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In this paper, an equivalence on the class of nullnorms on a bounded lattice based on the
equality of the orders induced by nullnorms is introduced. The set of all incomparable elements
w.r.t. the order induced by nullnorms is investigated. Finally, the recently posed open problems
have been solved.
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1. INTRODUCTION

Nullnorms generalizing the notions of t-norms and t-conorms [5, 19] introduced in [4]
and [17] are interesting not only from a theoretical point of view, but also for their
applications in several fields like experts systems, neural networks, fuzzy quantifiers
[18].

Recently, the order generating problem from a logical operator has been attractive
for many researchers [6, 8, 11, 12, 13, 14]. In this sense, in [11], a partial order called
as the T-partial order induced by a t-norm has been introduced. As further works, in
the studies [1] and [6], the orders, denoted by �V and �U respectively, on a bounded
lattice has been defined and studied their properties. Also, in [1], it has been shown that
the orders �U and �V do not coincide in general. In [1] again, the set of incomparable
elements w.r.t. the order �V for any nullnorm on [0, 1] has been defined and investigated.

In the present paper, we introduce an equivalence on the class of nullnorms on
a bounded lattice L based on the equality of the orders induced by nullnorms. The
main aim of this paper is to present the relations between the equivalence classes of
nullnorms and the equivalence classes of their underlying t-norms and t-conorms. The
paper is organized as follows: In Section 2, we shortly recall some basic notions and
results. In Section 3, we define an equivalence on the class of nullnorms on a bounded
lattice with a zero element a and we determine that two idempotent nullnorms are equiv-
alent. Also, we show that for the equivalence of two nullnorms a necessary and sufficient
condition is the equivalence of their underlying t-norms and t-conorms, respectively. We
obtain a necessary and sufficient condition for nullnorms and their φ-conjugates to be
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in the same equivalence classes. In Section 4, we define the set of all incomparable ele-
ments w.r.t. �V , denoted by KV and characterized exactly. We present some relations
between the set KV and the sets of all incomparable elements w.r.t. the order induced
by the corresponding underlying t-norm and t-conorm, denoted by KTV

and KSV
, re-

spectively. Finally, for the open problem posed in the study [1] stated as “Is KF , F is
a nullnom, always an interval or can it be a union of intervals?”, we give an example
illustrating that KF need not be an interval and it can be a union of some intervals.
Also, for the open problem given in the study [1] stated as “Given an (a, b) ( (0, 1), can
we find a nullnorm F such that KF = (a, b)?”, by Theorem 4.18, we proof that for any
(u, v) ( (0, 1) not consisting an element a ∈ [0, 1] there exists a nullnorm V on [0, 1]
with the zero element a such that KV = (u, v).

2. NOTATIONS, DEFINITIONS AND A REVIEW OF PREVIOUS RESULTS

Definition 2.1. (Karaçal and Kesicioğlu [11], Ma and Wu [16])
An operation T (S) on a bounded lattice L is called a triangular norm (triangular
conorm) if it is commutative, associative, increasing with respect to the both variables
and has a neutral element 1 (0).

Definition 2.2. (Karaçal and Kesicioğlu [11], Kesicioğlu et al. [13])
A t-norm T (or a t-conorm S) on a bounded lattice L is divisible if the following condition
holds:

For all x, y ∈ L with x ≤ y there is z ∈ L such that x = T (y, z) (or y = S(x, z)).

Definition 2.3. (Karaçal et al. [9])
Let (L,≤, 0, 1) be a bounded lattice. An operation V : L2 → L is called a nullnorm on
L, if it is commutative, associative, increasing with respect to the both variables and
has a zero (absorbing) element a ∈ L such that for all x ≤ a, V (x, 0) = x and for all
x ≥ a, V (x, 1) = x.

In this study, the notation V(a) will be used for the set of all nullnorms on L with a
zero element a ∈ L.

Definition 2.4. (Karaçal and Mesiar [10])
Let (L,≤, 0, 1) be a bounded lattice. An operation U : L2 → L is called a uninorm on
L, if it is commutative, associative, increasing with respect to the both variables and
has a neutral element e ∈ L.

Proposition 2.5. (Karaçal et al. [9])
Let (L,≤, 0, 1) be a bounded lattice, and V ∈ V(a). Then

(i) SV = V |[0,a]2 : [0, a]2 → [0, a] is a t-conorm on [0, a].

(ii) TV = V |[a,1]2 : [a, 1]2 → [a, 1] is a t-norm on [a, 1].

SV and TV given in Proposition 2.5 are called the underlying t-conorm and t-norm of
V, respectively.

In the whole of the paper, we will use TV for the underlying t-norm and SV for the
underlying t-conorm of a given nullnorm V.
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Definition 2.6. (Grabisch et al. [7])
Let (L,≤, 0, 1) be a bounded lattice and V ∈ V(a). An element x ∈ L is called an
idempotent element of V if V (x, x) = x.

Moreover a nullnorm is called idempotent nullnorm whenever V (x, x) = x for all
x ∈ L.

Definition 2.7. (Baczyński and Jayaram [2], Kesicioğlu and Mesiar [14], Ma and Wu
[16]) Let (L,≤, 0, 1) be a bounded lattice. A decreasing function N : L → L is called
a negation if N(0) = 1 and N(1) = 0. A negation N on L is called strong if it is an
involution, i. e., N(N(x)) = x, for all x ∈ L.

Definition 2.8. (Baczyński and Jayaram [2])
Let T be a t-norm on a bounded lattice L and N be a strong negation on L. The
t-conorm S defined by

S(x, y) = N(T (N(x), N(y))), x, y ∈ L

is called the N-dual t-conorm to T on L.

Definition 2.9. (Karaçal and Kesicioğlu [11])
Let L be a bounded lattice, T be a t-norm on L. The order defined as the following is
called a T− partial order (triangular order) for the t-norm T :

x �T y ⇔ T (`, y) = x for some ` ∈ L.

Similarly, the notion S− partial order can be defined as follows:

Definition 2.10. (Ertuğrul et al. [6])
Let L be a bounded lattice, S be a t-conorm on L. The order defined as the following
is called a S− partial order for t-conorm S:

x �S y ⇔ S(`, x) = y for some ` ∈ L.

Definition 2.11. (Kesicioğlu et al. [13])
Let (L,≤, 0, 1) be a given bounded lattice. Define a relation ∼ on the class of all t-
norms on (L,≤, 0, 1) by T1 ∼ T2 if and only if the T1- partial order coincides with the
T2- partial order.

Lemma 2.12. (Kesicioğlu et al. [13])
The relation ∼ given in Definition 3.1 is an equivalence relation.

Also, an equivalence relation for two t-conorms can be given as similar to the equiv-
alence relation in Definition 2.11.

Definition 2.13. (Aşıcı [1])
Let (L,≤, 0, 1) be a bounded lattice and V ∈ V(a). The order defined as the following
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is called a V-partial order for V : For every x, y ∈ L

x �V y ⇔


if x, y ∈ [0, a] and there exists k ∈ [0, a] such that
V (k, x) = y or,

if x, y ∈ [a, 1] and there exists ` ∈ [a, 1] such that
V (y, `) = x or,

if (x, y) ∈ L∗ and x ≤ y,

(1)

where Ia = {x ∈ L | x‖a} and L∗ = [0, a]× [a, 1]∪ [0, a]× Ia ∪ [a, 1]× [0, a]∪ [a, 1]× Ia ∪
Ia × [0, a] ∪ Ia × [a, 1] ∪ Ia × Ia.

Here, note that the notation x||y denotes that x and y are incomparable.

Proposition 2.14. (Aşıcı [1])
Let (L,≤, 0, 1) be a bounded lattice and V ∈ V(a). If x �V y for any x, y ∈ L, then
x ≤ y.

Definition 2.15. (Klement et al. [15])
If T is a t-norm on the unit interval [0, 1] and φ : [0, 1] → [0, 1] an order-preserving
bijection, then the operation Tφ : [0, 1]2 → [0, 1] given by

Tφ(x, y) = φ−1(T (φ(x), φ(y)))

is also a t-norm. This t-norm is called φ-conjugate of T .
The φ-conjugate of a t-norm (nullnorm, t-conorm) on a bounded lattice is defined as

similar to Definition 2.15.

Definition 2.16. (Birkhoff [3])
Let (L,≤, 0, 1) be a bounded lattice. If there exists an element y ∈ L for an element
x ∈ L such that x ∧ y = 0 and x ∨ y = 1, then the element y is called as a complement
of x.
L is called as a complemented lattice if all elements have complements.
L is called relatively complemented if all intervals are complemented.

3. THE EQUIVALENCE CLASS

Definition 3.1. Let (L,≤, 0, 1) be a given bounded lattice. Define a relation ∼ on the
class V(a) by V1 ∼ V2 if and only if the V1- partial order coincides with the V2- partial
order.

The next result is obvious.

Proposition 3.2. The relation ∼ given in Definition 3.1 is an equivalence relation.

Definition 3.3. Let (L,≤, 0, 1) be a bounded lattice and V ∈ V(a). We denote by V
the ∼ equivalence class linked to V , i. e.

V = {V
′
| V

′
∼ V }.
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Proposition 3.4. Let (L,≤, 0, 1) be a bounded lattice and V1, V2 ∈ V(a). If the under-
lying t-norms and t-conorms of V1 and V2 are divisible, then V1 ∼ V2.

P r o o f . Let the underlying t-norms and t-conorms of V1 and V2 be divisible. Then, it
follows V1 ∼ V2 from �V1=≤=�V2 , by Proposition 5 in [1]. �

Corollary 3.5. Let V1 and V2 be two nullnorms on [0, 1]. If their underlying t-norms
and t-conorms are continuous, then they are equal under the relation ∼.

The converse of Proposition 3.4 need not be true. Let us investigate the following
example.

Example 3.6. Take two functions V1 and V2 on [0, 1] defined as follows:

V1(x, y) =


y x = 0 and y ≤ 1/2,
x y = 0 and x ≤ 1/2,
min(x, y) (x, y) ∈ [ 12 , 1]2,
1
2 otherwise,

and

V2(x, y) =


y x = 0 and y ≤ 1/2,
x y = 0 and x ≤ 1/2,
xy (x, y) ∈ [ 12 , 1]2,
1
2 otherwise.

By Corollary 7 in [9], V1 and V2 are nullnorms on [0, 1] with zero element 1/2, and
V1, V2 |[0, 12 ]2= SD, V1 |[ 12 ,1]2= TM , V2 |[ 12 ,1]2= TP . Also, it can be easily seen that
�V1=�V2 , i. e., V1 ∼ V2. Although, the underlying t-conorm of V1 and V2, SD, is not
continuous.

Theorem 3.7. Let (L,≤, 0, 1) be a bounded lattice and V1, V2 ∈ V(a). Then, TV1 ∼ TV2

and SV1 ∼ SV2 if and only if V1 ∼ V2.

P r o o f . Let x �V1 y for any x, y ∈ L. Suppose that x, y ∈ [0, a]. Then, there exists an
element ` of [0, a] such that

y = V1(`, x) = V1 |[0,a]2 (`, x) = SV1(`, x).

Thus, we have that x �SV1
y. Since SV1 ∼ SV2 , it is obtained that x �SV2

y. Then,
there exists an element `∗ ∈ [0, a] such that

y = SV2(`∗, x) = V2 |[0,a]2 (`∗, x) = V2(`∗, x),

which implies that x �V2 y.
Let x, y ∈ [a, 1]. Then, there exists an element ` ∈ [a, 1] such that

x = V1(`, y) = V1 |[a,1]2 (`, y) = TV1(`, y),
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whence x �TV1
y. Since TV1 ∼ TV2 , we have that x �TV2

y. Then, there exists an
element `∗ ∈ [a, 1] such that

x = TV2(`∗, y) = V2 |[a,1]2 (`∗, y) = V2(`∗, y),

which implies that x �V2 y.
Suppose that x, y 6∈ [0, a] and x, y 6∈ [a, 1]. Then, (x, y) ∈ L∗. Thus, we have that

x ≤ y from x �V1 y. Since x ≤ y and (x, y) ∈ L∗, by the definition of �V2 , we obtain
that x �V2 y. So, we have that x �V1 y which implies that x �V2 y for any x, y ∈ L.

It is clear that the similar arguments are also true when V1 is replaced by V2. That
is, x �V2 y implies that x �V1 y for any x, y ∈ L. Then, we have that �V1=�V2 , whence
V1 ∼ V2.

Conversely, let V1 ∼ V2. Then, �V1=�V2 . Since �V1|[0,a]2
=�V2|[0,a]2

and �V1|[a,1]2
=

�V2|[a,1]2
, we have that �SV1

=�SV2
and �TV1

=�TV2
, which implies that SV1 ∼ SV2 and

TV1 ∼ TV2 . �

Proposition 3.8. (Kesicioğlu et al. [12]) Let (L,≤, 0, 1) be a bounded lattice , S1 and
S2 the N-dual t-conorms of two t-norms T1 and T2 on L, respectively. Then, T1 ∼ T2 iff
S1 ∼ S2.

Corollary 3.9. Let (L,≤, 0, 1) be a bounded lattice and V1, V2 ∈ V(a). Let SV1 and
SV2 be the N-dual t-conorms of TV1 and TV2 , respectively. Then, TV1 ∼ TV2 iff V1 ∼ V2.

Proposition 3.10. Let T (S) be a t-norm (t-conorm) on a bounded lattice (L,≤, 0, 1)
and let φ : L→ L be a ≤-preserving bijection. The following statements are equivalent:

(i) T ∼ Tφ (S ∼ Sφ),

(ii) φ is �T (�S)-preserving. That is, for all x, y ∈ L, x �T y (x �S y) iff φ(x) �T φ(y)
(φ(x) �S φ(y)).

P r o o f . Since the proof is similar to the case L = [0, 1], Proposition 5 in [13], we omit
its proof. �

Proposition 3.11. Let (L,≤, 0, 1) be a bounded lattice, V ∈ V(a) and let φ be a ≤-
preserving bijection on L with φ(a) = a. Then, φ is �TV

and �SV
-preserving iff φ is

�V -preserving.

P r o o f . Let φ be �TV
and �SV

-preserving. Let x �V y for any x, y ∈ L.

• Suppose that x, y ∈ [0, a]. In this case, it is clear that φ(x), φ(y) ∈ [0, a] from
φ(a) = a. Thus, since φ is �SV

-preserving, the following equivalents hold:

x �V y ⇔ x �SV
y ⇔ φ(x) �SV

φ(y)
⇔ φ(x) �V φ(y).
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• Let x, y ∈ [a, 1]. By φ(a) = a, it is obvious that φ(x), φ(y) ∈ [a, 1]. Since φ is
�TV

-preserving,

x �V y ⇔ x �TV
y ⇔ φ(x) �TV

φ(y)
⇔ φ(x) �V φ(y)

hold.

• Let x, y 6∈ [0, a] and x, y 6∈ [a, 1]. Clearly, (x, y) ∈ L∗, whence (φ(x), φ(y)) ∈ L∗. In
this case,

x �V y ⇔ x ≤ y ⇔ φ(x) ≤ φ(y)
⇔ φ(x) �

V
φ(y)

hold. Therefore, φ is �V -preserving.

Conversely, let φ be �V -preserving. We shall show that φ is �SV
-preserving. Since

for any x, y ∈ [0, a], φ(x), φ(y) ∈ [0, a] by φ(a) = a, the following equalities hold:

x �SV
y ⇔ SV (`, x) = y, for some ` ∈ [0, a]
⇔ V (`, x) = SV (`, x) = y, for some ` ∈ [0, a]
⇔ x �V y

⇔ φ(x) �V φ(y)
⇔ V (`∗, φ(x)) = φ(y), for some `∗ ∈ [0, a]
⇔ φ(y) = V (`∗, φ(x)) = SV (`∗, φ(x)), for some `∗ ∈ [0, a]
⇔ φ(x) �SV

φ(y).

Thus, φ is �SV
-preserving.

Similarly, it can be shown that φ is �TV
-preserving. �

Theorem 3.12. Let (L,≤, 0, 1) be a bounded lattice, V ∈ V(a) and let φ : L→ L be a
≤-preserving bijection with φ(a) = a. Then, V ∼ Vφ iff φ is �V -preserving.

P r o o f . For SV = V |[0,a]2 and TV = V |[a,1]2 , it is clear that (Vφ) |[0,a]2= (SV )φ and
(Vφ) |[a,1]2= (TV )φ. Then, the following equalities hold:

φ is �V -preserving ⇔ φ is �SV
and �TV

-preserving
(by Proposition 3.11)

⇔ SV ∼ (SV )φ and TV ∼ (TV )φ
(by Proposition 3.10)

⇔ V ∼ Vφ (by Theorem 3.7)

�
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4. THE SETKV OF ALL INCOMPARABLE ELEMENTS W.R.T. THE ORDER�V
Let (L,≤, 0, 1) be a bounded lattice and M be a nullnorm (t-norm,t-conorm) on L. In
the whole study, we will use the notation x||�M

y for any incomparable elements x and
y w.r.t. the order �M .

Definition 4.1. Let (L,≤, 0, 1) be a bounded lattice and V ∈ V(a). Let KV be defined
as

KV = {x ∈ L | (∃y ∈ L) (x||�V
y)}.

Clearly, KSV
and KTV

are defined as

KSV
= {x ∈ [0, a] | (∃y ∈ [0, a]) (x||�SV

y)}

and
KTV

= {x ∈ [a, 1] | (∃y ∈ [a, 1]) (x||�TV
y)}.

By Definition 4.1, if L is not a chain, it is clear that KV 6= ∅. The converse of this
claim may fail. Let us investigate the following example.

Example 4.2. Consider the lattice L = {0, x, y, a, 1}, with 0 < x < y < a < 1.
Define the function V : L2 → L as in Table 1:

V 0 x y a 1
0 0 x y a a
x x a a a a
y y a a a a
a a a a a a
1 a a a a 1

Tab. 1. The nullnorm V on L.

Obviously, V is a nullnorm and the order �V is depicted on Figure 1:

1

x

a

y

0

Fig. 1. (L,�V ).

As it can be seen from the Figure 1, KV = {x, y} 6= ∅.
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Proposition 4.3. Let (L,≤, 0, 1) be a bounded lattice and V ∈ V(a). Then,

KSV
⊆ KV ∩ [0, a] and KTV

⊆ KV ∩ [a, 1].

P r o o f . Let x ∈ KSV
. Then, there exists an element y ∈ [0, a] such that

x||�SV
y.

If x �V y, there would exist an element ` ∈ [0, a] such that

V (`, x) = y.

Thus, since y = V (`, x) = SV (`, x), we would have that x �SV
y, a contradiction. If

y �V x, there would obtain a similar contradiction since x‖�SV
y. Thus, it must be

x �V y and y �V x, that is, x||�V
y. Then, x ∈ KV . Hence, KSV

⊆ KV ∩ [0, a].
Similarly, it can be shown that KTV

⊆ KV ∩ [a, 1]. �

Remark 4.4. In Proposition 4.3, it need not be KSV
= KV ∩ [0, a] and KTV

= KV ∩
[a, 1]. Let us investigate the following example.

Example 4.5. Consider the lattice L = {0, x, a, y, 1} whose lattice diagram is depicted
on Figure 2:

1

x

a

y

0

Fig. 2. (L,≤).

Define a function V : L2 → L as in Table 2:

V 0 x y a 1
0 0 x a a a
x x x a a a
y a a a a a
a a a a a a
1 a a a a a

Tab. 2. The nullnorm V on L.

It can be easily shown that V is a nullnorm on L and �V =≤. Also, since KSV
= ∅ and

KV ∩ [0, a] = {a, x}, we have that ∅ = KSV
6= KV ∩ [0, a] = {a, x}.
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In the following Proposition, we give a necessary and sufficient condition for the
equality in Proposition 4.3.

Proposition 4.6. Let (L,≤, 0, 1) be a bounded lattice and V ∈ V(a). If Ia = ∅, then

KSV
= KV ∩ [0, a] and KTV

= KV ∩ [a, 1].

Conversely, if KSV
= KV ∩ [0, a] or KTV

= KV ∩ [a, 1], then Ia = ∅.

P r o o f . By Proposition 4.3, we know that KSV
⊆ KV ∩[0, a] and KTV

⊆ KV ∩[a, 1].
Now, let us prove that the converses of them are also true. Let x ∈ KV ∩ [0, a]. Then,
x ∈ KV and x ∈ [0, a]. By the definition of KV , there exists an element y ∈ L such that

x||�V
y.

Since Ia = ∅, for y ∈ L either y ≤ a or a ≤ y.
Suppose that a ≤ y. Since x ≤ a ≤ y, it is clear that x �V y by the definition of the

order �V . This contradicts that x||�V
y. Hence, it must be y ≤ a.

If x �SV
y, then there would exist an element ` ∈ [0, a] such that

SV (`, x) = y.

Since y = SV (`, x) = V |[0,a]2 (`, x) = V (`, x), we have that x �V y, which contradicts
x||�V

y. Similarly, if y �SV
x, we would obtain a similar contradiction. Then, x �SV

y
and y �SV

x, which implies that x ∈ KSV
. Thus, we have that KV ∩ [0, a] ⊆ KSV

.
In a similar way, it can be shown that KTV

= KV ∩ [a, 1].
Conversely, let KSV

= KV ∩ [0, a] and Ia 6= ∅. Then, there exists at least an element
y ∈ Ia. Since y||a, obviously a ∈ KV . Since a ∈ KV ∩ [0, a] = KSV

, we have that
a ∈ KSV

, a contradiction. Therefore, it must be Ia = ∅. �

Corollary 4.7. If V is a nullnorm on [0, 1], then KSV
= KV ∩ [0, a] and KTV

= KV ∩
[a, 1].

Proposition 4.8. Let (L,≤, 0, 1) be a bounded lattice and V ∈ V(a). If KV = ∅, then
�V =≤.

P r o o f . Let KV = ∅. For any x, y ∈ L, by Proposition 2.14, it is clear that x �V y
implies that x ≤ y. Conversely, let x ≤ y for any x, y ∈ L. Suppose that x �V y. If
y �V x, it would be obtained y ≤ x, whence x = y. This contradicts that x �V y. Then,
it must be y �V x. Since x �V y and y �V x, we have that x ∈ KV which contradicts
that KV = ∅. Then, it must be x �V y. Thus, �V and ≤ coincide. �

Remark 4.9. The converse of Proposition 4.8 need not be true. Let us investigate the
following example.

Example 4.10. Consider the lattice (L,≤, 0, 1) and the nullnorm V on L as in Example
4.5. Then, it can be easily seen that �V =≤ but KV = {a, x, y} 6= ∅.
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Proposition 4.11. Let (L,≤, 0, 1) be a complemented lattice and V ∈ V(a). Then,
KV = L \ {0, 1}.

P r o o f . It is clear that KV ⊆ L \ {0, 1}. Conversely, let x ∈ L \ {0, 1}. Since L is a
complemented lattice, for x ∈ L\{0, 1}, there exists an element x′ ∈ L\{0, 1} such that
x∧x′ = 0 and x∨x′ = 1. If x ≤ x′, then it would be x∧x′ = x = 0 and x∨x′ = x′ = 1, a
contradiction. If x′ ≤ x, then a similar contradiction would be obtained. Hence, it must
be x||x′. Then, it is clear that x||�V

x′, whence x ∈ KV . Therefore, L \ {0, 1} ⊆ KV ,
which completes the proof. �

Corollary 4.12. Let (L,≤, 0, 1) be a bounded lattice and V ∈ V(a). If L is a relatively
complemented lattice, then KV = L \ {0, 1}.

Theorem 4.13. Let (L,≤, 0, 1) be a bounded lattice and V ∈ V(a). Then,

KV = KSV
∪KTV

∪ Ia ∪M,

where M = {x ∈ L | x||y for some y ∈ Ia}.

P r o o f . Since KSV
,KTV

, Ia,M ⊆ KV , it is clear that KSV
∪ KTV

∪ Ia ∪M ⊆ KV .
Conversely, let x ∈ KV be arbitrary. Then, there exists an element y ∈ L such that

x||�V
y.

• Let x ∈ [0, a]. If y ∈ [a, 1], then it would be x ≤ a ≤ y. By the definition of �V ,
we would have that x �V y, which is a contradiction. Then, either y ∈ [0, a] or y||a.

Let y ∈ [0, a]. In this case, three possible cases for x: x < y or y < x or x||y.
Let x < y. Suppose that x �SV

y. Then, there exists an element ` ∈ [0, a] such that
SV (`, x) = y. Since y = SV (`, x) = V (`, x), it is clear that x �V y, a contradiction. If
y �SV

x, it would be y ≤ x, which contradicts that x < y. So, we have that x ∈ KSV

from x �SV
y and y �SV

x.
Let y < x and y �SV

x. Then, there exists an element `′ ∈ [0, a] such that

SV (`′, y) = x.

Thus, since x = SV (`′, y) = V (`′, y), it is clear that y �V x, a contradiction. Therefore,
it must be y �SV

x. If x �SV
y, it would be x ≤ y, which contradicts that y < x. Then,

we have that x ∈ KSV
from x �SV

y and y �SV
x.

Let x||y. Since x, y ∈ [0, a] and x||y, it is obvious that x ∈ KSV
.

Suppose that y||a.
Let x ≤ y. Since (x, y) ∈ L∗ and x ≤ y, by the definition of �V , we have that x �V y,

contradiction.
Since y||a, it is clear that y ≤ x does not hold. Otherwise, we would obtain that

y ≤ a. Hence, it must be x||y. Since x||y and y||a, we have that x ∈M .

• Let x ∈ [a, 1].
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If y ∈ [0, a], it would be y �V x from y ≤ x and (y, x) ∈ L∗, a contradiction. Then,
either y ∈ [a, 1] or y||a.

Suppose that y ∈ [a, 1]. If y||x, then it is obvious that x ∈ KTV
.

Let x < y. If x �TV
y, there would exist an element ` ∈ [a, 1] such that TV (`, y) = x.

Since x = TV (`, y) = V |[a,1]2 (`, y) = V (`, y), we have that x �V y, which is a
contradiction. If y �TV

x, it would be y ≤ x, which is a contradiction to x < y. Since
x �TV

y and y �TV
x, we have that x ∈ KTV

.
Let y < x. Suppose that y �TV

x. Then, there exists an element ` of [a, 1] such that

y = TV (`, x).

Then, we obtain that y �V x from y = TV (`, x) = V |[a,1]2 (`, x) = V (`, x). This is
clearly a contradiction. If x �TV

y, it would be x ≤ y, a contradiction to y < x. Then,
we have that x ∈ KTV

from x �TV
y and y �TV

x.
Suppose that y||a. If x < y, it would be a ≤ x ≤ y, which contradicts that y||a.
If y < x, it would be y �V x by the definition of �V since (y, x) ∈ L∗ and y < x.

This contradicts that x||�V
y. Then, it must be x||y. In this case, since y||a and x||y, it

is obtained that x ∈M .

• Let x||a. Then, it is clear that x ∈ Ia.

Therefore, we have that x ∈ KSV
∪KTV

∪ Ia ∪M for any x ∈ KV . �

Corollary 4.14. Let (L,≤, 0, 1) be a bounded lattice and V ∈ V(a). If Ia = ∅, then
KV = KSV

∪KTV
.

P r o o f . Let Ia = ∅. Clearly, M = ∅. By the equality in Theorem 4.13, we immediately
obtain that KV = KSV

∪KTV
. �

Corollary 4.15. Let V be a nullnorm on [0, 1] with a zero element a. Then, KV =
KSV

∪KTV
.

The one of the open problems posed in the study [1] has been stated as “Is KV always
an interval or can it be a union of intervals?”. The following example is an answer of
this question which shows that the set KV need not be an interval but KV can be a
union of some intervals.

Example 4.16. Consider the function V : [0, 1]2 → [0, 1] given as follow:

V (x, y) =

 SD(x, y) (x, y) ∈ [0, a]2,
TD(x, y) (x, y) ∈ [a, 1]2,
a otherwise,

where a ∈ (0, 1), SD : [0, a]2 → [0, a] is the drastic sum and TD : [a, 1]2 → [a, 1] is the
drastic product. By [9], V is a nullnorm with zero element a on [0, 1]. Also, KTD

= (a, 1)
and KSD

= (0, a).
Now, let us show that KTD

= (a, 1). It is clear that KTD
⊆ (a, 1). Let x ∈ (a, 1). For any

y ∈ (a, 1) with x < y, it is obvious that x �TD
y. Otherwise, it would be TD(`, y) = x,
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for some ` ∈ [a, 1]. Since x 6= y, it must be ` 6= 1, whence we have that x = a, which
is a contradiction. Then, x ∈ KTD

. Similarly, it can be shown that KSD
= (0, a). By

Corollary 4.15, since KV = KSV
∪KTV

, we have that KV = (0, a) ∪ (a, 1). This shows
that KV can be a union of some intervals.

Remark 4.17. Let (x, y) ( (0, 1). If a ∈ (x, y) for any a ∈ [0, 1], there doesn’t exist a
nullnorm V on [0, 1] with the zero element a such that KV = (x, y). Indeed,
for any x ≤ a, since V (a, x) = a, we have that x �V a. On the other hand, for any
x ≥ a, since V (a, x) = a, it is obtained that a �V x. Then, the zero element a of a
nullnorm V is comparable to any element x of [0, 1] w.r.t. �V . Thus, a 6∈ KV . If there
exists a nullnorm V on [0, 1] with the zero element a ∈ (x, y) such that KV = (x, y), it
would be a ∈ KV , which is a contradiction.

The following theorem is an answer for the open problem in [1] stated as “Given an
(a, b) ( (0, 1), can we find a nullnorm F such that KF = (a, b)?”.

Theorem 4.18. Let (u, v) ( (0, 1) be any subinterval which doesn’t consist an element
a ∈ [0, 1]. Then, there exists a nullnorm V : [0, 1]2 → [0, 1] with a zero element a such
that KV = (u, v).

P r o o f . Let (u, v) ( (0, 1) be any subinterval. Since a 6∈ (u, v), it is clear that (u, v) ⊆
(0, a) or (u, v) ⊆ (a, 1).
Suppose that (u, v) ⊆ (a, 1). Take the drastic sum SM on [0, a] defined by: for any
x, y ∈ [0, a],

SM (x, y) = max(x, y).

Consider the following function T on [a, 1]: for any x, y ∈ [a, 1],

T (x, y) =


y x = v and y ∈ [u, v],
x y = v and x ∈ [u, v],
u (x, y) ∈ [u, v)2,
min(x, y) otherwise.

It can be easily seen that T is a t-norm on [a, 1]. By [9], the function V defined by

V (x, y) =

 SM (x, y) (x, y) ∈ [0, a]2,
T (x, y) (x, y) ∈ [a, 1]2,
a otherwise,

is a nullnorm on [0, 1]. Since SM is continuous, it is clear that �SM
=≤. Then, we have

that KSV
= KSM

= ∅. Now, let us show that KTV
= KT = (u, v).

Let x ∈ (u, v). For any y ∈ (u, v) with x < y, it is obvious that x �T y. Otherwise,
there would exist an element ` of [a, 1] such that T (`, y) = x. Since x 6= y, ` 6= v. Also,
since x 6= u, ` 6∈ [u, v). Thus, x = T (`, y) = min(`, y), whence it must be ` = x. Then,
x = T (`, y) = T (x, y) = u, a contradiction. Hence, for any y ∈ (u, v) with x < y, we
have that x �T y, i. e., x ∈ KT .
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Conversely, let x ∈ KT but x 6∈ (u, v). Then, x ≤ u or x ≥ v. For any y ∈ [a, 1]
with x < y, since T (x, y) = min(x, y) = x, we have that x �T y, which contradicts that
x ∈ KT . Then, we obtain that KT = (u, v).

By Corollary 4.15, it is obtained that KV = KTV
∪KSV

= KT ∪KSM
= (u, v) ∪ ∅ =

(u, v).
Let (u, v) ⊆ (0, a). Consider the following function S on [0, a] such that for any

x, y ∈ [0, a],

S(x, y) =


y x = u and y ∈ [u, v],
x y = u and x ∈ [u, v],
v (x, y) ∈ (u, v]2,
max(x, y) otherwise.

It can be easily shown that S is a t-conorm on [0, a]. Also, take the minimum t-norm
TM on [a, 1] defined by TM (x, y) = min(x, y) for any x, y ∈ [a, 1]. By [9], the function V
defined by

V (x, y) =

 S(x, y) (x, y) ∈ [0, a]2,
TM (x, y) (x, y) ∈ [a, 1]2,
a otherwise,

is a nullnorm on [0, 1]. It can be easily seen that KTV
= KTM

= ∅ and KSV
= KS =

(u, v). By Corollary 4.15, we have that KV = KS ∪KTM
= (u, v). �

5. CONCLUDING REMARKS

In this paper, it has been shown that two nullnorms are equivalent if and only if their
corresponding underlying t-norms and t-conorms are also equivalent. Defining the set
of all incomparable elements w.r.t. the order induced by nullnorms, denoted by KV , the
set has been characterized. The open problems posed in the study [1] have been exactly
solved.

(Received December 29, 2016)
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[13] M. N. Kesicioğlu, F. Karaçal, and R. Mesiar: Order-equivalent triangular norms. Fuzzy
Sets and Systems 268 (2015), 59–71.
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53100 Rize. Turkey.

e-mail: m.nesibe@gmail.com

http://dx.doi.org/10.1016/j.fss.2014.05.001
http://dx.doi.org/10.1016/j.ins.2017.05.020
http://dx.doi.org/10.1007/978-94-015-9540-7
http://dx.doi.org/10.1142/s0218488599000039
http://dx.doi.org/10.1016/s0165-0114(01)00055-0
http://dx.doi.org/10.1016/0165-0114(94)90082-5

	Introduction
	Notations, definitions and a review of previous results
	The equivalence class
	The set KV of all incomparable elements w.r.t. the order V
	Concluding remarks

