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In our paper we investigate the applicability of independent and identically distributed
random sequences, first order Markov and higher order Markov chains as well as semi-Markov
processes for bottom-up electricity load modeling. We use appliance time series from publicly
available data sets containing fine grained power measurements. The comparison of models
are based on metrics which are supposed to be important in power systems like Load Factor,
Loss of Load Probability. Furthermore, we characterize the interdependence structure of the
models with autocorrelation function as well. The aim of the investigation is to choose the
most appropriate and the most parsimonious models for Smart Grid simulation purposes and
applications like Demand Side Management and load scheduling. According to our results most
appliance types can be modeled adequately with two states (on/off model) and the semi-Markov
process can reproduce the properties of an aggregate load well compared to the original time
series. With the price of more parameters of the semi-Markov model compared to identically
distributed random sequence and first order Markov chain, it gives better results when the
autocorrelation function, Loss of Load Probability and Load Factor are considered.
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1. INTRODUCTION

Information about electricity load is critical for power systems planning [4], operation
and control. Electricity load models are very important, as they contain information on
the electricity demand on small time scale (from hours to seconds). Uncertainty is one of
the most challenging features of electricity load that can be tackled using probabilistic
mathematical models. Markov chains are promising candidates because they can de-
scribe states (consumption levels) and transition between these states in a probabilistic
manner. In our paper we investigate the applicability of independent and identically
distributed random sequences (iid), first order Markov (FOM) and higher order Markov
(HOM) chains as well as semi-Markov processes (SMP) for bottom-up (appliance level)
load modeling. We use appliance time series from publicly available data sets that con-
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tain fine grained power measurements. We evaluate the goodness-of-fit (GoF) of the
different models with respect to the number of states and the order (of Markov chains).
However, according to our results, most of the appliances can be modeled by two states
(i. e. on-state and off-state), there are certain types of devices where the description
with multiple states is more realistic or an additional state can represent for instance
stand-by operation state as well. Parsimonious models have advantages, because the
number of parameters of the mathematical model is minimal [3]. In this respect FOM
is preferred, however it cannot describe long time dependence in time series. First order
Markov chains can be extended, in one hand we can increase the order of a Markov chain
and in the other hand the expectation of exponential distribution of holding times can
be loosened to any arbitrary distribution, resulting in a semi-Markov process. In these
cases the Markovian property is lost (i. e. one state depends not only on the previous
state) and the number of parameters increase, but we get to models which describe
the long time dependence more accurately, hence we get a more realistic appliance load
model. The comparison of models with respect to order is based on relative measures
like AIC (Akaiken information criterion), BIC (Bayesian information criterion). Based
on realistic appliance load models, with the ability to mimic the autocorrelation func-
tion (ACF), Loss of Load Probability (LOLP) and Load Factor (LF) well, we can build
up appropriate aggregate load profiles. These are important for smart algorithm de-
velopment (e. g. demand side management [19]) in power systems, especially in Smart
Grids [21]. As an example, we refer to our earlier proposed probabilistic demand side
management algorithm described in [10].

The paper is organized as follows. In Section 2 we are describing relevant papers with
details regarding the applied models from the electricity load modeling literature. Our
models (bottom-up aggregate model, iid, Markov chains and semi-Markov processes)
and methods (determination of the number of states) are introduced in Section 3, while
our results considering number of states, order of Markov chains, ACF, LOLP and LF
are described in details in Section 4. Conclusions and plans for future work can be found
in Section 5.

2. RELATED WORK

The literature distinguishes two different approaches for load modeling: top-down and
bottom-up [6, 7, 20]. The top-down modeling approach works at an aggregated level,
typically aimed at fitting a historical time series of national energy consumption. Such
models tend to be used to investigate the inter-relationships between the energy sector
and the economy at large, and could be broadly categorized as econometric and techno-
logical top-down models. The bottom-up approach extrapolates the estimated energy
consumption of a representative set of individual houses to regional and national levels.

Often cited bottom-up model is proposed in [13]. The model is based on social
random factors (determining appliance stocks and daily consumption level). The authors
considered seasonal probability factor for consumption cycles with hourly probability
factor for weekdays and weekends. The statistical parameters (pdf and std) of the social
random factors were extracted from domestic consumption data. The model can be used
to generate realistic domestic electricity consumption data on an hourly basis from a
few up to thousands of households.
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Differential equations are a natural way to describe the dynamic characteristics of
appliances. Three dynamic models with simple structures are investigated in [16] to
describe the behavior of a refrigerator. Model parameter identification was based on
real measurements. The most complex model (applying two differential equations to
describe the warm-up phase and three equations when the compressor is on) models
the refrigerator most precisely to be used in intelligent control applications. In [17] a
stochastic differential equations (SDEs) model of a domestic freezer is proposed using
experimental measurements. The models are estimated by maximum likelihood estima-
tion (MLE). As an application a model predictive control (MPC) is applied for shifting
the electricity consumption of a freezer in demand response experiments.

Another promising candidates are methods from the field of artificial intelligence to
model residential energy consumption. A machine learning approach is proposed in [18]
for online learning of appliance usage from no prior knowledge of operation parameters
(duty cycles and times of use). Case studies are presented for typical appliances. Kalman
filter realization of Bayesian Filtering is applied for learning the probability of time and
extent of use of arbitrary appliances from metering data. In [2] a Neural Network method
is proposed to model the residential end-use energy consumption. The paper presents
NNs for appliances, lighting, and space-cooling components of the model, with a study
of the accuracy of predictions and sample results.

A bottom-up Markov chain Monte Carlo method is described in [12]. The load curves
are generated based on behavioral, appliance and climate data. It utilizes a Markov
Chain Monte Carlo method to model the occupancy in a household (based on time use
survey data). The occupancy pattern with weather data, neighborhood and behavioral
characteristics are used to model the appliances. The performance of the model is
validated by applying root mean square error (RMSE) with actual measured smart meter
data. A hierarchical hidden Markov model (HHMM) framework is introduced in [9] to
model home appliances with multiple built-in modes with distinct power consumption
profiles (washing machines and dishwashers). An appliance model is presented based on
the dynamic Bayesian network representation. A so-called forwardbackward algorithm,
performing expectation maximization (EM), is formalized for the HHMM fitting process.
Validation on public data shows that the HHMM and proposed algorithm can effectively
handle the modeling of appliances with multiple functional modes, as well as better
representing a general type of appliances. The authors of the paper [15] proposed a
methodology for the modeling of the energy use of small appliances. Seven different
modeling approaches were compared. All the models are based on discrete time random
(Markov) process and continuous time random process. The validation measures (time
series analysis, model accuracy and aggregated energy use) suggest that the modeling of
survival in discrete states performs well and is straightforward to integrate with energy
simulation programs.

3. APPLIED MODELS AND METHODS

There are many stochastic models that can be used to represent electricity load in Smart
Grid applications. We have chosen to use bottom-up appliance electricity load modeling,
because our aim was to model appliances in direct control type demand side management
algorithms, where individual appliances are influenced (switched on and off, scheduled)
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to have the desired shape of aggregate load. A possible classification of bottom-up appli-
ance electricity load models are depicted in Figure 1. In one hand the number of states
of appliance loads must be determined. Our results show that two states can represent
appliance load well (see results in Section 4), hence multistate models are excluded from
our further investigations. We consider 3 distinct models: independent and identically
distributed random sequences, homogeneous Markov chains and semi-Markov processes.
These models are suitable to describe time dependent (or Time-Of-Use) and seasonal
behavior if we apply variable probability parameters (time dependent state-transition
matrix for Markov chain), though considering short time horizons (usually applied in
Demand Side Management and Demand Response applications as being our main mod-
eling targets), we assume stationary time-series exclusively. As an alternative modeling
approach, Markov Modulated Poisson Process (MMPP) and its extensions (with arbi-
trary distributions) can be used to model non-stationary load time series. MMPPs are
among the topics of our future research.

Fig. 1. Classification of bottom-up appliance electricity load

modeling.

3.1. Bottom-up aggregate model

A set of appliances represent the load in a given area (e. g. connecting to a bus or
transformer), which is a random variable defined as

X =
N∑

i=1

Xi,

i. e. X is the sum of Xi individual loads of the appliances and referred to as aggregate
load. In this context the individual loads or their statistics are supposed to be known,
referred to as bottom-up modeling.
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3.2. Determining the number of states

An important question is that how many states are needed in a individual appliance
model to best represent the behavior of the appliance, preferably with the least number
of parameters. Our approach to determine the number of states is based on the paper [1].
We use k-means clustering algorithm to find k centroids of the representative appliance
loads and for the comparison of different state numbers we apply the integral of absolute
difference between original and model probability distribution function as a goodness-
of-fit measure.

3.2.1. Two state (on/off) modeling

If we reduce the domain of the original discrete random variable Xj ∈ {0, 1, ..., hj} to
on/off values Xon/off

j ∈ {0, hj} so that we keep the original Expected value E {Xj} =

E
{
X

on/off
j

}
= mj and maximum value hj , we get to a random variable Xon/off

j with
Bernoulli distribution:

Pr
(
X

on/off
j = 0

)
= 1− mj

hj
,Pr

(
X

on/off
j = 1

)
=
mj

hj
(1)

where we need to know only mj and hj parameters of the jth user. We will refer this
model as on/off max. Alternatively, we can reduce the domain so that we keep the
original Expected value and length of operation. This type of model will be referred as
On/Off time. In this case we need to recalculate the maximum value:

hnew
j =

mj

(
non

j + noff
j

)
non

j

(2)

where non
j and noff

j means the number of time instances when Xj is On and Off, respec-
tively. On/off time model is advantageous when our purpose is scheduling, because in
this case we need to keep the original length of operation of the appliance j.

3.2.2. Multistate modeling

Multistate models can be represented by general discrete random variables and we can
build such models with e.g clustering or requantization. In this paper we focus on
two-state models.

3.3. Time-series modeling

In the following sections we introduce the 3 different models that are used in our inves-
tigations.

3.3.1. IID model

Let us consider the load time series of a particular appliance as a sequence of independent
and identically distributed random variables X[1], . . . , X[n] taking value (state) from
the set of {1, . . . ,M} of length n. In this case the aggregate load of all appliances
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(i = 1, . . . , N ) at time instant k is the sum of mutually independent random variables
Xi[k]. Inevitably this is the simplest model which cannot represent time dependencies
between time samples, but it is the most tractable from a mathematical point of view.

3.3.2. First order Markov chain

The Markov chain is a stochastic model that represents dependencies between successive
observations of a random variable. This model has been used for many decades and it
is applicable in many disciplines. In the case of a first order Markov chain the system
has finite number of states ({1, . . . ,M}) and a state depends only on the previous state.
At time instant k there is a state transition probability matrix P[k], where

px1x0 [k] = Pr(X[k] = x0|X[k − 1] = x1) (3)

where x0, x1 ∈ {1, . . . ,M} and X[k] denotes the discrete-time random variable of the
time series. In this paper we assume homogeneous Markov chains for which P[k] = P
stands for all time instances. However, first order Markov chains have more parameters
than iid, they are similarly mathematically tractable in many applications. A thorough
introduction of Markov chains can be found in [3].

3.3.3. Higher order Markov chain

Higher order Markov chains describe stochastic behavior where the present depends on
the last l steps (not only on the previous step). In this case we have an lth-order Markov
chain with the transition probabilities

pxl···x2x1x0 [k] = Pr(X[k] = x0|X[k − 1] = x1, X[k − 2] = x2, . . . , X[k − l] = xl) (4)

where x0, x1, . . . , xl ∈ {1, . . . ,M} and X[k] denotes the discrete-time random variable of
the time series. Inevitably the advantage of this model is its descriptive power (i. e. it has
memory) compared to the First order Markov chain, though the number of parameters
increases with the order, which can lead to intractably high number of parameters in
the model.

3.3.4. Estimation of the parameters of Markov chains

A Markov chain with any order has (M−1) independent probabilities in each row of the
transition matrix. The number of independent parameters to be estimated is equal to
M l(M − 1). Given a set of observations, these parameters can be computed as follows.
Let nxl···x0 denote the number of transitions of the type

X[k − l] = xl, . . . , X[k − 1] = x1, X[k] = x0 (5)

in the data. The maximum likelihood estimate of the corresponding transition proba-
bility pxl···x0 is then

p̂xl···x0 =
nxl···x0

Nxl···x1

(6)
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where

Nxl···x1 =
M∑

x0=1

nxl···x0 (7)

and the log-likelihood of the entire sequence of observations is written

LL =
M∑

xl,...,x0=1

nxl···x0 log(p̂xl···x0). (8)

3.3.5. Semi-Markov process

Semi-Markov processes represent a class of stochastic processes that generalize the
Markov processes. In the case of a continuous-time Markov process, the state holding
times are exponentially distributed, (and respectively for discrete-time Markov chains
it is geometrically distributed). In the semi-Markov case, the state holding time distri-
bution can be from any distribution. From this point of view the semi-Markov model
is more suitable for many applications, than the Markov one. Semi-Markov processes
were first studied by Takacs, Levy and Smith, while Markov renewal processes by Pyke.
Consider a state space S and a set of random variables (X[k], T [k]). In this case T [k] are
the jump times and X[k] are the associated states in the Markov chain. The inter-arrival
times are τ [k] = T [k]−T [k−1] and the sequence (X[k], T [k]) is called a Markov renewal
process if

Pr(τ [k] ≤ t,X[k] = j|(X[0], T [0]), (X[1], T [1]), . . . , (X[k − 1] = i, T [k − 1])) (9)
= Pr(τ [k] ≤ t,X[k] = j|X[k − 1] = i) (10)

∀k ≥ 1, t ≥ 0, i, j ∈ S. (11)

We can know define a new stochastic process Y [t] := X[k] for t ∈ [T [k], T [k+ 1]), where
Y [t] is called a semi-Markov process (SMP). The semi-Markov process does not have
the Markovian property, so it is not memoryless. Instead the SMP can model arbitrary
time holding distribution (from deterministic to stochastic behavior), hence it is a good
candidate to use in power system applications to describe load.

4. RESULTS

The comparison of models are based on metrics which are supposed to be important in
power systems: Load Factor and Loss of Load Probability. We further characterize the
interdependence structure of the models with autocorrelation function as well. Figure
2 and 3 shows time series of the sum of 400 appliances of four types: refrigerator,
microwave oven, dishwasher and washer dryer. Original time series are complemented
with the on/off versions of the original time series and other three results are generated
by the models introduces in the previous sections. The mean of all generated individual
appliance time series (iid, FOM and semi-Markov) were matched to the original ones.
In the context of bottom-up modeling aggregate consumption time series can be built
up by summing individual time series of the appliances. These four Figures show the
characteristics of the aggregate (sum of 400 appliances) time series.
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Fig. 2. 400 appliances with original on/off, iid, FOM and

semi-Markov models.

These four appliance types have different characteristics. Refrigerator operates ac-
cording to a temperature threshold level, and switches on and off multiple times in every
hour. Microwave oven is manually switched on for a short time and it is typically used
two or three times a day. Dishwasher operates according to a set of programs and they
are used one or two times a day, finally washer dryers are typically operated 3 to 7 times
a week and they follow a predefined program as well.

All the models were fitted to measured data coming from the REDD [8] and GREEND
[11] datasets. The REDD dataset contains appliance level power data for 6 homes for
several weeks with sampling time of 3 seconds, while GREEND dataset provides 3–6
month appliance level power measurements of 8 buildings (9 sensors/home) with 1Hz. In
the case of refrigerator, the evaluation of the goodness-of-fit (GoF) shows (Figure 4 (a))
that 3 states would be the most advantageous to use. The integral of absolute difference
between original and model pdfs in the case of 2 and 3 states are significantly different
(more than 0.1). The reason for three states is that the refrigerator electricity load
profile is characterized as three clearly separated load values: off state, a peak instant
load when the compressor turns on and the constant load in normal cooling operation.
These three phases are far enough to be separated by the k-means clustering algorithm.
The load of the microwave oven can be clearly characterized by two distinct states which
result is reflected in Figure 4 (b) as well: the difference between GoF value of 2 states
and more states is below 0.002.
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Fig. 3. 400 appliances with original on/off, iid, FOM and

semi-Markov models.

4.1. Number of states

Figure 4 and 5 shows the results of number of states selection.
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Fig. 4. Integral of absolute difference between original and model

pdfs.

The results of GoF values of dishwasher and washer dryer appliances are depicted in
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Fig. 5. Integral of absolute difference between original and model

pdfs.

5 (a) and (b) respectively. In the case of dishwasher the difference of GoF values for 2,
3, 4 and 5 states are below 0.005, a small increase (not more than 0.015) can be noticed
for 6, 7 and 8 states. The results of washer dryer are similar to ones of microwave
and it shows that two states are satisfying to be used for modeling purposes too. Our
investigation suggests that two states are suitable in most cases to model appliance load
values.

4.2. Order of Markov chains

Two common methods for model comparison are the Akaike’s Information Criterion
(AIC) and Bayesian Information Criterion (BIC). Both methods use the likelihood ratio
statistics with an additional penalty term. The model with the lowest AIC or BIC value
is preferred. The Akaiken’s Information Criterion is defined by:

AIC = −2LL+ p (12)

The Bayesian Information Criterion (BIC) is defined by:

BIC = −2LL+ p log(n), (13)

where LL is the log-likelihood of the model (see 8), p is the number of independent pa-
rameters and n is the number of components in the log-likelihood. The model achieving
the lowest BIC is chosen.

The higher the order the higher the number of parameters are. These two tables
contains the number of independent parameters. Measure of goodness such as Log Like-
lihood (LL) Akaiken Information Criterion (AIC) and Bayesian Information Criterion
(BIC) shows no significant differences between the orders. The reason for this result is
that the sampling rate is too high compared to the length of state holding times, so a
much higher order of Markov chains would be needed to model the behavior of appli-
ances. Alternatively we could decrease the sampling rate, but it would hide the details
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Independence MC(1) MC(2) MC(3) MC(4) MC(5)
No. of parameters 1 2 4 8 12 17

LL -422881 -9988 -9977 -9960 -9949 -9932
AIC 845763 19979 19959 19928 19910 19882
BIC 845775 20004 20009 20028 20060 20095

Tab. 1. Comparison of Higher order Markov models: Refrigerator.

Independence MC(1) MC(2) MC(3) MC(4) MC(5)
No. of parameters 1 2 2 2 3 3

LL -57083 -2730 -2727 -2723 -2723 -2719
AIC 114167 5463 5456 5449 5449 5442
BIC 114180 5488 5481 5474 5487 5479

Tab. 2. Comparison of Higher order Markov models: Microwave.

in time series data. The conclusion we have reached is that Higher order Markov Chains
are not directly applicable for bottom-up load modeling.

4.3. Autocorrelation function (ACF)

Time series are ordered data containing extra information that can be taken into con-
sideration. Autocorrelation function is one of the tools used to find temporal patterns
in time series. More specifically, the autocorrelation function expresses correlation be-
tween points with distance of various time lags. The ACF functions of the sum of 400
appliances of refrigerator, microwave oven, dishwasher and washer dryer are depicted in
Figure 6 and 7. iid model as containing independent and identically distributed random
variables, naturally lacks correlation between consecutive points. This property is shown
as a Dirac delta in the ACF (3rd rows in Figures).

The ACF of the sum of 400 appliances are depicted in Figure 6 and 7 comparing iid,
FOM and semi-Markov models with the original and on/off version of the original time
series. In the case of refrigerator, the autocorrelation structure of the original aggregate
time series is well reflected in the ACF of the semi-Markov model, while in the case
of microwave, the ACF of FOM is as good as of the semi-Markov. The ACF of semi-
Makov model and FOM for dishwasher do not differ too much, while ther is a significant
difference in the case of the washer dryer. We can conclude that the autocorrelation
structure can well modeled with the semi-Markov model in all cases and in some cases
FOM is also suitable. Naturally iid model is not appropriate for his purpose.

4.4. Loss of load probability (LOLP)

In power systems the bus or transformer of a given area has a capacity limit Cmax

introduced by the physical limitations, or at a given time the supply has a capacity C <
Cmax. Higher demand than powered supply leads to system performance degradation
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Fig. 6. ACF of 400 appliances with original on/off, iid, FOM and

semi-Markov models.

or even to system damage. That is why the event of overconsumption is critical. In
mathematical terms we can formulate the event of overconsumption as the probability
that a given aggregate load X exceeds the capacity C which is often called as Loss of
Load Probability [5] in the reliability assessment literature as well:

p = Pr (X ≥ C)

We used an empirical experiment to compare the LOLP values for the different models
(Figure 8 and 9). Horizontal axis shows load (in Watts) values from mean to maximum
of the original aggregate time series, while vertical axis represents LOLP value in loga-
rithmic scale. The empirical evaluation shows that LOLP values of semi-Markov model
are closer to the values of the original compared to the iid and FOM models.

4.5. Load factor (LF)

In power systems the Load Factor (LF) is defined as the average load divided by the
maximum load, for a given period of time and it is widely used in the power industry to
indicate the efficiency of electricity use [14].

LF =
Average load (in given time period)

Maximum load (in given time period)
. (14)

However, constant load means that LF = 1, its value is always less than one (because
average demand is always less than maximum demand). LF can be derived from the
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Fig. 7. ACF of 400 appliances with original on/off, iid, FOM and

semi-Markov models.
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Fig. 8. Loss of Load Probability (LOLP) of aggregate of 400

appliances (Original, iid, FOM and semi-Markov models).

load profile of the specific appliance. A high LF shows almost constant power usage,
while low LF means high peaks in demand. For non-peak periods, capacity is idle, which
means higher costs for system operators. Additionally electrical rates are designed so
that customers with high LF pay less. LF as a metric can also be applicable in load
balancing or peak shaving scenarios. As an average behavior, we evaluated the expected
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value of LF as the mean of 30 experiments. Mean LF values are calculated for the sum
of up to 3400 appliances (see Figure 10 and 11).

0 500 1000 1500 2000 2500 3000 3500
0.7

0.75

0.8

0.85

0.9

Refrigerator Load Factor

Number of appliances

Lo
ad

 F
ac

to
r

 

 

Original
FOM
Sem−Markov
IID

(a) Refrigerator

0 500 1000 1500 2000 2500 3000 3500
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
LF microwave

Number of appliances

Lo
ad

 F
ac

to
r

 

 

Original
FOM
Semi−Markov
IID

(b) Microwave

Fig. 10. Load Factor for aggregate of 1-3400 appliances with iid,

FOM and semi-Markov models.

The advantage of iid on/off (actually it is Bernoulli iid) load model is that we can
calculate the expected value of the Load Factor analytically as follows. Let us consider
n random variables Y1, . . . , Yn all common Bernoulli distribution. The sum of Bernoulli
random variables, X =

∑
Yi have Binomial distribution with cdf:

FX(x) = Pr (X < x) =
bxc∑
i=0

(
n

i

)
pi (1− p)n−i

. (15)

Now let us havem independent experiments (as an independent sequence) ofX1, . . . , Xm.
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Fig. 11. Load Factor for aggregate of 1-3400 appliances with iid,

FOM and semi-Markov models.

In this case we can define the maximum value of the sequence as:

X̄ = max{X1, . . . , Xm} (16)

Now we can compute the cdf of X̄ as

FX̄(x) := Pr
(
X̄ < x

)
= Pr (X1 < x,X2 < x, . . . ,Xm < x) =

∏
Pr (Xi < x) . (17)

If X̄ is iid, than
FX̄(x) = [FX (x)]m (18)

E[LF ] =
np

E[FX (x)]m
. (19)

The Load Factor curve (mean LF values) of the semi-Markov model is an upper bound
(more optimistic in LF) of the original LF curve.

5. CONCLUSIONS AND FUTURE WORK

Our paper studied different stochastic models to represent appliance loads. Our results
show that in the case of most appliance types, an on/off model is adequate and the
semi-Markov process can mimic the properties of an aggregate load well compared to
the original time series. With the price of more parameters of the semi-Markov model
compared to iid and first order Markov chain, it gives better results when the auto-
correlation function, Loss of Load Probability and Load Factor are considered. We are
planning to continue our research with multistate and non-stationary models as well. IID
model with time dependent parameters, non-homogeneous Markov chains, semi-Markov
Process with time dependent holding time distributions and Markov Modulated Poisson
Processes are good candidates because they are able to describe the time dependent (or
Time-Of-Use) behavior of appliances.
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