Kybernetika 54 no. 1, 110-134, 2018

Parametric Identification of Sorensen model for glucose-insulin-carbohydrates dynamics using evolutive algorithms

Eduardo Ruiz Velázquez, Oscar D. Sánchez, Griselda Quiroz and Guillermo O. PulidoDOI: 10.14736/kyb-2018-1-0110


Diabetes mellitus (DM) is a disease affecting millions of people worldwide, and its medical care brings an economic wear to patients and public health systems. Many efforts have been made to deal with DM, one of them is the full-automation of insulin delivery. This idea consists in design a closed-loop control system to maintain blood glucose levels (BGL) within normal ranges. Dynamic models of glucose-insulin-carbohydrates play an important role in synthesis of control algorithms, but also in other aspects of DM care, such as testing glucose sensors, or as support systems for health care decisions. Therefore, there are several mathematical models reproducing glycemic dynamics of DM, most of them validated with nominal parameters of standardized patients. Nevertheless, individual patient-oriented models could open the possibility of having closed-loop personalized therapies. This problem can be addressed through the information provided by open-loop therapy based on continuous glucose monitoring and subcutaneous insulin infusion. This paper considers the problem of identifying particular parameters of a compartmental model of glucose-insulin dynamics in DM; the goal is fitting the model response to historical data of a diabetic patient collected during a time period of her/his daily life. At this time, Sorensen model is one of the most complete compartmental models representing the complex dynamics of the glucose-insulin metabolism. This is a system of 19 ordinary differential equations (ODEs), thus the identification of its parameters is a non-easy task. In this contribution, parameter identification was performed via three evolutionary algorithms: differential evolution, ant colony optimization and particle swarm optimization. The obtained results show that evolutionary algorithms are powerful tools to solve problems of parametric identification. Also, a comparative analysis of the three algorithms was realized throw a wilcoxon sign-rank test, in which colony optimization had the better performance. The model obtained with the estimated parameters could be used to in type 1 diabetes mellitus (T1DM) care, such as in the design of full-automation of insulin infusion.


parameter estimation, differential evolution, dynamic model of insulin-glucose, identifiability, evolutionary algorithms, ant colony optimization, particle swarm optimization


93B30, 93B40


  1. K. Alaykiran and O. Engin: Karinca Kolonileri Metasezgiseli ve Gezgin Satici Problemleri Üzerinde Bir Uygulamasi. Gazi Üniv. Müh. Mim. Fak. Der. 20 (2005), 69-76.   CrossRef
  2. K. Alaykoran and O. Engin: The American Heritage. Dictionary of the American Language. Gazi Üniv. Müh. Mim. Fak. Der. 20 (2005), 69-76.   CrossRef
  3. M. Anguelova: Nonlinear Observability and Identifiability: General Theory and a Case Study of a Kinetic Model for S. cerevisiae. Department of Mathematics. Chalmers University of technology and Göteborg University SE-412 96, Göteborg 2004.   CrossRef
  4. E. Balsa-Canto: An iterative identification procedure for dynamic modeling of biochemical networks. BMC Systems Biology 4 (2010), 1, 4-11.   DOI:10.1186/1752-0509-4-11
  5. M. Berger and D. Rodbard: Computer simulation of plasma insulin and glucose dynamics after subcutaneous insulin injection. Diabetes Care 12 (1989), 10, 725-736.   DOI:10.2337/diacare.12.10.725
  6. R. N. Bergman, Y. Z. Ider, C. R. Bowden and C. Cobelli: Quantitative estimation of insulin sensitivity. Amer. J. Physiology 236 (1979), 6, E667-E677.   CrossRef
  7. F. Chee and T. Fernando: Closed-Loop Control of Blood Glucose. Springer 368, Berlin, Heidlberg 2007.   DOI:10.1007/978-3-540-74031-5
  8. O. T. Chis, J. R. Banga and E. Balsa-Canto: Structural identifiability of systems biology models: A critical comparison of methods. PLos One 6 (2011), 11, e27755.   DOI:10.1371/journal.pone.0027755
  9. O. Chis, J. R. Banga and E. Balsa-Canto: GenSSI: a software toolbox for structural identifiability analysis of biological models. Bioinformatics 27 (2011), 18, 2610-2611.   DOI:10.1093/bioinformatics/btr431
  10. C. Cobelli, C. Dalla Man, G. Sparacino, L. Magni, G. de Nicolao and B. Kovatchev: Models, signals and control (Methodological review). IEEE Rev. Biomed. Engrg. 2 (2009), 54-96.   DOI:10.1109/rbme.2009.2036073
  11. P. Colmegna and R. S. Sanchez Peña: Analysis of three T1DM simulation models for evaluating robust closed-loop controllers. Computer Methods and Programs in Biomedicine 113 (2014), 371-382.   DOI:10.1016/j.cmpb.2013.09.020
  12. A. Colorni, M. Dorigo and V. Maniezzo: Distributed Optimization by Ant Colonies. In: The First European Conference on Artificial Life. Paris 1992.   CrossRef
  13. T. K. Das, G. K. Venayagamoorthy and U. O. Aliyu: Bio-inspired algorithms for the design of multiple optimal power system stabilizers: SPPSO and BFA. IEEE Trans. Ind. Appl. 44 (2008), 5, 1445-1457.   DOI:10.1109/tia.2008.2002171
  14. H. Davson and E. Spaziani: The blood–brain barrier and the extracellular space of the brain. J. Physiology 149 (1959), 1, 135-143.   DOI:10.1113/jphysiol.1959.sp006330
  15. Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez and R. G. Harley: Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12 (2008), 2, 171-195.   DOI:10.1109/tevc.2007.896686
  16. S.-R. Dikondwar: Design and development of insulin delivery system prototype. In: Communication Software and Networks (ICCSN), IEEE 3rd International Conference 2011, pp. 575-579.   DOI:10.1109/iccsn.2011.6014636
  17. R. C. Eberhart and J. Kennedy: A new optimizer using particle swarm theory. In: Proc. 6th Int. Symp. Micromachine Hum. Sci. 1995, pp. 39-43.   CrossRef
  18. T. Ergüzel and E. Akbay:  Izmit, Kocaeli 2007.   CrossRef
  19. R. Femat, E. Ruiz-Velázquez and G. Quiroz: Weighting restriction for intravenous insulin delivery on t1dm patient via $H_{\infty}$ control. IEEE Trans. Automat. Sci. Engrg. 6 (2009), 2, 239-247.   DOI:10.1109/tase.2008.2009089
  20. S. Garcia, D. Molina, M. Lozano and F. Herrera: A study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: A case study on the CEC'2005 Special Session on Real Parameter Optimization. Springer Science Business Media, J Heuristics 15 (2008), 617-644.   DOI:10.1007/s10732-008-9080-4
  21. E. J. Gómez and M. E. Hernando Pérez y Thomas: The INCA system: A further step towards a telemedical artificial pancreas. IEEE Trans. Inform. Technol. Biomedicine 12 (2008), 4, 470-479.   DOI:10.1109/titb.2007.902162
  22. J. R. Guyton: A model of glucose-insulin homeostasis in man that incorporates the heterogeneous fast pool theory of pancreatic insulin realise. Diabetes (1978), 1027-1042.   DOI:10.2337/diabetes.27.10.1027
  23. A. Haidar, E. M. Wilinska, J. A. Graveston and R. Hovorka: Stochastic virtual population of subjects with type 1 diabetes for the assessment of closed-loop glucose controllers. IEEE Trans. Biomed. Engrg. 60 (2013), 12, 3524-3533.   DOI:10.1109/tbme.2013.2272736
  24. R. A. Harvey, Y. Wang, B. Grosman, M. W. Percival, W. Bevier, D. A. Finan, H. Zisser, D. E. Sebong, L. Jovanovic, F. J. Doyle III and E. Dassau: Quest for the artificial pancreas: combining technology with treatment. In: IEEE Engrg. Medicine Biol. Magazine 29 (2010), 2, 53-62.   DOI:10.1109/memb.2009.935711
  25. R. Hovorka, F. Shojaee-Moradie, P. V. Carroll, L. J. Chassin, I. J. Gowrie, N. C. Jackson, R. S. Tudor, A. M. Umpleby and R. H. Jones: Partitioning glucose distribution/transport, disposal, and endogenous production during ivgtt. Amer. J. Physiol. Endocrinol. Metabol. 282 (2002), 5, E992-E1007.   DOI:10.1152/ajpendo.00304.2001
  26. J. Kennedy and R. C. Eberhart: Particle swarm optimization. In: Proc. IEEE Int. Conf. Neural Netw. 1995, pp. 1942-1948.   DOI:10.1109/icnn.1995.488968
  27. E. D. Lehmann and T. Deutsch: Physiological model of glucose-insulin interaction in type I diabetes mellitus. J. Biomedical Engrg. 14 (1992), 235-242.   DOI:10.1016/0141-5425(92)90058-s
  28. H. S. Lin, W. H. Liauh and S. J. Ho: OPSO: Orthogonal particle swarm optimization and its application to task assignment problems. IEEE Trans. Syst. Man Cybern. B 38 (2008), 2, 288-289.   DOI:10.1109/tsmca.2007.914796
  29. C. Man, R. Rizza and Cobelli: Meal simulation model of the glucose-insulin system. IEEE Trans. Biomed. Engrg. 54 (2007), 10, 1740-1749.   DOI:10.1109/tbme.2007.893506
  30. M. G. Pedersen, G. M. Toffolo and Cobelli: Cellular modeling: insight into oral minimal models of insulin secretion. Amer. J. Physiol. Endocrinol. Metabol. 298 (2010), E597-E601.   DOI:10.1152/ajpendo.00670.2009
  31. B. Peng, B. Liu, F. Zhang and L. Wang: Differential evolution algorithm-based parameter estimation for chaotic systems. Chaos, Solitons Fractals 39 (2009), 2110-2118.   DOI:10.1016/j.chaos.2007.06.084
  32. G. Quiroz and R. Femat: On hyperglicemic glucose basal levels in Type 1 Diabetes Mellitus from dynamic analysis. Math. Biosciences 210 (2007), 554-575.   DOI:10.1016/j.mbs.2007.06.004
  33. W. Respondek: Geometry of static and dynamic feedback. In: Lectures given at the Summer School on Mathematics Control Theory, Trieste 2001 and Bedlewo-Warsaw 2002, Laboratoire de Mathématiques INSA, Rouen.   CrossRef
  34. J. T. Sorensen: A Physiology Model of Glucose Metabolism in Man And Its Use to Design and Asses Improved Insulin Therapies for Diabetes. Ph.D. Dissertation, Massachusetts Institute of Technology 1985.   CrossRef
  35. J. Tiran, K. R. Galle and Jr. Porte: A simulation model of extracellular glucose distribution in the human body. Ann. Biomedical Engrg. 3 (1975), 34-46.   DOI:10.1007/bf02584487
  36. B. Tuch, M. Dunlop and J. Proietto. Diabetes Research: A guide for Postgraduates. Taylor and Francis e-Library, 2004.   CrossRef
  37. R. Visentin, C. Dalla Man and C. Cobelli: One-day Bayesian cloning of type 1 diabetes subjects: Toward a single-day UVA/Padova type 1 diabetes simulator. IEEE Trans. Biomed. Engrg. 63 (2016), 11, 2416-2424.   DOI:10.1109/tbme.2016.2535241
  38. M. P. Wachowiak, R. Smolikova, Y. Zheng, J. M. Zurada and A. S. Elmaghraby: An approach to multimodal biomedical image registration utilizing particle swarm optimization multimodal function optimization based on particle swarm optimization. IEEE Trans. Evol. Comput. 8 (2004), 3, 289-301.   DOI:10.1109/tevc.2004.826068
  39. M. E. Wilinska and R. Hovorka: Simulation models for in silico testing of closed-loop glucose controllers in type 1 diabetes. Drug Discov, Today Dis. 5 (2008), 289-298.   DOI:10.1016/j.ddmod.2009.07.005
  40. World Health Organization: Global Report in Diabetes. Printed in France, 2016.   CrossRef
  41. C. Zhan, W. Situ, L. Fat Yeung, P. Wai-Ming Tsang and G. YANG: A parameter estimation method for biological systems modeled by ODEs/DDEs models using spline approximation and differential evolution algorithm. IEEE Trans. Computat. Biology Biomath. 11 (2014), 1066-1076.   DOI:10.1109/tcbb.2014.2322360