Kybernetika 53 no. 5, 838-852, 2017

Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation

Zhi-cai Ma, Jie Wu and Yong-zheng SunDOI: 10.14736/kyb-2017-5-0838

Abstract:

This paper is further concerned with the finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation via an adaptive controller. First of all, we introduce the definition of finite-time generalized outer synchronization between two different dimensional chaotic systems. Then, employing the finite-time stability theory, we design an adaptive feedback controller to realize the generalized outer synchronization between two different dimensional chaotic systems within a finite time. Moreover, we analyze the influence of control parameter on the synchronous speed. Finally, two typical examples are examined to illustrate the effectiveness and feasibility of the theoretical result.

Keywords:

adaptive control, finite-time synchronization, noise perturbation, different dimensional chaotic systems

Classification:

65L99, 70K99

References:

  1. M. P. Aghababa: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynam. 69 (2012), 247-261.   DOI:10.1007/s11071-011-0261-6
  2. M. P. Aghababa and H. P. Aghababa: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dynam. 69 (2012), 1903-1914.   DOI:10.1007/s11071-012-0395-1
  3. I. Ahmad, A. B. Saaban, A. B. Ibrahima, M. Shahzadb and N. Naveedca: The synchronization of chaotic systems with different dimensionals by a robust generalized active control. Optik 127 (2016), 4859-4871.   DOI:10.1016/j.ijleo.2015.12.134
  4. I. Ahmada, M. Shafiq, A. B. Saaban, A. B. Ibrahim and M. Shahzad: Robust finite-time global synchronization of chaotic systemswith different orders. Optik 127 (2016), 8172-8185.   DOI:10.1016/j.ijleo.2016.05.065
  5. S. P. Bhat and D. S. Bernstein: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000), 751-766.   DOI:10.1137/s0363012997321358
  6. S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares and C. S. Zhou: The synchronization of chaotic systems. Phys. Rep. 366 (2002), 1-101.   DOI:10.1016/s0370-1573(02)00137-0
  7. S. Bowong, M. Kakmeni and R. Koina: Chaos synchronization and duration time of a class of uncertain chaotic systems. Math. Comput. Simulat. 71 (2006), 212-228.   DOI:10.1016/j.matcom.2006.01.006
  8. N. Cai, W. Q. Li and Y. W. Jing: Finite-time generalized synchronization of chaotic systems with different order. Nonlinear Dynam. 64 (2011), 385-393.   DOI:10.1007/s11071-010-9869-1
  9. X. Y. Chen and J. F. Lu: Adaptive synchronization of different chaotic systems with fully unknown parameters. Phys. Lett. A 364 (2007), 123-128.   DOI:10.1016/j.physleta.2006.11.092
  10. D. Y. Chen, R. F. Zhang, X. Y. Ma and S. Liu: Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dynam. 69 (2012), 35-55.   DOI:10.1007/s11071-011-0244-7
  11. R. Erban, J. Haskovec and Y. Sun: A Cucker-Smale model with noise and delay. SIAM J. Appl. Math. 76 (2016), 1535-1557.   DOI:10.1137/15m1030467
  12. Z. M. Ge and C. H. Yang: The generalized synchronization of a Quantum-CNN chaotic oscillator with different order systems. Chaos Solitons and Fractals 35 (2008), 980-990.   DOI:10.1016/j.chaos.2006.05.090
  13. X. H. Ge, F. W. Yang and Q. L. Han: Distributed networked control systems: A brief overview. Inform. Sciences 380 (2017), 117-131.   DOI:10.1016/j.ins.2015.07.047
  14. G. H. Hardy, J. E. Littlewood and G. Pólya: Inequalities. Cambridge At The University Press, Cambridge 1934.   CrossRef
  15. B. Hauschildt, N. B. Jason, A. Balanov and A. Scholl: Noise-induced cooperative dynamics and its control in coupled neuron models. Phys. Rev. E 74 (2006), 051906.   DOI:10.1103/physreve.74.051906
  16. W. L. He, G. R. Chen, Q. L. Han and F. Qian: Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Inform. Sciences 380 (2017), 145-158.   DOI:10.1016/j.ins.2015.06.005
  17. W. L. He, F. Qian, J. Lam, G. R. Chen, Q. L. Han and J. Kurths: Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design. Automatica 62 (2015), 249-262.   DOI:10.1016/j.automatica.2015.09.028
  18. W. L. He, B. Zhang, Q. L. Han, F. Qian, J. Kurths and J. D. Cao: Leader-following consensus of nonlinear multiagent systems with stochastic sampling. IEEE Trans. Cybern. 47 (2017), 327-338.   CrossRef
  19. D. B. Huang: Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E. 71 (2005), 037203.   DOI:10.1103/physreve.71.037203
  20. D. Ke and Q. L. Han: Synchronization of two coupled Hindmarsh-Rose neurons. Kybernetika 51 (2015), 784-799.   DOI:10.14736/kyb-2015-5-0784
  21. D. Ke and Q. L. Han: Master-Slave synchronization criteria for chaotic Hindmarsh-Rose neurons using linear feedback control. Complexity 21 (2016), 319-327.   DOI:10.1002/cplx.21658
  22. G. Korniss: Synchronization in weighted unccorrelated complex networks in a noisy environment: optimization and connections with transport efficiency. Phys. Rev. E 75 (2007), 051121.   DOI:10.1103/physreve.75.051121
  23. S. H. Li and Y. P. Tian: Finite-time synchronization of chaotic systems. Chaos Solitons and Fractals 15 (2003), 303-310.   DOI:10.1016/s0960-0779(02)00100-5
  24. W. Lin and G. R. Chen: Using white noise to enhance synchronization of coupled chaotic systems. Chaos 16 (2006), 013134.   DOI:10.1063/1.2183734
  25. J. S. Lin and J. J. Yan: Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller. Nonlinear Anal. RWA 10 (2009), 1151-1159.   DOI:10.1016/j.nonrwa.2007.12.005
  26. A. Ouannas and Z. Odibat: Generalized synchronization of different dimensional chaotic dynamical systems in discrete time. Nonlinear Dynam. 81 (2015), 765-771.   DOI:10.1007/s11071-015-2026-0
  27. L. M. Pecora and T. L. Carroll: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824.   DOI:10.1103/physrevlett.64.821
  28. A. Pikovsky, M. Rosenblum and J. Kurths: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge 2001.   DOI:10.1017/cbo9780511755743
  29. M. Pourmahmood, S. Khanmohammadi and G. Alizadeh: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 2853-2868.   DOI:10.1016/j.cnsns.2010.09.038
  30. A. Stefanovska, H. Haken, E. McClintock, M. Hožič, F. Bajrović and S. Ribarič: Reversible transitions between synchronization states of the cardiorespiratory system. Phys. Rev. Lett. 85 (2000), 4831-4834.   DOI:10.1103/physrevlett.85.4831
  31. Y. Z. Sun, W. Li and D. H. Zhao: Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies. Chaos 22 (2012), 023152.   DOI:10.1063/1.4731265
  32. Y. Z. Sun and J. Ruan: Synchronization in coupled time-delayed systems with parameter mismath and noise perturbation. Chaos 19 (2009), 043113.   DOI:10.1063/1.3262488
  33. Y. Z. Sun, H. J. Shi, E. A. Bakare and Q. X. Meng: Noise-induced outer synchronization between two different complex dynamical networks. Nonlinear Dynam. 76 (2014), 519-528.   DOI:10.1007/s11071-013-1145-8
  34. U. E. Vincent and R. Guo: Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys. Lett. A 375 (2011), 2322-2326.   DOI:10.1016/j.physleta.2011.04.041
  35. H. Wang, Z. Z. Han and W. Zhang: Finite-time chaos control of unified chaotic systems with uncertain parameters. Nonlinear Dynam. 55 (2009), 323-328.   DOI:10.1007/s11071-008-9364-0
  36. J. Wu, Z. C. Ma, Y. Z. Sun and F. Liu: Finite-time synchronization of chaotic systems with noise perturbation. Kybernetika 54 (2015), 137-149.   DOI:10.14736/kyb-2015-1-0137
  37. J. J. Yan, M. L. Hung, T. Y. Chang and Y. S. Yang: Robust synchronization of chaotic systems via adaptive sliding mode control. Phys. Lett. A 356 (2006), 220-225.   DOI:10.1016/j.physleta.2006.03.047
  38. Y. Q. Yang and X. F. Wu: Global finite-time synchronization of a class of the non-autonomous chaotic systems. Nonlinear Dynam. 70 (2012), 197-208.   DOI:10.1007/s11071-012-0442-y
  39. J. L. Yin, S. Khoo, Z. H. Man and X. H. Yu: Finite-time stability and instability of stochastic nonlinear systems. Automatica 47 (2011), 2671-2677.   DOI:10.1016/j.automatica.2011.08.050
  40. X. M. Zhang, Q. L. Han and X. H. Yu: Survey on recent advances in networked control systems. IEEE Trans. Ind. Informat. 12 (2016), 1740-1752.   DOI:10.1109/tii.2015.2506545
  41. G. Zhang, Z. R. Liu and Z. J. Ma: Generalized synchronization of different dimensional chaotic dynamical systems. Chaos Solitons and Fractals 32 (2007), 773-779.   DOI:10.1016/j.chaos.2005.11.099
  42. X. B. Zhou, M. R. Jiang and Y. Q. Huang: Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification. Kybernetika 50 (2014), 632-642.   DOI:10.14736/kyb-2014-4-0632