Kybernetika 53 no. 6, 1118-1130, 2017

Nilpotent approximation of a trident snake robot controlling distribution

Jaroslav Hrdina, Radomil Matoušek, Aleš Návrat and Petr VašíkDOI: 10.14736/kyb-2017-6-1118

Abstract:

We construct a privileged system of coordinates with respect to the controlling distribution of a trident snake robot and, furthermore, we construct a nilpotent approximation with respect to the given filtration. Note that all constructions are local in the neighbourhood of a particular point. We compare the motions corresponding to the Lie bracket of the original controlling vector fields and their nilpotent approximation.

Keywords:

robotic snake, local control, nilpotent approximation

Classification:

93B27

References:

  1. Ma Bao-Li: Local exponential regulation of nonholonomic systems in approximate chained form with applications to off-axle tractor-trailers. J. Robotics 2007 (2007), 1-8.   DOI:10.1155/2011/697309
  2. Q. Cai, T. Huang, Y. L. Sachkov and X. Yang: Geodesics in the Engel group with a sub-Lorentzian metric. J. Dynamical Control Systems 22 (2016), 465-483.   DOI:10.1007/s10883-015-9295-2
  3. H. Hermes: Nilpotent approximations of control systems and distributions. Siam J. Control Optim. 24 (1986), 731-736.   DOI:10.1137/0324045
  4. J.Hrdina: Local controllability of trident snake robot based on sub-Riemannian extremals. Note di Matematica 37 (2017), 93-102.   CrossRef
  5. J. Hrdina, A. Návrat, P. Vašík and R. Matoušek: Geometric Control of the Trident Snake Robot Based on CGA. Adv. Appl. Clifford Algebr. 27 (2017), 633-645.   DOI:10.1007/s00006-016-0693-7
  6. J. Hrdina, A. Návrat, P. Vašík and R. Matoušek: CGA-based robotic snake control. Adv. Appl. Clifford Algebr. 27 (2017), 633-645.   DOI:10.1007/s00006-016-0693-7
  7. M. Ishikawa: Trident snake robot: Locomotion analysis and control. In: Proc. IFAC NOLCOS, IFAC Nonlinear Control Systems, Stuttgart 2004, pp. 1169-1174.   DOI:10.1016/s1474-6670(17)31339-3
  8. M. Ishikawa and T. Fukiro: Control of the double-linked trident snake robot based on the analysis of its oscillatory dynamics. In: Proc. IEEE/RSJ IROS 2009, pp. 1314-1319.   DOI:10.1109/iros.2009.5354831
  9. M. Ishikawa, Y. Minami and T. Sugie: Development and control experiment of the trident snake robot. IEEE/ASME Trans. Mechatron. 15 (2010), 9-16.   DOI:10.1109/tmech.2008.2011985
  10. J. Jakubiak, K. Tchon and M. Janiak: Motion planning of the trident snake robot: an endogenous configuration space approach. In: ROMANSY 18 Robot Design, Dynamics and Control: Proc. Eighteenth CISM-IFToMM Symposium (V. P. Castelli and W. Schiehlen, eds.), Springer, Vienna 2010, pp. 159-166.   DOI:10.1007/978-3-7091-0277-0_18
  11. E. Jarzebowska: Stabilizability and motion tracking conditions for mechanical nonholonomic control systems. Math. Problems Engrg. 2007 (2007), 1-20.   DOI:10.1155/2007/31267
  12. F. Jean: Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning. Springer International Publishing, New York 2014.   DOI:10.1007/978-3-319-08690-3
  13. P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl and J. T. Gravdahl: Snake Robots, Modelling, Mechatronics and Control. Springer-Verlag, London 2013.   DOI:10.1007/978-1-4471-2996-7
  14. O. Meiying, G. Shengwei, W. Xianbing and D. Kexiu: Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances. Kybernetika 51 (2015), 1049-1067.   DOI:10.14736/kyb-2015-6-1049
  15. R. M. Murray, L. Zexiang and S. S. Sastry: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton 1994.   CrossRef
  16. A. Návrat and R. Matoušek: Trident snake control based on CGA. Mendel 2015: Recent Advances in Computer Science 378 (2015), 375-385.   DOI:10.1007/978-3-319-19824-8_31
  17. A. Návrat and P Vašík: On geometric control models of a robotic snake. Note di Matematica 37 (2017), 119-129.   CrossRef
  18. Z. Pietrowska and K. Tchon: Dynamics and motion planning of trident snake robot. J. Intelligent Robotic Systems 75 (2014), 17-28.   DOI:10.1007/s10846-013-9858-y
  19. J. M. Selig: Geometric Fundamentals of Robotics. Second edition. Springer, New York 2004.   DOI:10.1017/s0263574706262805
  20. A. A. Transeth, K. Y. Pettersen and P. Liljebäck: A survey on snake robot modeling and locomotion. Robotica 27 (2009), 999-1015.   DOI:10.1017/s0263574709005414
  21. M. Venditelli, G. Oriolo, F. Jean and J. P. Laumond: Nonhomogeneous nilpotent approximations for nonholonomic systems with singularities. IEEE Trans. Automat. Control 49 (2004), 261-266.   DOI:10.1109/tac.2003.822872