Kybernetika 53 no. 6, 1047-1070, 2017

Two-stage stochastic programming approach to a PDE-constrained steel production problem with the moving interface

Lubomír Klimeš, Pavel Popela, Tomáš Mauder, Josef Štětina and Pavel CharvátDOI: 10.14736/kyb-2017-6-1047

Abstract:

The paper is concerned with a parallel implementation of the progressive hedging algorithm (PHA) which is applicable for the solution of stochastic optimization problems. We utilized the Message Passing Interface (MPI) and the General Algebraic Modelling System (GAMS) to concurrently solve the scenario-related subproblems in parallel manner. The standalone application combining the PHA, MPI, and GAMS was programmed in C++. The created software was successfully applied to a steel production problem which is considered by means of the two-stage stochastic PDE-constrained program with a random failure. The numerical heat transfer model for the steel production was derived with the use of the control volume method and the phase changes were taken into account with the use of the effective heat capacity. Numerical experiments demonstrate that parallel computing facility has enabled a significant reduction of computational time. The quality of the stochastic solution was evaluated and discussed. The developed system seems computationally effective and sufficiently robust which makes it applicable in other applications as well.

Keywords:

stochastic programming, heat transfer, progressive hedging, parallel computing, steel production, phase change

Classification:

90C15, 90C06, 80A20, 80A22, 49M27, 93C20

References:

  1. A. Alquarashi, A. H. Etemadi and A. Khodaei: Treatment of uncertainty for next generation power systems: State-of-the-art in stochastic optimization. Electr. Power Syst. Res. 141 (2016), 233-245.   DOI:10.1016/j.epsr.2016.08.009
  2. M. Barttfeld, N. Alleborn and F. Durst: Dynamic optimization of multiple-zone air impingement drying process. Comput. Chem. Engrg. 30 (2006), 467-489.   DOI:10.1016/j.compchemeng.2005.10.016
  3. J. R. Birge and F. Louveaux: Introduction to Stochastic Programming. Springer, New York 2011.   CrossRef
  4. J. K. Brimacombe and K. Sorimachi: Crack formation in continuous-casting of steel. Metal. Trans. B. Proc. Metal. 8 (1977), 489-505.   DOI:10.1007/bf02696937
  5. E. P. Carvalho, J. Martínez, J. M. Martínez and F. Pisnitchenko: On optimization strategies for parameter estimation in models governed by partial differential equations. Math. Comput. Simul. 114 (2015), 14-24.   DOI:10.1016/j.matcom.2010.07.020
  6. M. Carrasco, B. Ivorra and A. M. Ramos: Stochastic topology design optimization for continuous elastic materials. Comput. Meth. Appl. Mech. Engrg. 289 (2015), 131-154.   DOI:10.1016/j.cma.2015.02.003
  7. P. L. Carpentier, M. Gendreau and F. Bastin: Long-term management of a hydroelectric multireservoir system under uncertainty using the progressive hedging algorithm. Water Resour. Res. 49 (2013), 2812-2827.   DOI:10.1002/wrcr.20254
  8. Y. M. Cheng, D. Z. Li, N. Li, Y. Y. Lee and S. K. Au: Solution of some engineering partial differential equations governed by the minimal of a functional by global optimization method. J. Mech. 29 (2013), 507-516.   DOI:10.1017/jmech.2013.26
  9. A. Drud: CONOPT - A GRG code for large sparse dynamic nonlinear optimization problems. Math. Program. 31 (1985), 153-191.   DOI:10.1007/bf02591747
  10. D. Gade, G. Hackebeil. S. M. Ryan, J.-P. Watson, R. J.-B. Wets and D. L. Woodruff: Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs. Math. Prog. 157 (2016), 47-67.   DOI:10.1007/s10107-016-1000-z
  11. R. E. C. Gonçalves, E. C. Finardi and E. L. da Silva: Applying different decomposition schemes using the progressive hedging algorithm to the operation planning problem of a hydrothermal system. Electr. Power Syst. Res. 83 (2012), 19-27.   DOI:10.1016/j.epsr.2011.09.006
  12. S. Gul, B. T. Denton and J. W. Fowler: A progressive hedging approach for surgery planning under uncertainty. INFORMS J. Comput. {\mi 27} (2015), 755-772.   DOI:10.1287/ijoc.2015.0658
  13. S. Ikeda and R. Ooka: A new optimization strategy for the operating schedule of energy systems under uncertainty of renewable energy sources and demand changes. Energ. Build. 125 (2016), 75-85.   DOI:10.1016/j.enbuild.2016.04.080
  14. T. L. Bergman, A. S. Lavine, F. P. Incropera and D. P. Dewitt: Fundamentals of Heat and Mass Transfer. Seventh edition. Wiley, New York 2011.   CrossRef
  15. L. Klimeš: Stochastic Programming Algorithms. Master Thesis. Brno University of Technology, 2010.   CrossRef
  16. L. Klimeš and P. Popela: An implementation of progressive hedging algorithm for engineering problem. In: Proc. 16th International Conference on Soft Computing MENDEL, Brno 2010, pp. 459-464.   CrossRef
  17. L. Klimeš, P. Popela and J. Štětina: Decomposition approach applied to stochastic optimization of continuous steel casting. In: Proc. 17th International Conference on Soft Computing MENDEL, Brno 2011, pp. 314-319.   CrossRef
  18. L. Klimeš, T. Mauder and J. Štětina: Stochastic approach and optimal control of continuous steel casting process by using progressive hedging algorithm. In: Proc. 20th International Conference on Materials and Metallurgy METAL, Brno 2011, pp. 146-151.   CrossRef
  19. M. La Marca, D. Armbruster, M. Herty and C. Ringhofer: Control of continuum models of production systems. IEEE Trans. Automat. Control 55 (2010), 2511-2526.   DOI:10.1109/tac.2010.2046925
  20. A. Lamghari and R. Dimitrakopoulos: Progressive hedging applied as a metaheuristic to schedule production in open-pit mines accounting for reserve uncertainty. Eur. J. Oper. Res. 253 (2016), 843-855.   DOI:10.1016/j.ejor.2016.03.007
  21. J. Liu and C. Liu: Optimization of mold inverse oscillation control parameters in continuous casting process. Mater. Manuf. Process. 30 (2015), 563-568.   DOI:10.1080/10426914.2015.1004696
  22. K. C. Mills, P. Ramirez-Lopez, P. D. Lee, B. Santillana, B. G. Thomas and R. Morales: Looking into continuous casting mould. Ironmak. Steelmak. 41 (2014), 242-249.   DOI:10.1179/0301923313z.000000000255
  23. T. Mauder, F. Kavička, J. Štětina, Z. Franěk and M. Masarik: A mathematical \& stochatic modelling of the concasting of steel slabs. In: Proc. International Conference on Materials and Metallurgy, Hradec nad Moravicí 2009, pp. 41-48.   CrossRef
  24. T. Mauder and J. Novotný: Two mathematical approaches for optimal control of the continuous slab casting process. In: Proc. 16th International Conference on Soft Computing MENDEL, Brno 2010, pp. 41-48.   CrossRef
  25. R. T. Rockafellar and R. J.-B. Wets: Scenarios and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16 (1991), 119-147.   DOI:10.1287/moor.16.1.119
  26. A. Ruszczynski and A. Shapiro: Stochastic Programming Models. Handbooks in Operations Research and Management Science, Volume 10: Stochastic Programming, Elsevier, Amsterdam 2003.   DOI:10.1016/s0927-0507(03)10001-1
  27. A. Shioura, N. V. Shakhlevich and V. A. Strusevich: Application of submodular optimization to single machine scheduling with controllable processing times subject to release dates and deadlines. INFORMS J. Comput. 28 (2016), 148-161.   DOI:10.1287/ijoc.2015.0660
  28. D. M. Stefanescu: Science and Engineering of Casting Solidification. Second edition. Springer, New York 2009.   CrossRef
  29. J. Štětina, L. Klimeš and T. Mauder: Minimization of surface defects by increasing the surface temperature during the straightening of a continuously cast slab. Mater. Tehnol. 47 (2013), 311-316.   CrossRef
  30. H. Ugail and M. J. Wilson: Efficient shape parametrisation for automatic design optimisation using a partial differential equation formulation. Comput. Struct. 81 (2003), 2601-2609.   DOI:10.1016/s0045-7949(03)00321-3
  31. P. Varaiya and R. J.-B. Wets: Stochastic dynamic optimization approaches and computation. In: Proc. 13th International Symposium on Mathematical Programming, Tokio 1989, pp. 309-331.   DOI:10.1007/978-3-642-82450-0_11
  32. F. B. Veliz, J. P. Watson, A. Weintraub, R. J.-B. Wets and D. L. Woodruff: Stochastic optimization models in forest planning: a progressive hedging solution approach. Ann. Oper. Res. 232 (2015), 259-274.   DOI:10.1007/s10479-014-1608-4
  33. B. G. V. Waanders and B. R. Carnes: Optimization under adaptive error control for finite element based simulations. Comput. Mech. 47 (2011), 49-63.   DOI:10.1007/s00466-010-0530-0
  34. R. J.-B. Wets: The aggretation principle in scenario analysis and stochastic optimization. In: Algorithms and Model Formulations in Mathematical Programming (S. W. Wallace, ed.), Springer, Berlin 1989.   DOI:10.1007/978-3-642-83724-1_4
  35. Z. Yang, H. L. Qui, X. W. Luo and D. Shen: Simulating schedule optimization problem in steelmaking continuous casting process. Int. J. Simul. Model. 14 (2015), 710-718.   DOI:10.2507/ijsimm14(4)co17
  36. J. Yang, Z. P. Ji, S. Liu and Q. Jia: Multi-objective optimization based on pareto optimum in secondary cooling and EMS of continuous casting. In: Proc. International Conference on Advanced Robotics and Mechatronics (ICARM), Macau 2016, pp. 283-287.   DOI:10.1109/icarm.2016.7606933
  37. E. Žampachová, P. Popela and M. Mrázek: Optimum beam design via stochastic programming. Kybernetika 46 (2010), 571-582.   CrossRef
  38. M. H. F. Zarandi, F. Dorry and F. S. Moghadam: Steelmaking-continuous casting scheduling problem with interval type 2 fuzzy random due dates. In: Proc. IEEE Conference on Norbert Wiener in the 21st Century (21CW), Boston 2014.   DOI:10.1109/norbert.2014.6893896