In this paper, the problem of global finite-time stabilization via output-feedback is investigated for a class of stochastic nonlinear cascaded systems (SNCSs). First, based on the adding a power integrator technique and the homogeneous domination approach, a global output-feedback finite-time control law is constructed for the driving subsystem. Then, based on homogeneous systems theory, it is shown that under some mild conditions the global finite- time stability in probability of the driving subsystem implies the global finite-time stability in probability of the whole SNCS. Finally, a simulation example is given to illustrate the effectiveness of the proposed control design approach.
stochastic nonlinear systems, finite-time control, cascaded systems, output-feedback stabilization
68M15, 39A13