Kybernetika 53 no. 5, 959-982, 2017

Further results on the generalized cumulative entropy

Antonio Di Crescenzo and Abdolsaeed ToomajDOI: 10.14736/kyb-2017-5-0959

Abstract:

Recently, a new concept of entropy called generalized cumulative entropy of order $n$ was introduced and studied in the literature. It is related to the lower record values of a sequence of independent and identically distributed random variables and with the concept of reversed relevation transform. In this paper, we provide some further results for the generalized cumulative entropy such as stochastic orders, bounds and characterization results. Moreover, some characterization results are derived for the dynamic generalized cumulative entropy. Finally, it is shown that the empirical generalized cumulative entropy of an exponential distribution converges to normal distribution.

Keywords:

stochastic orders, generalized cumulative entropy, lower record values, reversed relevation transform, parallel system

Classification:

60E15, 62B10, 62N05

References:

  1. B. C. Arnold, N. Balakrishnan and H. N. Nagaraja: A First Course in Order Statistics. Wiley and Sons, New York 1992.   DOI:10.1137/1.9780898719062
  2. M. Asadi: A new measure of association between random variables.    DOI:10.1007/s00184-017-0620-5
  3. L. Bagai and S. C. Kochar: On tail ordering and comparison of failure rates. Comm. Stat. Theor. Meth. 15 (1986), 1377-1388.   DOI:10.1080/03610928608829189
  4. S. Baratpour: Characterizations based on cumulative residual entropy of first-order statistics. Comm. Stat. Theor. Meth. 39 (2010), 3645-3651.   DOI:10.1080/03610920903324841
  5. R. E. Barlow and F. Proschan: Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston, New York 1975.   CrossRef
  6. J. Bartoszewicz: On a representation of weighted distributions. Stat. Prob. Lett. 79 (2009), 1690-1694.   DOI:10.1016/j.spl.2009.04.007
  7. L. A. Baxter: Reliability applications of the relevation transform. Nav. Res. Logist. Q. 29 (1982), 323-330.   DOI:10.1002/nav.3800290212
  8. H. W. Block, T. H. Savits and H. Singh: The reversed hazard rate function. Probab. Engrg. Inform. Sci. 12 (1998), 69-90.   DOI:10.1017/s0269964800005064
  9. M. Burkschat and J. Navarro: Asymptotic behavior of the hazard rate in systems based on sequential order statistics. Metrika 77 (2014), 965-994.   DOI:10.1007/s00184-013-0481-5
  10. K. N. Chandler: The distribution and frequency of record values. J. Royal Stat. Soc. B 14 (1952), 220-228.   CrossRef
  11. N. K. Chandra and D. Roy: Some results on reversed hazard rate. Probab. Engrg. Inform. Sci. 15 (2001), 95-102.   DOI:10.1017/s0269964801151077
  12. A. Di Crescenzo: A probabilistic analogue of the mean value theorem and its applications to reliability theory. J. Appl. Prob. 36 (1999), 706-719.   DOI:10.1239/jap/1029349973
  13. A. Di Crescenzo and M. Longobardi: Entropy-based measure of uncertainty in past lifetime distributions. J. Appl. Prob. 39 (2002), 434-440.   DOI:10.1239/jap/1025131441
  14. A. Di Crescenzo and M. Longobardi: On cumulative entropies. J. Stat. Plan. Infer. 139 (2009), 4072-4087.   DOI:10.1016/j.jspi.2009.05.038
  15. A. Di Crescenzo, B. Martinucci and J. Mulero: A quantile-based probabilistic mean value theorem. Probab. Engrg. Inform. Sci. 30 (2016), 261-280.   DOI:10.1017/s0269964815000376
  16. A. Di Crescenzo and A. Toomaj: Extensions of the past lifetime and its connections to the cumulative entropy. J. Appl. Prob. 52 (2015), 1156-1174.   DOI:10.1239/jap/1450802759
  17. J. S. Hwang and G. D. Lin: On a generalized moment problem II. Proc. Amer. Math. Soc. 91 (1984), 577-580.   DOI:10.1090/s0002-9939-1984-0746093-4
  18. U. Kamps: Characterizations of distributions by recurrence relations and identities for moments of order statistics. In: Order Statistics: Theory and Methods. Handbook of Statistics 16 (N. Balakrishnan and C. R. Rao, eds.), Elsevier, Amsterdam 1998, pp. 291-311.   DOI:10.1016/s0169-7161(98)16012-1
  19. S. Kapodistria and G. Psarrakos: Some extensions of the residual lifetime and its connection to the cumulative residual entropy, Probab. Engrg. Inform. Sci. 26 (2012), 129-146.   DOI:10.1017/s0269964811000271
  20. S. Kayal: On generalized cumulative entropies. Probab. Engrg. Inform. Sci. 30 (2016), 640-662.   DOI:10.1017/s0269964816000218
  21. S. Kayal: On weighted generalized cumulative residual entropy of order $n$. Meth. Comp. Appl. Prob., online first (2017).   DOI:10.1007/s11009-017-9569-0
  22. I. Klein, B. Mangold and M. Doll: Cumulative paired $\phi$-entropy. Entropy 18 (2016), 248.   DOI:10.3390/e18070248
  23. M. Krakowski: The relevation transform and a generalization of the Gamma distribution function. Rev. Française Automat. Informat. Recherche Opérationnelle 7 (1973), 107-120.   DOI:10.1051/ro/197307v201071
  24. Y. Li, L. Yu and T. Hu: Probability inequalities for weighted distributions. J. Stat. Plan. Infer. 142 (2012), 1272-1278.   DOI:10.1016/j.jspi.2011.11.023
  25. P. Muliere, G. Parmigiani and N. Polson: A note on the residual entropy function. Probab. Engrg. Inform. Sci. 7 (1993), 413-420.   DOI:10.1017/s0269964800003016
  26. J. Navarro, Y. del Aguila and M. Asadi: Some new results on the cumulative residual entropy. J. Stat. Plan. Infer. 140 (2010), 310-322.   DOI:10.1016/j.jspi.2009.07.015
  27. J. Navarro and G. Psarrakos: Characterizations based on generalized cumulative residual entropy functions. Comm. Stat. Theor. Meth. 46 (2017), 1247-1260.   DOI:10.1080/03610926.2015.1014111
  28. J. Navarro and R. Rubio: Comparisons of coherent systems with non-identically distributed components. J. Stat. Plann. Infer. 142 (2012), 1310-1319.   DOI:10.1016/j.jspi.2011.12.008
  29. J. Navarro, S. M. Sunoj and M. N. Linu: Characterizations of bivariate models using dynamic Kullback-Leibler discrimination measures. Stat. Prob. Lett. 81 (2011), 1594-1598.   DOI:10.1016/j.spl.2011.05.016
  30. G. Psarrakos and J. Navarro: Generalized cumulative residual entropy and record values. Metrika 76 (2013), 623-640.   DOI:10.1007/s00184-012-0408-6
  31. G. Psarrakos and A. Toomaj: On the generalized cumulative residual entropy with applications in actuarial science. J. Comput. Appl. Math. 309 (2017), 186-199.   DOI:10.1016/j.cam.2016.06.037
  32. M. Rao: More on a new concept of entropy and information. J. Theoret. Probab. 18 (2005), 967-981.   DOI:10.1007/s10959-005-7541-3
  33. M. Rao, Y. Chen, B. Vemuri and W. Fei: Cumulative residual entropy: a new measure of information. IEEE Trans. Inform. Theory 50 (2004), 1220-1228.   DOI:10.1109/tit.2004.828057
  34. M. Rezaei, B. Gholizadeh and S. Izadkhah: On relative reversed hazard rate order. Comm. Stat. Theor. Meth. 44 (2015), 300-308.   DOI:10.1080/03610926.2012.745559
  35. M. Shaked and J. G. Shanthikumar: Stochastic Orders and Their Applications. Academic Press, San Diego 2007.   CrossRef
  36. C. E. Shannon: A mathematical theory of communication. Bell. Syst. Tech. J. 27 (1948), 379-423 and 623-656.   DOI:10.1002/j.1538-7305.1948.tb01338.x
  37. M. Sordo and A. Suarez-Llorens: Stochastic comparisons of distorted variability measures. Insur. Math. Econ. 49 (2011), 11-17.   DOI:10.1016/j.insmatheco.2011.01.014
  38. A. Toomaj, A. Di Crescenzo and M. Doostparast: Some results on information properties of coherent systems. Appl. Stoch. Mod. Bus. Ind., online first (2017).   DOI:10.1002/asmb.2277