
KYBER NET IKA — VOLUM E 5 3 (2 0 1 7) , NUMBE R 5 , P AGES 8 0 3 – 8 1 9

COMPUTATION OF LINEAR ALGEBRAIC EQUATIONS
WITH SOLVABILITY VERIFICATION OVER
MULTI-AGENT NETWORKS

Xianlin Zeng and Kai Cao

In this paper, we consider the problem of solving a linear algebraic equation Ax = b in
a distributed way by a multi-agent system with a solvability verification requirement. In the
problem formulation, each agent knows a few columns of A, different from the previous results
with assuming that each agent knows a few rows of A and b. Then, a distributed continuous-time
algorithm is proposed for solving the linear algebraic equation from a distributed constrained
optimization viewpoint. The algorithm is proved to have two properties: firstly, the algorithm
converges to a least squares solution of the linear algebraic equation with any initial condition;
secondly, each agent in the algorithm knows the solvability property of the linear algebraic
equation, that is, each agent knows whether the obtained least squares solution is an exact
solution or not.

Keywords: multi-agent network, distributed optimization, linear algebraic equation, least
squares solution, solvability verification

Classification: 15A06, 93D20

1. INTRODUCTION

Nowadays, the increasing scale and exploding data of real-world problems in science and
engineering fields pose new challenges for the algorithm design based on computation,
communication, and control. The centralized algorithms designed for small size or mod-
est size problems may be infeasible for large-scale problems and distributed algorithms
are in demand. Due to the applications in large-scale decision or control problems, dis-
tributed optimization and control algorithms have attracted a significant amount of at-
tention (see [8, 9, 10, 14, 15, 16, 17]). Both discrete-time and continuous-time algorithms
(see [8, 9, 10, 14, 17]) have been proposed and investigated for distributed optimization
problems with various types of constraints, for example, local inequality/equality con-
straints, set constraints, and resource allocation constraints. Distributed continuous-
time solvers have gained research interests in recent years. On one hand, continuous-
time methods may provide new viewpoints and tools in designing distributed algorithms,
thanks to the well-development of control theory. On the other hand, physical plants or
hardware devices may involve in the computation of optimization problems.

DOI: 10.14736/kyb-2017-5-0803

http://doi.org/10.14736/kyb-2017-5-0803

804 X. ZENG AND K. CAO

Linear algebraic equations are widely used in various computation tasks in science,
engineering, and mathematics. As a result, there is a vast literature on solving linear
algebraic equations with small or modest sizes. Recently, the distributed computation of
linear algebraic equations has attracted much interest and has been extensively studied
by using multi-agent networks in [4, 5, 6, 7, 12, 13]. On one hand, distributed algo-
rithms, which use multiple processing units, might provide significant improvements in
computation efficiency if the algorithms are well designed. On the other hand, various
systems have distributed structure requirements, for example, one agent holds part of
the information and it cannot or does not want to share its local information with other
agents.

One of the most fundamental problems in linear algebraic equations is the compu-
tation of x in Ax = b given matrix A and vector b. Because the computation of the
(least squares) solution to linear algebraic equations is related to an optimization prob-
lem minx ‖Ax − b‖2, both discrete and continuous-time algorithms for linear equations
of the form Ax = b are developed from the viewpoint of distributed control and opti-
mization (see [4, 5, 6, 7, 12, 13]). Recall that most of the distributed linear equation
solvers have been proposed based on the assumption that each agent knows a few rows
of A and b. Based on the solvability assumption of linear algebraic equations, various
distributed algorithms have been proposed in [5, 6]. Furthermore, [13] and [4] have pro-
posed distributed algorithms solving least squares solutions of linear algebraic equations
in the approximation sense or under specific graphs.

The main purpose of this paper is to design a distributed continuous-time algorithm
for solving linear algebraic equation Ax = b, where each agent knows a few columns
of A, with solvability verification. The proposed algorithm needs to accomplish two
missions: (1) it obtains a least squares solution to Ax = b in a distributed way; (2)
it verifies whether the problem is solvable in a distributed way, that is, whether the
obtained solution is an exact solution. Compared with [5, 6], this paper considers the
linear equations which may not have exact solutions. Compared with [13] and [4], the
proposed algorithm in this paper is able to verify whether the problem is solvable while
solving a least squares solution.

The contributions of this paper are summarized as follows.

1) This paper studies the distributed computation of a famous linear algebraic equa-
tion Ax = b, where each agent knows a few columns of the coefficient matrix A in
our framework, with a solvability verification. This is a different formulation com-
pared with many existing algorithms solving similar problems, which assume that
each agent knows a few rows of the matrix A. This paper not only considers dis-
tributed computation of linear equations without the assumption on the existence
of exact solutions, but also verifies the solvability of linear algebraic equations.

2) By using a distributed constrained optimization reformulation, we propose a dis-
tributed continuous-time algorithm for the linear algebraic equation. The proposed
algorithm is able to find a least squares solution to the linear algebraic equation
for any initial condition under mild assumptions. Furthermore, the agents in the
proposed algorithm are able to know whether the obtained solution is an exact
solution.

Computation of linear algebraic equations over networks 805

3) We combine techniques of optimization (saddle point dynamics of Lagrangian func-
tions) and control (the Lyapunov approach) to prove the correctness and conver-
gence of the proposed algorithm.

The paper is built up as following. The mathematical preliminaries are presented in
Section 2, while the problem of distributed computation of a linear algebraic equation
with solvability verification is formulated and transformed into an equivalent standard
distributed optimization problem in Section 3. In Section 4, a distributed continuous-
time algorithm for the linear equation is proposed with rigorous proofs for its correctness
and convergence. Section 5 gives numerical examples to show the efficacy of the proposed
algorithm and Section 6 concludes the paper.

2. MATHEMATICAL PRELIMINARIES

In this section, we review relevant notations and mathematical preliminaries.
Let R denote the set of real numbers; let Rn and Rn×m denote the set of n-dimensional

real column vectors and the set of n-by-m real matrices, respectively; B(Rq) denotes
the collection of all subsets of Rq; In denotes the n×n identity matrix and (·)T denotes
the transpose. Furthermore, we write ‖ · ‖ as the Euclidean norm, rank(A) as the rank
of matrix A, range(A) as the range of A, and ker(A) as the kernel of A. Recall that
range(A) is the orthogonal complement of ker(AT) (denoted by range(A) = ker(AT)⊥).
Write 1n for the n × 1 ones vector, 0n (0n,n) for the n × 1 zeros vector (n × n zeros
matrix), and A⊗B for the Kronecker product of matrices A and B. Denote A > 0 (or
A ≥ 0) when matrix A ∈ Rn×n is positive definite (or positive semi-definite).

A weighted undirected graph G is denoted by G(V, E , A), where V = {1, . . . , n} is the
set of nodes, E ⊂ V × V is the set of edges, A = [ai,j] ∈ Rn×n is the adjacency matrix
such that ai,j = aj,i > 0 if {j, i} ∈ E and ai,j = 0 otherwise. The Laplacian matrix
is Ln = D − A, where D ∈ Rn×n is diagonal with Di,i =

∑n
j=1 ai,j , i ∈ {1, . . . , n}.

Specifically, if the undirected graph G is connected, then Ln = LT
n ≥ 0, rank(Ln) = n−1

and ker(Ln) = {k1n : k ∈ R} [1].
Consider a dynamical system

ẋ(t) = φ(x(t)), x(0) = x0, t ≥ 0, (1)

where φ : Rq → Rq is Lipschitz continuous. Given a trajectory x : [0,∞) → Rq of
(1), y is a positive limit point of x(·) if there is a positive increasing divergent sequence
{ti}∞i=1 ⊂ R such that y = limi→∞ x(ti), and a positive limit set of x(·) is the set of all
positive limit points of x(·). A setM is said to be positive invariant with respect to (1)
if x(t) ∈M for all t ≥ 0 and every x0 ∈M.

The following result is a special case of [3, Proposition 3.1] and is used in the conver-
gence analysis.

Lemma 2.1. Let D be a compact, positive invariant set with respect to (1), and φ(·) ∈
Rq be a solution of (1) with φ(0) = x0 ∈ D. If z is a positive limit point of φ(·) and
a Lyapunov stable equilibrium of (1), then z = limt→∞ φ(t).

806 X. ZENG AND K. CAO

3. PROBLEM FORMULATION

In this section, we first introduce the problem of solving distributed linear algebraic
equations and transform the linear algebraic equation into a distributed optimization
formulation.

3.1. Distributed linear equation

Consider the problem of solving a linear algebraic equation

Ax = b, (2)

where b ∈ Rm, A ∈ Rm×q are known and x ∈ Rq is the variable to be solved. In the
general case, A may be singular or rectangular and there may sometimes be a unique
solution, no solutions, or multiple solutions.

There are sufficient conditions that (2) is solvable and has exact solutions. Specifically,

• if A is nonsingular, (2) has a unique solution given by

x = A−1b,

• if A is full column rank and b ∈ range(A), (2) has a unique solution

x = (ATA)−1ATb,

• if A has a generalized inverse X ∈ Rq×m satisfying AXA = A and AXb = b, the
solution is

x = Xb+ (Iq −XA)y,

where y ∈ Rq is arbitrary.

Even though (2) may has no exact solutions, it has at least one least squares solution,
which is a solution to the following optimization problem

min
x∈Rq

‖Ax− b‖2. (3)

It is clear that x∗ is a least squares solution to problem (2) if and only if

AT(Ax∗ − b) = 0q. (4)

Let G be an undirected and connected graph composed of n agents. Define A =
[A1, . . . , An] ∈ Rm×q, x , [xT

1 , . . . , x
T
n]T ∈ Rq, q =

∑n
i=1 qi b =

∑n
i=1 bi ∈ Rm, xi ∈ Rqi ,

and Ai ∈ Rm×qi for i ∈ {1, . . . , n}. We rewrite (2) as

n∑
i=1

Aixi =
n∑
i=1

bi.

The aim of this paper is to solve problem (2) using a multi-agent distributed algorithm
such that

Computation of linear algebraic equations over networks 807

• agent i computes xi;

• agent i knows whether the obtained solution is an exact solution;

• agent i only konws Ai ∈ Rm×qi , bi ∈ Rm, and information from neighboring agents
in network G.

Remark 3.1. In this paper, the algorithm is required to solve (least squares) solutions
of problem (2), while the results in [5, 6] need the existence of exact solutions. Compared
with the results in [13] and [4], which solve the least squares solutions to linear equations,
this paper considers the problem of verifying the solvability property, that is, whether
the solution obtained is an exact solution.

Remark 3.2. Unlike the problem formulation in [4, 5, 6, 7, 12, 13], where each agent
knows a few rows of A and b. This paper considers the problem that each agent knows
a few columns of matrix A. Hence, this framework is useful when the matrix A has a
large column number.

3.2. Problem transformation

In this subsection, we transform the distributed linear equation (3) into a distributed
optimization formulation.

Define z0 = Ax− b. Solving the least squares solution of (3) is equivalent to solving

min
(x,z0)∈Rq×m

‖z0‖2, s. t. z0 = Ax− b.

Next, we decompose the coupling constraint z0 = Ax − b =
∑n
i=1(Aixi − bi) by aug-

menting the constraint using extra variables.
Define yi ∈ Rm for i ∈ {1, . . . , n} and let ai,j be the (i, j)th element of the adjacency

matrix of graph G, which is undirected and connected. If

1
n
z0 = Aixi −

n∑
j=1

ai,j(yi − yj)− bi, i ∈ {1, . . . , n}, (5)

one can obtain z0 = Ax − b by summing both sides of (5) from i = 1 to i = n. The
converse is also true for some yi ∈ Rm for i ∈ {1, . . . , n}. Define L = Ln ⊗ Im, where
Ln is the Laplacian matrix of graph G. Because

range(L) = ker(L)⊥ =
{
w ∈ Rnm :

n∑
i=1

wi = 0m, w = [wT
1 , . . . , w

T
n]T
}
,

and z0−Ax+b = 0m,
[
(1
nz0−Aixi+bi)

T, . . . , (1
nz0−Aixi+bi)

T
]T ∈ range(L), and hence,

there exists yi ∈ Rm such that 1
nz0 = Aixi −

∑
i,j ai,j(yi − yj)− bi for i, j ∈ {1, . . . , n}.

Let zi be the estimate of z0 by agent i ∈ {1, . . . , n}. Then, we define the following
distributed optimization problem

min
x,y,z

1
2
‖z‖2, s. t. Lz = 0nm, Ax− b− Ly −

1
n
z = 0nm, (6)

808 X. ZENG AND K. CAO

where x = [xT
1 , . . . , x

T
n]T ∈ Rq, y = [yT

1 , . . . , y
T
n]T ∈ Rnm, z = [zT

1 , . . . , z
T
n]T ∈ Rnm,

A = diag{A1, . . . , An}, b = [bT1 , . . . , b
T
n]T, and L = Ln ⊗ Im.

The following result shows that the optimization problem (6) is equivalent to the
linear equation (3) and gives a way to verify the solvability of (3).

Lemma 3.3. Suppose G is connected and undirected.

1) If (x∗, y∗, z∗) ∈ Rq×nm×nm is a solution to problem (6), then x∗ ∈ Rq is a least
squares solution to (3). In addition, z∗ = 1n ⊗ (Ax∗ − b).

2) If x∗ ∈ Rq is a least squares solution to problem (3), there exists (y∗, z∗) ∈ Rnm×nm
such that (x∗, y∗, z∗) ∈ Rq×nm×nm is a solution to problem (6).

P r o o f . 1) Suppose (x∗, y∗, z∗) is a solution to problem (6). We show that x∗ is a least
squares solution to (3).

By the KKT optimality condition (Theorem 3.25 of [11]), (x∗, y∗, z∗) is a solution to
problem (6) if and only if

0nm = Lz∗, (7a)

0nm = Ax∗ − b− Ly∗ − 1
n
z∗, (7b)

and there exist λ∗ ∈ Rnm and µ∗ ∈ Rnm such that

0q = −AT
λ∗, (8a)

0nm = Lλ∗, (8b)

0nm = −z∗ − Lµ∗ +
1
n
λ∗. (8c)

Due to (7a) and (8b), there exist z∗0 ∈ Rm and λ∗0 ∈ Rm such that z∗ = 1n ⊗ z∗0 and
λ∗ = 1n ⊗ λ∗0. By left multiplying 1T

n ⊗ Im to (8c) and (7b), we have

z∗0 = Ax∗ − b =
1
n
λ∗0.

According to (8a), it suffices to prove AT
i λ
∗
0 = 0m and (4). Hence, x∗ is a least squares

solution to problem (3) and z∗ = 1n ⊗ (Ax∗ − b).

2) Suppose x∗ is a least squares solution to (3). We show that there exist y∗ ∈ Rnm
and z∗ ∈ Rnm such that (x∗, y∗, z∗) is a solution to problem (6). To show this, we prove
there exist y∗ ∈ Rnm, z∗ ∈ Rnm, λ∗ ∈ Rnm, and µ∗ ∈ Rnm such that the KKT condition
holds, that is, (7) and (8) hold.

Define z∗0 = Ax∗ − b and z∗ = 1n ⊗ z∗0 . It is clear that (7a) is true. Note that

range(L) = ker(L)⊥ =
{
w ∈ Rnm :

n∑
i=1

wi = 0m, w = [wT
1 , . . . , w

T
n]T
}
,

and 1
nz
∗ −Ax∗ + d ∈ range(L). There exists y∗ ∈ Rnm such that (7b) holds.

Computation of linear algebraic equations over networks 809

Let λ∗ = nz∗ ∈ Rnm. (8b) holds and A
T
λ∗ = nA

T
z∗ = n

A
T
1 (Ax∗ − b)

...
AT
n (Ax∗ − b)

. Recall

that (4) holds because x∗ is a least squares solution to (3). For i ∈ {1, . . . , n}, AT
i (Ax∗−

b) = 0qi
, and hence, (8a) holds.

Clearly, if µ∗ = 1n ⊗ µ∗0 with µ∗0 ∈ Rm, then (8c) holds.
To sum up, (7) and (8) hold, and hence, (x∗, y∗, z∗) is a solution to problem (6).

�

Remark 3.4. Problem (6) is a distributed optimization problem, whose solutions are
equivalent to the least squares solutions to linear equation (2) and satisfy z∗i = Ax∗ − b
for all i ∈ {1, . . . , n}. Note that linear equation (2) always has a least squares solution.
Problem (6) always has solutions. Clearly, if a solution of problem (6) satisfies z∗i =
Ax∗ − b = 0nm, then x∗ is an exact solution to linear equation (2). Hence, agent i in
this formulation is able to testify the solvability of linear equation (2) by checking the
variable z∗i for all i ∈ {1, . . . , n}.

4. DISTRIBUTED ALGORITHM

In this section, we propose a distributed algorithm for linear equation (2) based on
the optimization problem (6) and present the theoretical proof for the correctness and
convergence properties of the algorithm.

We propose a distributed algorithm for the linear algebraic equation computation as
follows:

ẋi(t) = −AT
i λi(t), (9a)

ẏi(t) =
n∑
j=1

ai,j(λi(t)− λj(t)), (9b)

żi(t) = −zi(t)−
n∑
j=1

ai,j(zi(t)− zj(t))−
n∑
j=1

ai,j(µi(t)− µj(t)) +
1
n
λi(t), (9c)

λ̇i(t) = Aixi(t)− bi −
n∑
j=1

ai,j(yi(t)− yj(t))−
1
n
zi(t)

−
n∑
j=1

ai,j(λi(t)− λj(t))−AiAT
i λi(t), (9d)

µ̇i(t) =
n∑
j=1

ai,j(zi(t)− zj(t)), (9e)

where t ≥ 0, i ∈ {1, . . . , n}, xi(0) = xi,0 ∈ Rqi , yi(0) = yi,0 ∈ Rm, zi(0) = zi,0 ∈ Rm,
λi(0) = λi,0 ∈ Rm, µi(0) = µi,0 ∈ Rm are the initial condition, xi(t), yi(t), and zi(t)
are the estimates of the solution to problem (6) by agent i at time t, λi(t), µi(t) are the
estimates of Lagrangian multipliers.

810 X. ZENG AND K. CAO

Remark 4.1. In this algorithm, x(t) converges to a least squares solution to linear
equation (2) and limt→∞ zi(t) = limt→∞(Ax(t)−b) for all i ∈ {1, . . . , n}. Hence, agent i
is able to verify the exactness of solution limt→∞ x(t) to linear equation (2) by checking
the value of limt→∞ zi(t).

A compact form of the algorithm (9) is given as follows:

ẋ = −AT
λ, (10a)

ẏ = Lλ, (10b)

ż = −z − Lz − Lµ+
1
n
λ, (10c)

λ̇ = Ax− b− Ly − 1
n
z−Lλ−AAT

λ, (10d)

µ̇ = Lz, (10e)

where x(0) = x0 ∈ Rq, y(0) = y0 ∈ Rnm, z(0) = z0 ∈ Rnm, λ(0) = λ0 ∈ Rnm,
µ(0) = µ0 ∈ Rnm, L = Ln ⊗ Im, and Ln is the Laplacian matrix of graph G.

Remark 4.2. Algorithm (10) is inspired by the saddle point dynamics of augmented
Lagrangian functions. To be specific, define the augmented Lagrangian function

L(x, y, z, λ, µ) =
1
2
‖z‖2 + λT(Ax− b− Ly − 1

n
z) + µTLz +

1
2
zTLz

−1
2
λTLλ− 1

2
‖AT

λ‖2, (11)

where b = [bT1 , . . . , b
T
n]T, b =

∑n
i=1 bi ∈ Rm, λ = [λT

1 , . . . , λ
T
n]T ∈ Rnm and µ =

[µT
1 , . . . , µ

T
n]T ∈ Rnm. Algorithm (10) is obtained by the primal-dual saddle point

dynamics ẋ = −∇xL(x, y, z, λ, µ), ẏ = −∇yL(x, y, z, λ, µ), ż = −∇zL(x, y, z, λ, µ),
λ̇ = ∇λL(x, y, z, λ, µ), and µ̇ = ∇µL(x, y, z, λ, µ).

The following result establishes the relationship between the equilibria of algorithm
(10) and solutions to problem (6).

Lemma 4.3. Suppose that G is connected and undirected. (x∗, y∗, z∗) ∈ Rq×nm×nm is
a solution of problem (6) if and only if there exist λ∗ ∈ Rnm and µ∗ ∈ Rnm such that
(x∗, y∗, z∗, λ∗, µ∗) is an equilibrium of algorithm (10).

P r o o f . According to the KKT theorem, (x∗, y∗, z∗) ∈ Rq×nm×nm is the solution of
problem (6) if and only if there exist λ∗ and µ∗ such that (7) and (8) hold, equivalently,
(x∗, y∗, z∗, λ∗, µ∗) is an equilibrium of algorithm (10). �

The following theorem shows the convergence of the algorithm to a least squares
solution of problem (2) with solvability verification.

Theorem 4.4. Assume G is connected and undirected. Let (x(t), y(t), z(t), λ(t), µ(t)),
t ≥ 0, be the trajectory of (10).

Computation of linear algebraic equations over networks 811

1) Every equilibrium of (10) is Lyapunov stable and (x(t), y(t), z(t), λ(t), µ(t)) is
bounded for any initial condition;

2) (x(t), y(t), z(t), λ(t), µ(t)) converges to an equilibrium of (10);

3) lim
t→∞

x(t) is a least squares solution to problem (3) and

lim
t→∞

zi(t) = lim
t→∞

(Ax(t)− b)

for all i ∈ {1, . . . , n};

4) if, in addition, lim
t→∞

zi(t) = 0m, then lim
t→∞

x(t) is an exact solution to problem (3).

P r o o f . 1) Let (x∗, y∗, z∗, λ∗, µ∗) be an equilibrium of algorithm (10). Define a positive
definite function as

V (x, y, z, λ, µ) =
1
2
‖x− x∗‖2 +

1
2
‖y − y∗‖2 +

1
2
‖z − z∗‖2 +

1
2
‖λ− λ∗‖2 +

1
2
‖µ− µ∗‖2.

By (7), (8), and (10), we have

1
2

d
dt
‖x− x∗‖2 = −(x− x∗)TAT

(λ− λ∗),

1
2

d
dt
‖y − y∗‖2 = (y − y∗)TL(λ− λ∗),

1
2

d
dt
‖z − z∗‖2 = (z − z∗)T

(
− z − Lz − Lµ+

1
n
λ− (−z∗ − Lµ∗ +

1
n
λ∗)
)

= −‖z − z∗‖2 − zTLz − (z − z∗)TL(µ− µ∗)

+
1
n

(z − z∗)T(λ− λ∗),

1
2

d
dt
‖λ− λ∗‖2 = (λ− λ∗)T

(
Ax− b− Ly − 1

n
z−Lλ−AAT

λ

−(Ax∗ − b− Ly∗ − 1
n
z∗)
)

= (λ− λ∗)TA(x− x∗)− (λ− λ∗)TL(y − y∗)

− 1
n

(λ− λ∗)T(z − z∗)− λTLλ− ‖AT
λ‖2,

1
2

d
dt
‖µ− µ∗‖2 = (µ− µ∗)TL(z − z∗).

To sum up, the function derivative V̇ (·) along the trajectory of algorithm (10) is given
by

V̇ (x, y, z, λ, µ) = −‖z − z∗‖2 − zTLz − λTLλ− ‖AT
λ‖2 ≤ 0. (12)

Hence, (x(t), y(t), z(t), λ(t), µ(t)) is bounded for all t ≥ 0 and (x∗, y∗, z∗, λ∗, µ∗) is a
Lyapunov equilibrium of algorithm (10).

812 X. ZENG AND K. CAO

2) Define the set

R =
{

(x, y, z, λ, µ) : V̇ (x, y, z, λ, µ) = 0
}

⊂
{

(x, y, z, λ, µ) : z = z∗, Lz = Lλ = 0nm, A
T
λ = 0q

}
.

Let M be the largest invariant subset of R. It follows from the invariance principle
(Theorem 2.41 of [2]) that (x(t), y(t), z(t), λ(t), µ(t))→M as t→∞ and M is positive
invariant.

Because M is positive invariant, the trajectory (x(t), y(t), z(t), λ(t), µ(t)) of (10)
satisfies that (x(t), y(t), z(t), λ(t), µ(t)) ∈M for all t ≥ 0 if (x(0), y(0), z(0), λ(0), µ(0)) ∈
M. Hence, we have ẋ(t) ≡ 0q, ẏ(t) ≡ 0nm, ż(t) ≡ 0nm, µ̇(t) ≡ 0nm, and

λ̇(t) ≡ Ax(0)− b− Ly(0)− 1
n
z(0).

Suppose λ̇(t) 6= 0nm, then λ(t) → ∞ as t → ∞, which contradicts the boundedness
of the trajectory. Hence, λ̇(t) ≡ 0nm and

M⊂
{

(x, y, z, λ, µ) : ẋ = 0q, ẏ = ż = λ̇ = µ̇ = 0nm
}
.

As a result, any point in M is an equilibrium point of algorithm (10). By part 1),
any point in M is a Lyapunov stable equilibrium of algorithm (10). By Lemma 2.1,
(x(t), y(t), z(t), λ(t), µ(t)) converges to a point in M as t→∞.

3) Note that every point in M is a Lyapunov stable equilibrium and the trajectory
(x(t), y(t), z(t), λ(t), µ(t)) converges to a point inM as t→∞. It follows from Lemmas
3.3 and 4.3 that limt→∞ x(t) is a least squares solution to problem (3).

By Lemma 3.3 1), it is straightforward that limt→∞ zi(t) = limt→∞(Ax(t)− b) for all
i ∈ {1, . . . , n}.

4) Clearly, if limt→∞ zi(t) = limt→∞(Ax(t) − b) = 0m for all i ∈ {1, . . . , n}, then
limt→∞ x(t) is an exact solution to problem (3). �

Remark 4.5. In the proposed algorithm, variable x(t) is the estimate of a least squares
solution x∗ to problem (2) and variable zi(t) is the estimate of Ax∗ − b by agent i ∈
{1, . . . , n}. To be specific, x(t) converges to a least squares solution x∗ and limt→∞ zi(t) =
Ax∗ − b for i ∈ {1, . . . , n}. If limt→∞ zi(t) = 0m, then limt→∞ x(t) is an exact solution
and linear equation (2) is solvable. Hence, agent i solves a least squares solution to
linear equation (2) and knows the solvability of linear equation (2) by checking the value
of limt→∞ zi(t) for i ∈ {1, . . . , n}.

5. NUMERICAL RESULT

In this section, we give a specific example to verify our proposed distributed algorithm.
Consider the linear algebraic equation

Ax =
4∑
i=1

Aixi = b, x1 ∈ R2, xi ∈ R, i ∈ {2, 3, 4},

Computation of linear algebraic equations over networks 813

where A = [A1A2A3A4] ∈ R4×5, x ∈ R5, b =
[
11, 8, 10, 12

]T, and A is defined in two
cases

(i) A1 =

2 2
2 3
1 4
2 1

, A2 =

3
1
2
4

, A3 =

3
1
1
2

, A4 =

5
2
1
3

.

(ii) A1 =

2 2
2 2
1 4
2 1

, A2 =

3
3
2
4

, A3 =

3
3
1
2

, A4 =

5
5
1
3

.

0 50 100 150

Time(sec)

-2

-1

0

1

2

3

4

x(
t)

x
1

x
2

x
3

x
4

x
5

Fig. 1. The trajectory of x(t) calculated.

0 50 100 150

Time(sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y
1
(t

)

y
1
(1) y

1
(2) y

1
(3) y

1
(4)

0 50 100 150

Time(sec)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

z 1
(t

)

z
1
(1) z

1
(2) z

1
(3) z

1
(4)

0 50 100 150

Time(sec)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

λ
1
(t

)

λ
1
(1) λ

1
(2) λ

1
(3) λ

1
(4)

0 50 100 150

Time(sec)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

µ
1
(t

)

µ
1
(1) µ

1
(2) µ

1
(3) µ

1
(4)

Fig. 2. The trajectories of y1, z1, λ1, and µ1 of agent 1 calculated.

814 X. ZENG AND K. CAO

In case (i), the linear algebraic equation has a unique solution

x =
[
1.0179, 1.2092, 2.2729, −0.8645, 0.4641

]T
.

The simulation results are shown in Figures 1 – 5. Figure 1 shows the trajectory of
x(t) converges to the solution, while Figures 2 – 5 show the boundedness of algorithm
variables and that the obtained solution is an exact solution as the trajectory of zi(t)
tend to 04 for i ∈ {1, 2, 3, 4}.

0 50 100 150

Time(sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y
2
(t

)

y
2
(1) y

2
(2) y

2
(3) y

2
(4)

0 50 100 150

Time(sec)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

z 2
(t

)

z
2
(1) z

2
(2) z

2
(3) z

2
(4)

0 50 100 150

Time(sec)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

λ
2
(t

)

λ
2
(1) λ

2
(2) λ

2
(3) λ

2
(4)

0 50 100 150

Time(sec)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

µ
2
(t

)

µ
2
(1) µ

2
(2) µ

2
(3) µ

2
(4)

Fig. 3. The trajectories of y2, z2, λ2, and µ2 of agent 2 calculated.

0 50 100 150

Time(sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y
3
(t

)

y
3
(1) y

3
(2) y

3
(3) y

3
(4)

0 50 100 150

Time(sec)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

z 3
(t

)

z
3
(1) z

3
(2) z

3
(3) z

3
(4)

0 50 100 150

Time(sec)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

λ
3
(t

)

λ
3
(1) λ

3
(2) λ

3
(3) λ

3
(4)

0 50 100 150

Time(sec)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

µ
3
(t

)

µ
3
(1) µ

3
(2) µ

3
(3) µ

3
(4)

Fig. 4. The trajectories of y3, z3, λ3, and µ3 of agent 3 calculated.

Computation of linear algebraic equations over networks 815

0 50 100 150

Time(sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y
4
(t

)

y
4
(1) y

4
(2) y

4
(3) y

4
(4)

0 50 100 150

Time(sec)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

z 4
(t

)

z
4
(1) z

4
(2) z

4
(3) z

4
(4)

0 50 100 150

Time(sec)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

λ
4
(t

)

λ
4
(1) λ

4
(2) λ

4
(3) λ

4
(4)

0 50 100 150

Time(sec)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

µ
4
(t

)

µ
4
(1) µ

4
(2) µ

4
(3) µ

4
(4)

Fig. 5. The trajectories of y4, z4, λ4, and µ4 of agent 4 calculated.

0 50 100 150

Time(sec)

-2

-1

0

1

2

3

4

x(
t)

x
1

x
2

x
3

x
4

x
5

Fig. 6. The trajectory of of x(t) calculated.

In case (ii), the linear algebraic equation has no exact solutions and our algorithm
gives a least squares solution. The simulation results are shown in Figures 6 – 10. Figure 6

shows the trajectory of x(t) converges to a least squares solution

x =
[
0.5024, 1.1581, 2.8767, −0.9953, 0.1070

]T
.

Figures 7 – 10 show the trajectories of yi(t), λi(t), zi(t), and Ax(t) − b. Because zi(t)
and Ax(t) − b do not converge to 04 for i ∈ {1, 2, 3, 4}, the obtained solution is not an
exact solution.

816 X. ZENG AND K. CAO

0 50 100 150

Time(sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y 1
(t

)

y
1
(1) y

1
(2) y

1
(3) y

1
(4)

0 50 100 150

Time(sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

z 1
(t

)

z
1
(1) z

1
(2) z

1
(3) z

1
(4)

0 50 100 150

Time(sec)

-10

-8

-6

-4

-2

0

2

4

6

8

10

λ
1
(t

)

λ
1
(1) λ

1
(2) λ

1
(3) λ

1
(4)

0 50 100 150

Time(sec)

-8

-6

-4

-2

0

2

4

A
(1

,:)
x-

b
1

A(1,:)x-b
1

Fig. 7. The trajectories of y1, z1, λ1, and A(1, :)x− b1 of agent 1

calculated.

0 50 100 150

Time(sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y 2
(t

)

y
2
(1) y

2
(2) y

2
(3) y

2
(4)

0 50 100 150

Time(sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

z 2
(t

)

z
2
(1) z

2
(2) z

2
(3) z

2
(4)

0 50 100 150

Time(sec)

-10

-8

-6

-4

-2

0

2

4

6

8

10

λ
2
(t

)

λ
2
(1) λ

2
(2) λ

2
(3) λ

2
(4)

0 50 100 150

Time(sec)

-8

-6

-4

-2

0

2

4

A
(2

,:)
x-

b
2

A(2,:)x-b
2

Fig. 8. The trajectories of y2, z2, λ2, and A(2, :)x− b2 of agent 2

calculated.

Computation of linear algebraic equations over networks 817

0 50 100 150

Time(sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y 3
(t

)

y
3
(1) y

3
(2) y

3
(3) y

3
(4)

0 50 100 150

Time(sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

z 3
(t

)

z
3
(1) z

3
(2) z

3
(3) z

3
(4)

0 50 100 150

Time(sec)

-10

-8

-6

-4

-2

0

2

4

6

8

10

λ
3
(t

)

λ
3
(1) λ

3
(2) λ

3
(3) λ

3
(4)

0 50 100 150

Time(sec)

-8

-6

-4

-2

0

2

4

A
(3

,:)
x-

b
3

A(3,:)x-b
3

Fig. 9. The trajectories of y3, z3, λ3, and A(3, :)x− b3 of agent 3

calculated.

0 50 100 150

Time(sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y 4
(t

)

y
4
(1) y

4
(2) y

4
(3) y

4
(4)

0 50 100 150

Time(sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

z 4
(t

)

z
4
(1) z

4
(2) z

4
(3) z

4
(4)

0 50 100 150

Time(sec)

-10

-8

-6

-4

-2

0

2

4

6

8

10

λ
4
(t

)

λ
4
(1) λ

4
(2) λ

4
(3) λ

4
(4)

0 50 100 150

Time(sec)

-8

-6

-4

-2

0

2

4

A
(4

,:)
x-

b
4

A(4,:)x-b
4

Fig. 10. The trajectories of y4, z4, λ4, and A(4, :)x− b4 of agent 4

calculated.

818 X. ZENG AND K. CAO

6. CONCLUSIONS

This paper investigated the distributed computation of a linear algebraic equation Ax =
b over a multi-agent network, where each agent knows a few columns of matrix A, with
solvability verification. Based on the optimization reformulation of the problem, this
paper proposed a novel distributed algorithm solving least squares solutions to linear
equations with solvability verification properties. Under mild graph conditions, it was
shown that the agents find a least squares solution for the linear algebraic equation and
the agents are able to verify whether the obtained solution is exact under any initial
condition. Finally, a numerical simulation illustrated the performance of the proposed
algorithm.

ACKNOWLEDGEMENT

This work was supported by National Natural Science Foundation of China (61603378, 61573344,
and 61333001) and China Postdoctoral Science Foundation (2015M581190).

(Received July 17, 2017)

R E F E R E N C E S

[1] C. Godsil and G. F. Royle: Algebraic Graph Theory. Springer-Verlag, New York 2001.
DOI:10.1007/978-1-4613-0163-9

[2] W. M. Haddad and V. Chellaboina: Nonlinear Dynamical Systems and Control: A
Lyapunov-Based Approach. Princeton University Press, New Jersey 2008.

[3] Q. Hui, W. M. Haddad, and S. P. Bhat: Semistability, finite-time stability, differential
inclusions, and discontinuous dynamical systems having a continuum of equilibria. IEEE
Trans. Automat. Control 54 (2009), 2465–2470. DOI:10.1109/tac.2009.2029397

[4] Y. Liu, C. Lageman, B. Anderson, and G. Shi: An Arrow-Hurwicz-Uzawa type flow as
least squares solver for network linear equations. arXiv:1701.03908v1.

[5] J. Liu, A. S. Morse, A. Nedic, and T. Basar: Exponential convergence of a dis-
tributed algorithm for solving linear algebraic equations. Automatica 83 (2017), 37–46.
DOI:10.1016/j.automatica.2017.05.004

[6] J. Liu, S. Mou, and A. S. Morse: Asynchronous distributed algorithms for solv-
ing linear algebraic equations. IEEE Trans. Automat Control PP (2017), 99, 1–1.
DOI:10.1109/TAC.2017.2714645

[7] S. Mou, J. Liu, and A. S. Morse: A distributed algorithm for solving a lin-
ear algebraic equation. IEEE Trans. Automat. Control 60 (2015), 2863–2878.
DOI:10.1109/tac.2015.2414771

[8] A. Nedic, A. Ozdaglar, and P. A. Parrilo: Constrained consensus and optimiza-
tion in multi-agent networks. IEEE Trans. Automat. Control 55 (2010), 922–938.
DOI:10.1109/tac.2010.2041686

[9] W. Ni and X. Wang: Averaging approach to distributed convex optimiza-
tion for continuous-time multi-agent systems. Kybernetika 52 (2016), 898–913.
DOI:10.14736/kyb-2016-6-0898

[10] Z. Qiu, S. Liu, and L. Xie: Distributed constrained optimal consensus of multi-agent
systems. Automatica 68 (2016), 209–215. DOI:10.1016/j.automatica.2016.01.055

http://dx.doi.org/10.1007/978-1-4613-0163-9
http://dx.doi.org/10.1109/tac.2009.2029397
http://dx.doi.org/10.1016/j.automatica.2017.05.004
http://dx.doi.org/10.1109/TAC.2017.2714645
http://dx.doi.org/10.1109/tac.2015.2414771
http://dx.doi.org/10.1109/tac.2010.2041686
http://dx.doi.org/10.14736/kyb-2016-6-0898
http://dx.doi.org/10.1016/j.automatica.2016.01.055

Computation of linear algebraic equations over networks 819

[11] A. Ruszczynski: Nonlinear Optimization. Princeton University Press, New Jersey 2006.

[12] G. Shi and B. D. O. Anderson: Distributed network flows solving linear alge-
braic equations. In: American Control Conference, Boston 2016, pp. 2864–2869.
DOI:10.1109/acc.2016.7525353

[13] G. Shi, B. D. O. Anderson, and U. Helmke: Network flows that solve linear equations.
IEEE Trans. Automat. Control 62 (2017), 2659–2764.DOI:10.1109/tac.2016.2612819

[14] G. Shi and K. H. Johansson: Randomized optimal consensus of multi-agent systems.
Automatica 48 (2012), 3018–3030. DOI:10.1016/j.automatica.2012.08.018

[15] P. Yi, Y. Hong, and F. Liu: Distributed gradient algorithm for constrained optimization
with application to load sharing in power systems. Systems Control Lett. 83 (2015),
45–52. DOI:10.1016/j.sysconle.2015.06.006

[16] X. Zeng and Q. Hui: Energy-event-triggered hybrid supervisory control for cyber-
physical network systems. IEEE Trans. Automat. Control 60 (2015), 3083–3088.
DOI:10.1109/tac.2015.2409900

[17] X. Zeng, P. Yi, and Y. Hong: Distributed continuous-time algorithm for constrained
convex optimizations via nonsmooth analysis approach. IEEE Trans. Automat. Control
62 (2017), 5227–5233.DOI:10.1109/tac.2016.2628807

Xianlin Zeng, Beijing Institute of Technology, Beijing. P.R. China.
e-mail: xianlin.zeng@bit.edu.cn

Kai Cao, University of Chinese Academy of Sciences, Beijing. P.R. China.
e-mail: ck420@mail.ustc.edu.cn

http://dx.doi.org/10.1109/acc.2016.7525353
http://dx.doi.org/10.1109/tac.2016.2612819
http://dx.doi.org/10.1016/j.automatica.2012.08.018
http://dx.doi.org/10.1016/j.sysconle.2015.06.006
http://dx.doi.org/10.1109/tac.2015.2409900
http://dx.doi.org/10.1109/tac.2016.2628807

	Introduction
	Mathematical preliminaries
	Problem formulation
	Distributed linear equation
	Problem transformation

	Distributed algorithm
	Numerical result
	Conclusions

