Kybernetika 53 no. 5, 820-837, 2017

Alternate checking criteria for reachable controllability of rectangular descriptor systems

Vikas Kumar Mishra and Nutan Kumar TomarDOI: 10.14736/kyb-2017-5-0820

Abstract:

Contrary to state space systems, there are different notions of controllability for linear time invariant descriptor systems due to the non smooth inputs and inconsistent initial conditions. A comprehensive study of different notions of controllability for linear descriptor systems is performed. Also, it is proved that reachable controllability for general linear time invariant descriptor system is equivalent to the controllability of some matrix pair under an assumption milder than impulse controllability. The whole theory has been developed by coining two new decompositions for system matrices. Examples are given to illustrate the presented theory.

Keywords:

controllability, descriptor systems, reachable controllability

Classification:

93B05, 93B25

References:

  1. T. Berger and T. Reis: Controllability of linear differential-algebraic systems: A survey. In: Surveys in Differential-Algebraic Equations I, Differential-Algebraic Equations Forum, (A. Ilchman and T. Reis, eds.), Springer-Verlag, Berlin, Heildelberg 2013, pp. 1-61.   DOI:10.1007/978-3-642-34928-7_1
  2. T. Berger and S. Trenn: Kalman controllability decompositions for differential-algebraic systems. Syst. Control Lett. 71 (2014), 54-61.   DOI:10.1016/j.sysconle.2014.06.004
  3. D. S. Bernstein: Matrix Mathematics: Theory, Facts, And Formulas With Application To Linear Systems Theory. Princeton University Press 41, Princeton 2005.   CrossRef
  4. A. Bunse-Gerstner, R. Byers, V. Mehrmann and N. K. Nichols: Feedback design for regularizing descriptor systems. Linear Algebra Appl. 299 (1999), 119-151.   DOI:10.1016/s0024-3795(99)00167-6
  5. S. Campbell: Singular Systems Of Differential Equations. Pitman 40, San Francisco 1980.   CrossRef
  6. S. Campbell: Singular Systems Of Differential Equations II. Pitman 61, San Francisco 1982.   CrossRef
  7. S. L. Campbell, P. Kunkel and V. Mehrmann: Regularization of linear and nonlinear descriptor systems. In: Control and Optimization with Differential-Algebraic Constraints, Advances in Design and Control 2012, pp. 17-36.   DOI:10.1137/9781611972252.ch2
  8. C.-T. Chen: Linear System Theory And Design. Oxford University Press, Inc. 1995.   CrossRef
  9. M. Christodoulou and P. Paraskevopoulos: Solvability, controllability, and observability of singular systems. J. Optim. Theory Appl. 45 (1985), 53-72.   DOI:10.1007/bf00940813
  10. L. O. Chua, C. A. Desoer and E. S. Kuh: Linear and Nonlinear Circuits. McGraw-Hill, New York 1987.   CrossRef
  11. D. Cobb: Controllability, observability, and duality in singular systems. IEEE Trans. Automat. Control 29 (1984), 1076-1082.   DOI:10.1109/tac.1984.1103451
  12. L. Dai: The difference between regularity and irregularity in singular systems. Circuits Syst. Signal Process. 8 (1989), 435-444.   DOI:10.1007/bf01599765
  13. L. Dai: Singular Control Systems. Springer Verlag, Lecture Notes in Control and Information Sciences, Berlin 1989.   DOI:10.1007/bfb0002475
  14. G.-R. Duan: Analysis and Design Of Descriptor Linear Systems. Springer 10, Berlin 2010.   CrossRef
  15. G.-R. Duan, N. K. Nichols and G.-P. Liu: Robust pole assignment in descriptor linear systems via state feedback. Eur. J. Control 8 (2002), 136-149.   DOI:10.3166/ejc.8.136-149
  16. F. R. Gantmacher: The Theory of Matrices: Vol. 2. Chelsea Publishing Company, New York 1959.   CrossRef
  17. T. Geerts: Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case. Linear Algebra Appl. 181 (1993), 111-130.   DOI:10.1016/0024-3795(93)90027-l
  18. G. H. Golub and C. F. Van Loan: Matrix Computations. Third edition. Johns Hopkins University Press, Baltimore, London 1996.   CrossRef
  19. M. Hautus: Stabilization controllability and observability of linear autonomous systems. In: Proc. Indagationes Mathematicae 73, Elsevier 1970, pp. 448-455.   DOI:10.1016/s1385-7258(70)80049-x
  20. M. Hou: Controllability and elimination of impulsive modes in descriptor systems. IEEE Trans. Automat. Control 49 (2004), 1723-1729.   DOI:10.1016/s1385-7258(70)80049-x
  21. J. Y. Ishihara and M. H. Terra: Impulse controllability and observability of rectangular descriptor systems. IEEE Trans. Automat. Control 46 (2001), 991-994.   DOI:10.1109/9.928613
  22. N. Karampetakis, J. Jones and E. Antoniou: Forward, backward, and symmetric solutions of discrete ARMA representations. Circuits Syst. Signal Process. 20 (2001), 89-109.   DOI:10.1007/bf01204924
  23. A. Kumar and P. Daoutidis: Control of Nonlinear Differential Algebraic Equation Systems with Applications to Chemical Processes    CrossRef
  24. P. Kunkel and V. .L. Mehrmann: Differential-algebraic Equations: Analysis and Numerical Solution. Europ. Math. Society, Zürich 2006.   DOI:10.4171/017
  25. V. K. Mishra and N. K. Tomar: On complete and strong controllability for rectangular descriptor systems. Circuits Syst. Signal Process. 35 (2016), 1395-1406.   DOI:10.1007/s00034-015-0111-8
  26. V. K. Mishra, N. K. Tomar and M. K. Gupta: On controllability and normalizability for linear descriptor systems. J. Control Automat. Electr. Syst. 27 (2016), 19-28.   DOI:10.1007/s40313-015-0218-y
  27. R. Piziak and P. L. Odell: Matrix Theory: From Generalized Inverses to Jordan Form. CRC Press 2007.   CrossRef
  28. J. Stefanovski: Transformation of optimal control problems of descriptor systems into problems with state-space systems. Kybernetika 48 (2012), 1156-1179.   CrossRef
  29. G. C. Verghese, B. C. Levy and T. Kailath: A generalized state-space for singular systems. IEEE Trans. Automat. Control 26 (1981), 811-831.   DOI:10.1109/tac.1981.1102763
  30. E. Yip and R. Sincovec: Solvability, controllability, and observability of continuous descriptor systems. IEEE Trans. Automat. Control 26 (1981), 702-707.   DOI:10.1109/tac.1981.1102699
  31. Q. Zhang, C. Liu and X. Zhang: Complexity, Analysis and Control of Singular Biological Systems    CrossRef
  32. S. P. Zubova: On full controllability criteria of a descriptor system. The polynomial solution of a control problem with checkpoints. Automat. Remote Control 72 (2011), 23-37.   DOI:10.1134/s0005117911010036