1

∗ P1

] [
I 0

−(I − Ik) I

]
≥ 0

⇔
[
P1 − (I − Ik)TP1(I − Ik) 0

∗ P1

]
≥ 0

⇔ P1 − (I − Ik)TP1(I − Ik) ≥ 0. (48)

Together with (47 ) and (48), it yields

V1(x(tk)) =
[
x(tk)−A

∫ tk

tk−δ
x(s) ds

]T
P1

[
x(tk)−A

∫ tk

tk−δ
x(s) ds

]
=
[
x(t−k )−A

∫ tk

tk−δ
x(s) ds

]T
(I − Ik)TP1(I − Ik)

[
x(t−k )−A

∫ tk

tk−δ
x(s) ds

]
≤
[
x(t−k )−A

∫ tk

tk−δ
x(s) ds

]T
P1

[
x(t−k )−A

∫ tk

tk−δ
x(s) ds

]
V1(x(tk)) = V1(x(t−k )).

Moreover it is obvious that V2(tk) = V2(t−k ), V3(tk) = V3(t−k ), V4(tk) = V4(t−k ), V5(tk) =
V5(t−k ), V6(tk) = V6(t−k ), V7(tk) = V7(t−k ), V8(tk) = V8(t−k ), V9(tk) = V9(t−k ).
which implies that

V (x(tk)) = V (x(t−k )), k ∈ Z+. (49)

It follows from (46) that

EdV (xt, t)− 2EyT (t)u(t)− γEuT (t)u(t)
= ELV (xt, t)− 2EyT (t)u(t)− γEuT (t)u(t)

≤ EζT (t)
[
Ψ1 + τ1MT−1

1 MT + (τ2 − τ1)NT−1
2 NT + (τ2 − τ1)UT−1

2 UT

+MX−1
1 MT +NX−1

2 NT + UX−1
2 UT

}
ζ(t).

Let

Ψ̂ = Ψ1 + τ1MT−1
1 MT + (τ2 − τ1)NT−1

2 NT + (τ2 − τ1)UT−1
2 UT
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+MX−1
1 MT +NX−1

2 NT + UX−1
2 UT .

By applying Schur complement [2], it is easy to see that Ψ̂ is equivalent to (10), then
we can obtain

EdV (xt, t)− 2EyT (t)u(t)− γuT (t)u(t) ≤ 0. (50)

By integrating (50) over the time period from 0 to tf , we have

2E
∫ tf

0

yT (s)u(s) ds ≥ EV (x0, 0)− γE
∫ tf

0

uT (s)u(s) ds ≥ −γE
∫ tf

0

uT (s)u(s) ds. (51)

From Definition 1, we know that the stochastic neural network (1) is passive in the sense
of expectation. This completes the proof. �

Remark 1. In the proof of Theorem 3.1, we introduce a new estimation on the upper
bound of the time derivative of V(t). For this, we introduce the following inequalities,

τ1ζ
T (t)MT−1

1 MT ζ(t)−
∫ t

t−τ1
ζT (t)MT−1

1 MT ζ(t) ds ≥ 0,

(τ2 − τ1)NT−1
2 NT ζ(t)−

∫ t−τ1

t−τ(t)

ζT (t)NT−1
2 NT ζ(t) ds ≥ 0,

(τ2 − τ1)UT−1
2 UT ζ(t)−

∫ t−τ(t)

t−τ2
ζT (t)UT−1

2 UT ζ(t) ds ≥ 0,

where it is employed in [10]; and τ(t) − τ1, τ2 − τ(t) were enlarged to τ2 − τ1. It is
easy to see that this treatment is more conservative than the expression in the proof of
Theorem 3.1.

Remark 2. It should be pointed out that the range of the time-varying delays in [36]
is varying from 0 to upper bounds. However, in many practical cases [5, 36, 37], the
time delays may typically exist on intervals, where the lower bounds of the time-varying
delays are not restricted to be 0. In this work, the time-varying delays are assumed
to be intervals, which means that the lower and upper bounds of interval time-varying
delay is available, where τ(t) ∈ [τ1, τ2]. On the other hand distributed delays, parameter
uncertainties and impulsive perturbations are considered; see Theorem 3.1.

Remark 3. In order to reduce the conservativeness, when obtaining the derivative of
V7(xt, t), V9(xt, t) the integral terms

∫ t−τ1
t−τ2 g

T (s)T2g(s) ds,
∫ t−τ1
t−τ2 α

T (s)X2α(s) ds is di-

vided into two parts as
∫ t−τ1
t−τ(t)

gT (s)T2g(s) ds,
∫ t−τ(t)

t−τ2 gT (s)T2g(s) ds and
∫ t−τ1
t−τ(t)

αT (s)X2

α(s) ds ,
∫ t−τ(t)

t−τ2 αT (s)X2α(s) ds respectively, which is mainly based on the information
about τ1 ≤ τ(t) ≤ τ2, which may leads to less conservative results.

Remark 4. In Assumption (H1), the constants F−j and F+
j j = 1, 2, . . . , n are allowed

to be positive, negative or zero. However, in [5, 26, 35], the Lipschitz constants are only
allowed to be positive. Hence, Assumption(H1), first proposed by Liu et al.in [23], is
weaker than the assumption in [5, 26, 35].
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4. PASSIVITY FOR UNCERTAIN STOCHASTIC NEURAL NETWORKS WITH
IMPULSES

In this section, we extend the previous passivity condition to the following uncertain
stochastic neural network:

dx(t) =
[
−(A+ ∆A(t))x(t− δ) + (B + ∆B(t))g(x(t)) + (C + ∆C(t))g(x(t− τ(t)))

+(D + ∆D(t))
∫ t

t−d(t)

g(x(s)) ds+ u(t)
]

dt

+σ(t, x(t), x(t− τ(t)), x(t− d(t)) dω(t), t 6= tk

y(t) = g(x(t))

∆x(tk) = −Ik
{
x(t−k )−A

∫ tk

tk−δ
x(s) ds

}
, t = tk, k ∈ Z+, (52)

where ∆A(t),∆B(t),∆C(t),∆D(t) are the time varying uncertainties of the form:

[
∆A(t) ∆B(t) ∆C(t) ∆D(t)

]
= HF (t)

[
G1 G2 G3 G4

]
(53)

where H,Gi(i = 1, 2, 3, 4) are known real constant matrices, F(t) is the time-varying
uncertain matrices, which satisfies FT (t)F (t) ≤ I.

Theorem 4.1. Assume that assumptions (H1) – (H3) holds. For given scalars τ1, τ2,
µ and d, the stochastic neural network described by (52) is stochastically passive in the
sense of Definition 1, for any time varying delay τ(t) and d(t) satisfying (2), if there
exist constant scalars λi > 0 (i = 1, 2, 3), γ > 0, positive definite symmetric matrices

Pi (i = 1, 2, . . . , 5), Qi, Ti (i = 1, 2, . . . , 4), X1, X2, ∠ =
[
L1 L2

LT2 L3

]
, < =

[
R1 R2

RT2 R3

]
,

= =
[
S1 S2

ST2 S3

]
, positive diagonal matrices L, S, real matrices Z1, Z2,Mi, Ni, Ui(i =

1, 2, . . . , 8) such that the following LMI holds:

P1 < λ1I, (54)
X1 < λ2I, (55)
X2 < λ3I, (56)[

P1 (I − Ik)TP1

∗ P1

]
≥ 0, k ∈ Z+, (57)

and

Ψ =

0BBBBBBBBBBBBB@

Ψ1
√
τ1M

√
τ2 − τ1N

√
τ2 − τ1U M N U Γd1 Γd2 Γd3

∗ −T1 0 0 0 0 0 0 0 0
∗ ∗ −T2 0 0 0 0 0 0 0
∗ ∗ ∗ −T2 0 0 0 0 0 0
∗ ∗ ∗ ∗ −X1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −X2 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −X2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1

4 I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1

4 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1

4 I

1CCCCCCCCCCCCCA
< 0, (58)
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where

Ψ55 = d2P5 + L3 + τ2
1Q3 + (τ2 − τ1)2Q4 − L+ 4GT2 G2,

Ψ66 = −(1− µ)R3 − S + 4GT3 G3,

Ψ99 = −P2 + 4GT1 G1, Ψ1414 = −P5 + 4GT4 G4.

Γd1 = col
[
P1H + Z1H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
Γd2 = col

[
0 0 0 0 0 0 0 0 0 0 0 Z2H 0 0 0 0 0 0 0 0

]
Γd3 = col

[
0 0 0 0 0 0 0 0 0 ATP1H 0 0 0 0 0 0 0 0 0 0

]
and other terms are same as defined in Theorem 3.1.

P r o o f . It is not difficult to check that system (52) is equivalent to the following form:

d

[
x(t)−A

∫ t

t−δ
x(s) ds

]
=

{
−Ax(t)−∆A(t)x(t− δ) + [B + ∆B(t))g(x(t))]

+[C + ∆C(t))g(x(t− τ(t))) + [D + ∆D(t))]

×
∫ t

t−d(t)

g(x(s)) ds+ u(t)

}
dt

+σ(t, x(t), x(t− τ(t), x(t− d(t))) dω(t). (59)

Then, from Theorem 3.1, we only need to estimate the following equalities:

LV1(xt, t) = 2
[
x(t)−A

∫ t

t−δ
x(s) ds

]T
P1

[
−Ax(t)−Ax(t− δ)

+(B + ∆B)g(x(t)) + (C + ∆C)g(x(t− τ(t))

+(D + ∆D)
∫ t

t−d(t)

g(x(s)) ds+ u(t)
]
+αT (t)P1α(t) (60)

0 = 2[xT (t)Z1 + fT (t)Z2]× [−(A+ ∆A)x(t− δ) + (B + ∆B)g(x(t))

+(C + ∆C)g(x(t− τ(t)) + (D + ∆D)
∫ t

t−d(t)

g(x(s)) ds

+u(t)− g(t)]. (61)

Replace ∆A, ∆B, ∆C, ∆D with HF (t)G1, HF (t)G2, HF (t)G3, HF (t)G4 respec-
tively, and using Lemma 2.3 in (60) and (61), we can obtain

− 2xT (t)P1∆A(t)x(t− δ) = −2xT (t)P1HF (t)G1x(t− δ)
≤ xT (t)P1HF (t)FT (t)HTP1x(t)

+xT (t− δ)GT1 G1x(t− δ)
≤ xT (t)P1HH

TP1x(t)
+xT (t− δ)GT1 G1x(t− δ) (62)
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2xT (t)P1∆B(t)g(x(t)) = 2xT (t)P1HF (t)G2g(x(t))
≤ xT (t)P1HF (t)FT (t)HTP1x(t)

+gT (x(t))GT2 G2g(x(t))
≤ xT (t)P1HH

TP1x(t)
+gT (x(t))GT2 G2g(x(t)) (63)

2xT (t)P1∆C(t)g(x(t− τ(t))) = 2xT (t)P1HF (t)G3g(x(t− τ(t)))
≤ xT (t)P1HF (t)FT (t)HTP1x(t)

+gT (x(t− τ(t)))GT3 G3g(x(t− τ(t)))
≤ xT (t)P1HH

TP1x(t)
+gT (x(t− τ(t)))GT3 G3g(x(t− τ(t))) (64)

2xT (t)P1∆D(t)
∫ t

t−d(t)

g(x(s)) ds = 2xT (t)P1HF (t)G4

∫ t

t−d(t)

g(x(s)) ds

≤ xT (t)P1HF (t)FT (t)HTP1x(t)

+
(∫ t

t−d(t)

g(x(s)) ds
)T

GT4 G4

×
(∫ t

t−d(t)

g(x(s)) ds
)

≤ xT (t)P1HH
TP1x(t)

+
(∫ t

t−d(t)

g(x(s)) ds
)T

GT4 G4

×
(∫ t

t−d(t)

g(x(s)) ds
)

(65)

2
(∫ t

t−δ
x(s) ds

)T
ATP1∆A(t)x(t− δ) = 2

(∫ t

t−δ
x(s) ds

)T
ATP1HF (t)G1x(t− δ)

≤
(∫ t

t−δ
x(s) ds

)T
ATP1HF (t)FT (t)HTP1A

×
(∫ t

t−δ
x(s) ds

)
+xT (t− δ)GT1 G1x(t− δ)

≤
(∫ t

t−δ
x(s) ds

)T
ATP1HH

TP1A

×
(∫ t

t−δ
x(s) ds

)
+xT (t− δ)GT1 G1x(t− δ) (66)

2
(∫ t

t−δ
x(s) ds

)T
ATP1∆B(t)g(x(t)) = 2

(∫ t

t−δ
x(s) ds

)T
ATP1HF (t)G2g(x(t))
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≤
(∫ t

t−δ
x(s) ds

)T
ATP1HF (t)FT (t)HTP1A

×
(∫ t

t−δ
x(s) ds

)
+gT (x(t))GT2 G2g(x(t))

≤
(∫ t

t−δ
x(s) ds

)T
ATP1HH

TP1A

×
(∫ t

t−δ
x(s) ds

)
+gT (x(t))GT2 G2g(x(t)) (67)

2
(∫ t

t−δ
x(s) ds

)T
ATP1∆C(t)g(x(t− τ(t)))

= 2
(∫ t

t−δ
x(s) ds

)T
ATP1HF (t)G3g(x(t− τ(t)))

≤
(∫ t

t−δ
x(s) ds

)T
ATP1HF (t)FT (t)HTP1A

(∫ t

t−δ
x(s) ds

)
+gT (x(t− τ(t)))GT3 G3g(x(t− τ(t)))

≤
(∫ t

t−δ
x(s) ds

)T
ATP1HH

TP1A

(∫ t

t−δ
x(s) ds

)
+gT (x(t− τ(t)))

×GT3 G3g(x(t− τ(t))) (68)

2
(∫ t

t−δ
x(s) ds

)T
ATP1∆D(t)

(∫ t

t−d(t)

g(x(s)) ds
)

= 2
(∫ t

t−δ
x(s) ds

)T
ATP1HF (t)G4

×
(∫ t

t−d(t)

g(x(s)) ds
)

≤
(∫ t

t−δ
x(s) ds

)T
ATP1HF (t)FT (t)HTP1A

(∫ t

t−δ
x(s) ds

)
+
(∫ t

t−d(t)

g(x(s)) ds
)T

GT4 G4

(∫ t

t−d(t)

g(x(s)) ds
)

≤
(∫ t

t−δ
x(s) ds

)T
ATP1HH

TP1A

(∫ t

t−δ
x(s) ds

)
+
(∫ t

t−d(t)

g(x(s)) ds
)T

GT4 G4

(∫ t

t−d(t)

g(x(s)) ds
)

(69)

− 2xT (t)Z1∆A(t)x(t− δ) = −2xT (t)Z1HF (t)G1x(t− δ)
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≤ xT (t)Z1HF (t)FT (t)HTZT1 x(t)
+xT (t− δ)GT1 G1x(t− δ)

≤ xT (t)Z1HH
TZT1 x(t)

+xT (t− δ)GT1 G1x(t− δ) (70)
2xT (t)Z1∆B(t)g(x(t)) = 2xT (t)Z1HF (t)G2g(x(t))

≤ xT (t)Z1HF (t)FT (t)HTZT1 x(t)
×+ gT (x(t))GT2 G2g(x(t))

≤ xT (t)Z1HH
TZT1 x(t)

×+ gT (x(t))GT2 G2g(x(t)) (71)
2xT (t)Z1∆C(t)g(x(t− τ(t))) = 2xT (t)Z1HF (t)G3g(x(t− τ(t)))

≤ xT (t)Z1HF (t)FT (t)HTZT1 x(t)
+gT (x(t− τ(t)))GT3 G3

×g(x(t− τ(t)))
≤ xT (t)Z1HH

TZT1 x(t)
+gT (x(t− τ(t)))GT3 G3

×g(x(t− τ(t))) (72)

2xT (t)Z1∆D(t)
∫ t

t−d(t)

g(x(s)) ds = 2xT (t)Z1HF (t)G4

∫ t

t−d(t)

g(x(s)) ds

≤ xT (t)Z1HF (t)FT (t)HTZT1 x(t)

+
(∫ t

t−d(t)

g(x(s)) ds
)T

GT4 G4

×
(∫ t

t−d(t)

g(x(s)) ds
)

≤ xT (t)Z1HH
TZT1 x(t) +

(∫ t

t−d(t)

g(x(s)) ds
)T

×GT4 G4

(∫ t

t−d(t)

g(x(s)) ds
)

(73)

−2fT (t)Z2∆A(t)x(t− δ) = −2fT (t)Z2HF (t)G1x(t− δ)
≤ fT (t)Z2HF (t)FT (t)HTZT2 f(t)

×+ xT (t− δ)GT1 G1x(t− δ)
≤ fT (t)Z2HH

TZT2 f(t)
+xT (t− δ)GT1 G1x(t− δ) (74)

2fT (t)Z2∆B(t)g(x(t)) = 2fT (t)Z2HF (t)G2g(x(t))
≤ fT (t)Z2HF (t)FT (t)HTZT2 f(t)

+gT (x(t))GT2 G2g(x(t))
≤ fT (t)Z2HH

TZT2 f(t)
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×+ gT (x(t))GT2 G2g(x(t)) (75)
2fT (t)Z2∆C(t)g(x(t− τ(t))) = 2fT (t)Z2HF (t)G3g(x(t− τ(t)))

≤ fT (t)Z2HF (t)FT (t)HTZT2 f(t)
+gT (x(t− τ(t)))GT3 G3g(x(t− τ(t)))

≤ fT (t)Z2HH
TZT2 f(t)

+gT (x(t− τ(t)))GT3 G3g(x(t− τ(t))) (76)

2fT (t)Z2∆D(t)
∫ t

t−d(t)

g(x(s)) ds = 2fT (t)Z2HF (t)G4

∫ t

t−d(t)

g(x(s)) ds

≤ fT (t)Z2HF (t)FT (t)HTZT2 f(t)

+
(∫ t

t−d(t)

g(x(s)) ds
)T

GT4 G4

×
(∫ t

t−d(t)

g(x(s)) ds
)

≤ fT (t)Z2HH
TZT2 f(t)

+
(∫ t

t−d(t)

g(x(s)) ds
)T

GT4 G4

×
(∫ t

t−d(t)

g(x(s)) ds
)
. (77)

Then along the same line as for Theorem 3.1, we can obtain the desired result by applying
Lemma 2.2 and (62) – (77). This completes the proof of Theorem 4.1. �

Remark 5. From proof of above Theorems 3.1 and 4.1, we can see that the novelty of
the Lyapunov functional contains, quadratic Lyapunov–Krasovskii functional terms in
V4(xt, t), and triple-integral terms in V8(xt, t) are introduced, which can be expected to
reduce the conservatism. More specifically to improve the feasible region for the corre-
sponding system, by taking the states

∫ t
t−τ1 x

T (s) ds,
∫ t−τ1
t−τ2 x

T (s) ds,
∫ t
t−τ1 g

T (x(s)) ds,∫ t−τ1
t−τ2 g

T (x(s)) ds,
∫ −τ1
−τ2

∫ t
t+θ

g(s) dsdθ,
∫ −τ1
−τ2

∫ t
t+θ

αT (s) dsdθ, the passivity conditions in
Theorems 3.1 and 4.1 sufficiently utilize more information on state variables, which can
yield less conservatism.

Remark 6. In [5, 20], the authors discussed the passivity analysis of stochastic neural
networks with time varying delay. But in this paper, we have studied passivity analysis
of stochastic neural networks with leakage and distributed delays using impulse control.
Moreover, different from the previous literature, our results are derived by constructing a
new Lyapunov–Krasovskii functional with triple integral terms with bounding technique.
In addition, some free weighting matrices are introduced in Theorem 3.1 for getting
feasible solution. To ascertain the passivity for the stochastic neural network with
time delays in the leakage terms, Theorem 4.1 further presents sufficient conditions for
the correspondent system with unknown parameters (58). Hence, in our knowledge,
passivity problem of stochastic interval neural network with distributed delays in the
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leakage terms using impulsive perturbations has never been studied in the previous
literature and it is essentially new.

5. NUMERICAL EXAMPLES

In this section, we are analyzing examples showing the effectiveness of the proposed
methods.

Example 1. Consider the stochastic neural network with time varying delays and
impulses in (1). The parametric coefficients are

A =
[
5 0
0 7

]
, B =

[
0.3 −4
0.1 0.3

]
, C =

[
0.4 0.2
0.1 0.6

]
, D =

[
0.4 −0.3
0.1 0.6

]
,

Σ1 =
[
0.3 0.1
0.5 −0.1

]
, Σ2 =

[
−0.1 0.2

0 0.1

]
, Σ3 =

[
0.4 0.3
0.2 0

]
, Ik =

[
0.5 0
0 0.5

]
.

The activation functions are taken as follows:

g1(x) =
1
20

(| x+ 1 | + | x− 1 |), g2(x) =
1
10

(| x+ 1 | + | x− 1 |).

It can be verified that Assumption (H1) is satisfied with F−1 = −0.1, F+
1 = 0.1,

F−2 = −0.2, F+
2 = 0.2. Thus

F1 =
[
−0.01 0

0 −0.04

]
, F2 =

[
0 0
0 0

]
,

Our main purpose in this example is to estimate the maximum allowable upper bound
delay τ2, d for given lower bound τ1. For τ1 = 1.6, µ = 0.5, δ = 0.1, by solving LMIs
(6) – (10) in Theorem 3.1 using MATLAB LMI toolbox, one can obtain the feasible
solution for any time delay satisfying 0 < d(t) ≤ 1.5243 and 0 ≤ 1.6 < τ(t) ≤ 3.2458.
For example, if we take µ = 0.5, δ = 0.1, d = 0.8, τ1 = 1.6 and τ2 = 2.8 we obtain the
following feasible solutions

P1 =
[
175.1815 0.1912
0.1912 220.2178

]
, P2 =

[
101.2050 0.0368
0.0368 138.3154

]
, P3 = 104 ×

[
2.2897 0.0987
0.0987 7.5980

]
,

P4 =
[
54.1964 22.1242
22.1242 33.6705

]
, P5 = 103 ×

[
1.1855 −0.0208
−0.0208 0.6355

]
, L1 =

[
72.6224 −5.3054
−5.3054 93.0195

]
,

L2 =
[
110.0120 36.3356
36.3356 106.1753

]
, L3 = 103 ×

[
2.1376 0.2181
0.2181 1.0399

]
, R1 =

[
38.0286 −5.9779
−5.9779 59.6507

]
,

R2 =
[
71.5361 13.2683
13.2683 55.1780

]
, R3 =

[
659.6061 116.7109
116.7109 362.1591

]
, S1 =

[
23.0397 1.2640
1.2640 23.5236

]
,
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S2 =
[
63.7244 14.1845
14.1845 55.4936

]
, S3 =

[
909.2693 88.9898
88.9898 459.1695

]
, Q1 =

[
7.1802 −0.0377
−0.0377 7.1061

]
,

Q2 =
[

12.6557 −0.0667
−0.0667 12.5245

]
, Q3 =

[
432.3567 35.8151
35.8151 154.1902

]
, Q4 =

[
655.5405 51.1455
51.1455 257.6060

]
,

T1 =
[
0.2454 0.0069
0.0069 0.02521

]
, T2 =

[
0.4118 0.0088
0.0088 0.4212

]
, T3 =

[
0.2455 0.0039
0.0039 0.2494

]
,

T4 =
[
0.1305 0.0009
0.0009 0.1314

]
, X1 =

[
18.1162 −0.1125
−0.1125 17.9124

]
, X2 =

[
27.0286 −0.1404
−0.1404 26.7514

]
,

L = 103 ×
[
6.1240 0

0 5.1268

]
, S =

[
870.8465 0

0 287.0032

]
,M1 =

[
−0.2052 0.0148
0.0148 −0.1210

]
,

M2 = 103 ×
[

0.0658 −0.6740
−0.6740 −0.2752

]
,M3 =

[
0.0930 0.0038
0.0038 0.0981

]
,

M5 =
[
0.2946 0.2981
0.2981 −0.3589

]
,M6 =

[
−0.2283 0.0041
0.0041 0.0092

]
,M7 =

[
−0.0116 −0.0066
−0.0066 0.0051

]
,

M8 =
[
0.0026 0.0018
0.0018 −0.0013

]
, N1 =

[
−0.0720 0.0054
0.0054 −0.0113

]
, N2 =

[
0.2607 0.0065
0.0065 0.2681

]
,

N3 =
[
−0.2602 −0.0076
−0.0076 −0.2680

]
, N4 =

[
0.6438 −0.4825
−0.4825 0.3821

]
, N5 =

[
0.2124 0.1873
0.1873 −0.0754

]
,

N6 =
[
−0.1449 −0.0053
−0.0053 −0.0131

]
, N7 =

[
−0.0108 −0.0033
−0.0033 0.0006

]
, N8 =

[
0.0017 0.0010
0.0010 −0.0004

]
,

U1 =
[
−0.0187 0.0132
0.0132 −0.0102

]
, U2 =

[
−0.2606 −0.0070
−0.0070 −0.2684

]
, U3 =

[
−0.1075 0.0972
0.0972 0.4607

]
,

U4 =
[
0.2589 0.0067
0.0067 0.2669

]
, U5 =

[
0.0138 0.0581
0.0581 −0.2713

]
, U6 =

[
−0.0379 0.0139
0.0139 0.0248

]
,

U7 =
[
−0.0026 −0.0004
−0.0004 0.0039

]
, U8 =

[
−0.0080 −0.0018
−0.0018 −0.0088

]
, Z1 =

[
−1.6385 0.6544
0.6544 −0.3471

]
,

Z2 =
[
2.5340 0.0210
0.0210 2.4667

]
,M4 = 103 ×

[
0.8794 −0.7704
−0.7704 0.8027

]
, λ1 = 215.1348,

λ2 = 247.3246, λ3 = 198.5241, γ = 405.2402. For given initial state x(t) = [0.5 −0.5]T ,
Figure 1 gives the state trajectory of the neural network (1) under zero input, which
shows that the neural network is stable.
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Fig. 1. State trajectory of the NNs in Example 1.

Example 2. Consider the uncertain stochastic neural network with time varying de-
lays and impulses (52) with the following parameters

A =
[
4 0
0 6

]
, B =

[
0.2 −3.5
0.1 0.3

]
, C =

[
0.4 0.2
0.1 0.7

]
, D =

[
1 0
0 1

]
,

Σ1 =
[

0 0.1
0.1 −0.1

]
, Σ2 =

[
−0.1 0.1

0 0.1

]
, Σ3 =

[
0.1 0.1
0.1 0

]
, H =

[
0.01
0.01

]
,

G1 =
[
0.2 0
0 −0.2

]
, G2 =

[
−0.1 −0.2
0.2 0.1

]
, G3 =

[
0.1 −0.1
0.05 0.1

]
, G4 =

[
0.1 0.2
−0.1 −0.1

]

Ik =
[
0.3 0
0 0.3

]
,

The activation functions are taken as follows:

g1(x) =
1
20

(| x+ 1 | + | x− 1 |), g2(x) =
1
10

(| x+ 1 | + | x− 1 |).

It can be verified that Assumption (H1) is satisfied with F−1 = −0.1, F+
1 = 0.1,

F−2 = −0.2, F+
2 = 0.2. Thus

F1 =
[
−0.01 0

0 −0.04

]
, F2 =

[
0 0
0 0

]
,

By solving the LMIs (54) – (58) in Theorem 4.1 using MATLAB LMI toolbox, one can
obtain the feasible solution for any time delay satisfying 0 < d(t) ≤ 1.6241 and 0 ≤
1.0 ≤ τ(t) ≤ 3.5783 when µ = 0.2, δ = 0.1. Suppose, if we take µ = 0.2, δ = 0.1, τ1 =
1.0, d = 0.3, τ2 = 2.3, we can obtain the following feasible solutions

P1 =
[
123.1307 −2.6762
−2.6762 126.2225

]
, P2 =

[
47.1324 −0.9150
−0.9150 56.3039

]
, P3 = 104 ×

[
0.8462 0.0301
0.0301 2.8263

]
,
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P4 =
[
14.1132 0.7140
0.7140 11.0384

]
, P5 = 103 ×

[
1.0766 0.0020
0.0020 0.5875

]
, L1 =

[
43.0610 −1.6700
−1.6700 43.8648

]
,

L2 =
[
60.7614 18.9541
18.9541 60.9004

]
, L3 =

[
906.9030 97.3614
97.3614 484.7922

]
, R1 =

[
20.5262 −1.3446
−1.3446 25.1153

]
,

R2 =
[
38.7288 6.8815
6.8815 32.1568

]
, R3 =

[
269.8072 46.8835
46.8835 156.1916

]
, S1 =

[
15.3430 0.2558
0.2558 13.4679

]
,

S2 =
[
34.5891 7.1417
7.1417 30.1517

]
, S3 =

[
386.7042 41.7548
41.7548 221.4267

]
, Q1 =

[
11.9561 −0.4032
−0.4032 9.9872

]
,

Q2 =
[

7.1335 −0.2417
−0.2417 5.953

]
, Q3 =

[
363.5368 29.8191
29.8191 171.1898

]
, Q4 =

[
274.7815 25.0485
25.0485 113.2372

]
,

T1 =
[

0.3657 −0.0004
−0.0004 0.2838

]
, T2 =

[
0.4195 −0.0008
−0.0008 0.3240

]
, T3 =

[
1.3479 −0.0040
−0.0040 1.0312

]
,

T4 =
[

0.0933 −0.0002
−0.0002 0.0760

]
, X1 =

[
11.9820 −0.4040
−0.4040 9.9964

]
, X2 =

[
17.7797 −0.5943
−0.5943 14.8716

]
,

L = 103 ×
[
2.3688 0

0 2.3437

]
, S =

[
509.7439 0

0 216.5831

]
, M1 =

[
−0.4444 −0.0119
−0.0119 −0.2591

]
,

M2 =
[
0.2137 0.4291
0.4291 0.3288

]
, M3 =

[
0.3304 −0.0016
−0.0016 0.2543

]
, M4 =

[
−0.5125 −0.3566
−0.3566 −0.6523

]
,

M5 =
[
0.1783 0.1182
0.1182 0.0496

]
, M6 =

[
−0.2253 −0.0570
−0.0570 −0.0205

]
, M7 =

[
0.0125 0.0003
0.0003 −0.0008

]
,

M8 =
[
0.0022 0.0028
0.0028 0.0002

]
, N1 =

[
−0.0753 −0.0085
−0.0085 −0.0014

]
, N2 =

[
0.2967 −0.0009
−0.0009 0.2269

]
,

N3 =
[
−0.2987 −0.0004
−0.0004 −0.2275

]
, N4 =

[
−0.1970 −0.1884
−0.1884 −0.3900

]
, N5 =

[
0.1288 0.0692
0.06920 0.0412

]
,

N6 =
[
−0.1526 −0.0380
−0.0380 −0.0211

]
, N7 =

[
−0.0014 0.0036
0.0036 −0.0009

]
, N8 =

[
0.0015 0.0019
0.0019 0.0002

]
,
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U1 =
[
−0.0153 0.0066
0.0066 0.0009

]
, U2 =

[
−0.2964 0.0009
0.0009 −0.2268

]
, U3 =

[
−0.0896 −0.2758
−0.2758 0.8246

]
,

U4 =
[

0.2944 −0.0009
−0.0009 0.2252

]
, U5 =

[
−0.0060 0.0274
0.0274 −0.0932

]
, U6 =

[
−0.0210 0.0037
0.0037 0.0290

]
,

U7 =
[

0.0015 −0.0003
−0.0003 −0.0008

]
, U8 =

[
−0.0147 −0.0026
−0.0026 −0.0112

]
, Z1 =

[
−1.6241 0.1507
0.1507 −0.3396

]
,

Z2 =
[

1.9428 −0.0044
−0.0044 1.4590

]
, λ1 = 218.3413, λ2 = 254.9511, λ3 = 218.1895,

γ = 451.8541.

6. CONCLUSION

In this paper we have studied the passivity issue for a new class of impulsive stochastic
neural networks with time delays in the leakage terms and mixed time delays are studied
under two cases: with known or unknown parameters. In order to prove the passivity
for the suggested system, many techniques such as Lyapunov stability theory, stochastic
analysis and linear matrix inequalities techniques have been successfully used in this
paper. Finally, numerical examples have been provided to demonstrate the validity of
the approach. By utilizing the proposed idea of this paper, future works will focus on
stabilization for various dynamic systems with time-delays such as switched generalized
neural networks and Memristor-Based Recurrent Neural Networks, Complex valued neu-
ral networks, Chaotic Lur’e Systems. The corresponding results will appear in the near
future.

(Received May 10, 2017)
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