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DERIVATIVES OF HADAMARD TYPE
IN SCALAR CONSTRAINED OPTIMIZATION

KAREL PASTOR

Vsevolod I. Ivanov stated (Nonlinear Analysis 125 (2015), 270-289) the general second-order
optimality condition for the constrained vector problem in terms of Hadamard derivatives. We
will consider its special case for a scalar problem and show some corollaries for example for
{—stable at feasible point functions. Then we show the advantages of obtained results with
respect to the previously obtained results.
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1. INTRODUCTION

Many second-order optimality conditions were stated for different optimization problems.
They were very often stated in terms of generalized derivatives, see for example the
monographs [23] 29, [33].

Various second-order optimality conditions have been presented for optimization
problems with C*! functions (see e.g. [10} 1, 17, 18, 19, 20, 26 27, 34, 35, 136]).
We recall that a function f: R" — R is a C! function near z € R™ if it is (Gateaux)
differentiable on some neighbourhood of x and its derivative f’(-) is Lipschitz there.

The authors of [2] introduced an ¢-stable property which decreases a C1:1—property
and presented a second-order sufficient optimality condition for the unconstrained scalar
problem in terms of Dini derivatives. The properties of scalar or vector functions that
are {—stable at some point functions and their applications in optimization were studied
e.g. in [IL 2 B 4 B 67 8 O 12 13, 15, 16, 24, 25, 28, B0, BI]. Let us remind
that a second-order sufficient optimality condition for the constrained scalar problem
for ¢—stable at some point function in terms of Dini derivatives was introduced in [28].

Later, V.I. Ivanov [2I] stated general necessary and sufficient conditions for the
constrained vector problem in terms of Hadamard derivatives.

We will show in Sections 3 and 4 that the corollaries of the general theorem given in
[21] give interesting results also for smooth classes of functions. In particular, we will
devote the attention to the class of /—stable at some point functions and prove that the
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corollary obtained from the general result given in [21I] is tighter than the result given
in [28].

2. PRELIMINARIES

Let us recall gradually the general sufficient condition of vector optimization problem
obtained by Vsevolod Ivanov [2I] in terms of the derivatives of Hadamard type.

Let f: R®” - R" and g : R® — R™ be given, and let C' C R" and K C R™ be
closed, convex and pointed cones with int C' # () and int K # (). For the definitions and
properties of such cones, see e.g. [22, [32] [33]. We denote by (a, b) the scalar product of
vectors a € R™ and b € R". We denote by C* the positive polar cone of C' by C*, that
is

C*:={XeR"(\z)>0foral xeC}.

Let us consider the problem
min f(z), such that g(x) € —K. (1)

We denote by S the feasible set, that is

S:={zx e X;g(x) e —K}.

A feasible point xg is called an isolated local minimizer of order 2 for the problem
if there exist a constant A and a neighbourhood U, xg € U, such that for all z € SNU

there is
,

AECT, N =LA LA A0 Y (AP =1,

i=1
which depends on x, with
(N, f(2)) = (A, f (o)) + Allz — o] *.

The lower Hadamard directional derivative of a function f : R" — R U {+o0} at
a point z € dom f in direction u € R" is defined as follows:

n ’ t10,u'—u t '

We note that if the considered function f is Lipschitz near = (i.e. there exist a neigh-
bourhood U of x and a constant K > 0 such that |f(y) — f(z)] < K|ly — z||, for every
y,z € U), then the lower Hadamard derivative coincides with the lower Dini derivative,
i.e.

fla -+ tu) = f(z)
t

Some other properties of the Hadamard derivative can be found in [T4].

f(j)(x;u) = fiz;u) = lir?l(i)nf 2)

The lower Hadamard subdifferential of the function f : R® — R at the point = €
dom f is defined by the following relation:

oW f(x) = {z* € LR™,R); (z*,u) < P (z;u) for all directions u € R"}.
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Now, we recall the definition of the lower second-order derivative of Hadamard type,
which was introduced in [21].

Definition 2.1. Let f : R® — RU{+4o00} be an arbitrary proper extended real function.
Suppose that z7 is a fixed element from the lower Hadamard subdifferential oW f(z) at
the point x € dom f. Then the lower second-order derivative of Hadamard type of f at
z in direction u € R™ is defined as follows:

@ (g o) = liminf &) = fl@) —tzi,u)
e = i, /2 -

We suppose that zq is a feasible point for the problem 7 i.e. xg is an element of
feasible set S for the problem . Let us consider the function

F(z) :=max{(A, f(z) = f(z0)) + (1, 9(2)); (A, ) € A},

where A := {(\, p)iA € C*,p€ K*, 300 AP + 3070 pf =1}
Using the function F, V.I. Ivanov stated the following optimality conditions for the
problem .

Theorem 2.2. (Ivanov |21, Theorem 5.2]) Let xo be a feasible point for the problem
. Then the following claims are equivalent:

(a) z is an isolated local minimizer of second-order;

(b) the following conditions hold for all u € R™:
FEl)(xo;u) >0 and F£2) (20;0;u) > 0,u # 0; (3)
(¢) the following conditions
FY(zg;u) >0, VueR® (4)

and
u#0,FV (zg;u) = 0 = FP(20:0;u) > 0 (5)

are satisfied.

3. SCALAR PROBLEM

Let f:R" > Rand g; : R" - R,i=1,2,...,m, begiven. If we put C = {t € R; t > 0},
9=1(91,92,--,9m) : R" = R™ and K = {(y1,92,.--,Ym) € R™; y1 >0, y2 > 0,...,
Ym > 0} in the problem , we obtain the following scalar constrained problem

min f(z), such that g;(z) <0, i=1,2,...,m. (6)
Now, the feasible set can be expressed as

S={zxeR"g(x)<0,i=1,2,...,m}.
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Because of C* = {t € R;¢t > 0}, choosing \* = 1 in the definition of isolated local
minimizer of order 2 for the problem , we can say that xg is a feasible point if there
exist a neighbourhood U and a constant A > 0 such that

f(x) > f(xo) + Allz — x0]|?>, Yz eUNS.
We denote by Sg» the unit sphere of R™, i.e.
Sgn = {u € R ||ul| = 1}.

Theorem 3.1. Let z( be a feasible point for the problem @ Suppose that for every
u € Sgn there are A > 0 and 3; > 0, for ¢ = 1,2, ..., m, such that it holds

A(f (o + tu') — f(20)) + Brg1 (w0 + 1) + - - - + Bngm (0 + tu')

lim inf >0. (7)
t10,u’ —u t
Suppose that for every u € Sgn with the property
liminf A @0+ 1) = f(@0)) + frgi(wo + 1) + -+ + Bngm(zo + ) _ 0, (8)
t10,u’—u t
it holds
A tu') — tu’ cee ' Om tu’
t{ién?nf (f(wo +tu') — f(zo)) + 51915233/()2‘# u') + -+ Bngm(@o + tu) >0, (9)

Then z( is an isolated minimizer of second-order for the problem @

Proof. We can consider problem @ as a special case of problem with
C:{t€R7tZO}7 K:{(ylay277ym) ERmvyl 207y2 Zoaaym Zo}a
and
g: R™ — R™ : g= (917927"’79771)'

Using inequality , for every u € Sgn, there exist A >0, 3; > 0,7 € {1,2,...,m}, such
that (A, (61, 02,...,0m)) € A and

F tu') — F F !
Fg)(ffo;u) = liminf (o + tu') (o) = liminf (wo + tu')
o t £10,u'—u t
) - / e /
> fiming M@0t = f(@0)) + Fig1 (@0 + tu) + -+ Sngm (o + tu)
t10,u' —u f
> 0. w0

Therefore, the condition from Theorem is satisfied.

Now, we suppose that for some u € Sk~ it holds Fﬁl)(ajo; u) = 0. Then by means of
formula (7)) there are A >0, 8; > 0,4 € {1,2,...,m}, such that it holds
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0 < limint 2@+ t) = f(20)) + Brgr(wo + tu') + - + Bngm(zo + tu')

T tlou —u t
F tu’ F W) - F
< liminf M = liminf (o + tu') (o)
t10,u'—u t £10,u' —u t

Then, it follows from inequalities and @[) that

F N_F
F® (20;0;u) = liminf (wo + tu') — F(zo)

t10,u’—u t2/2
> liminf 2@ ) = £(@0)) + Brga(@o £ tu) + -+ & Bingm (o + t')
t10,u’ —u t2/2
> 0. (12)
Thus also the condition from Theorem is satisfied. O

In the sequel, we will present the corollary of the previous theorem. By a critical set
we will mean the set

D(zg) = {uce SRn;f(_l)(xo;u) < O,gi(_l)(xo;u) <0 fori e I(xg)},
where I(xo) = {i € {1,2,...,m};gi(zo) = 0}.

Corollary 3.2. Let 2o be a feasible point for the problem @ If for every u € D(xq)
there exist A > 0 and 3; > 0,4 € I(xg) = {i1,%2,...,4s} C {1,2,...,m}, such that

A f(zo +tu') — f(x0)) + Biygiy (w0 +tu') 4 - - 4 B g4, (20 + tu)

lim inf =0, (13)
t10,u’—u t
and
A tu') — i10i tu’ s i.Gi. tu’

then x¢ is an isolated minimizer of second-order for problem @

Proof. If u € Sgn is not a critical direction, i.e. u ¢ D(xg), then there are two
possibilities:
Case 1. If )
t —
lim inf flzo + tu') — f(zo)

t10,u’ —u t

>0,

then we put A =1 and ; = 0 for every i € {1,2,...,m}. Hence,
A f(zo + tu') — f(z0)) + Brgr(xo + tu') + - -+ + Brgm(xo + tu')

lim inf
t10,u' —u t
/ —
— Jiminr LEF) 2@
t10,u' —u t

and the condition @ from Theorem is satisfied.
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Case 2. If /
liminf Zo@o ) = gin(20) _ o
t10,u’—u t
for some iy € I(x), then we put A =0, 3; = 0 fori € {1,2,...,m}\ {ip}, and
Bi, = 1. Hence,
timing 2 @0+ 1) = f(z0)) + Frga(wo + tu') + -+ + Bingm (o + tu')
t10,u' —u t
. N .
—  fiminf G ) —gi(m0)
t]0,u'—u t

and the condition @ from Theorem is also satisfied.

If u € Sgn is a critical direction, i.e. u € D(xg), then we put 8; = 0fori € {1,2,...,m}\
I(zp) and the conditions and mean that the conditions and @D from
Theorem are satisfied. Therefore, z( is an isolated minimizer of second-order for
problem @ O

If the considered functions are Gateaux differentiable at the considered feasible point
xo and Lipschitz near xg, then we can state the following corollary. We recall that a
function f : R™ — R is Gateaux differentiable at zg, if there exists a linear continuous
functional f’(z() such that

f(o +th) — f(xo)
t

f'(zo)h = lim
for every h € Sgn.

Corollary 3.3. Let zg be a feasible point for the problem @ and we suppose that the
functions f and g;, ¢ € I(xg), are Gateaux differentiable at zy and Lipschitz near z.
If for every w € D(zg) there exist A > 0 and 5; > 0, i € I(zg) = {i1,42,...,is} C
{1,2,...,m}, such that

M (@o)u+ Bi, gi, (zo)u + Bi, g;_(zo)u =0, (15)
and
AN . / i /
tlllgn /1nf )\(f(SCO + tu ) f(‘TO)) + ﬂllglzgzjg + tu ) + + ﬂlsgis (1’0 +tu ) > O7 (16)

then x( is an isolated minimizer of second-order for problem @

Proof. Wewill show that the condition (I3)) from Corollary[3.2)is satisfied. If i € I(z(),
then g;(z¢) = 0. Thus for every u € D(xg) we have

A(f(wo +tu') = f(20)) + Biy gig (To + tu') + - + Bi, gi, (w0 + tu')

lim inf
t10,u’ —u t
= liminf A(f(zo + tu) — f(@0)) + Biy (94, (wo + tu') — gi; (w0)) + -+ + Biy (g1 (0 + tu) — giy (x0))
t10,u/ —u t >

amn)
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where A and f3;;, j € {1,..., s}, are those for which in the assumptions of Corollary
the validity of formulas (15|) and is supposed for the considered u € D(zg). Since
the functions f and g;, ¢ € I(xg), are Lipschitz near ¢, it holds

limi A(f(mo 4+ tu') — f(w0)) + Biy (giy (w0 + tu’) — giy (w0)) + - - - + iy (gis (To + tu') — g, (w0))
(it t
A(f(mo + tu') — f(20)) + Biy (9iy (To + tu') — giy (w0)) + -+ - + Biy (gis (To + tu') — gi, (z0))
; .

lim inf
tl0
(18)
Finally, using the Gateaux differentiability of f and g;, ¢ € I(x), we obtain

A(f(zo +tu) — f(20)) + Biy (giy (w0 + tu') — giy (®0)) + - - + Bi, (i, (xo + tu') — gi, (20))
t

= M'(zo)u+ Biy gi, (wo)u+ - - + Bi, g; (zo)u. (19)

It folows from the formula, (118), , and that the condition is satisfied.

Because of the conditions ([14)) and (16 are the same, by Corollary o is an isolated
minimizer of second-order for problem (@ O

lim inf
tl0

4. {-STABLE FUNCTIONS

In this section we recall some notions concerning ¢—stability and state for this class of
functions the optimality conditions for problem @ We also compare our result with the
previous result obtained for /—stable at some point functions by S.J. Li and S. Xu [28].

We have already introduced the Dini lower derivative of a function f : R™ — R at a
point & € R™ in the direction u € R™ in formula , and mentioned that it equals to

f&l)(x; u) if f is Lipschitz near x.

We recall the definition of /-stable at some point function which was introduced in [2].

Definition 4.1. A function f : R™ — R is called /-stable at x € R™ if there exist a
neighbourhood U of  and L > 0 such that

1 (yiu) — i) < Ly — 2|, Vy €U Vu€ Spn.

We note that the class of /-stable at some point functions was introduced to weaken
Cl1-property in some optimization problems. It was shown in [2] that the class of
functions that are /—stable at some point properly contains the class of functions that
are C'! near this point.

We recall that a function f : R™ — R is strictly differentiable at z € R™ if there exists
a linear continuous functional f!(z) such that

fly+th) — f(y)

y—x,t]0 t ’ Vu € SRn’

and the limit is uniform with respect to u € Sgn.
It is easy to show that if a function f : R™ — R is strictly differentiable at x € R",
then it is also Gateaux differentiable at x and f.(z) = f'(x).
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Proposition 4.2. (Bednaiik and Pastor [2]) If a function f : R™ — R is {-stable at
x € R™, then it is strictly differentiable at x and Lipschitz near z.

Definition 4.3. The second-order lower Dini directional derivative of a function f :
R™ — R at z € R™ in direction u € R" is defined as

fx +tu) — f(a) —tf (x;h)
t2/2 '

" EN
su) =1 f
(x5 ) im in
The following proposition follows from the proof of Proposition 6.3 given in [21].

Proposition 4.4. Let f: R® — R be {-stable at = € R™. If for every u € Sg» we have
f'(x)u =0, then
Flau) = £2(2;000),  Vu € Spe.

We define the Lagrange function for the problem @:

L(x) = f(z)+ > Bigi(z), VY eR"

i€1(xo)

If the functions f and g;, i € I(xg), are ¢{-stable at xp, then also the function L is
(—stable at zo by Lemma 3 from [12].

Now, we can formulate the following sufficient optimality condition for the problem
@ when the considered functions are /—stable at the feasible point.

Corollary 4.5. Let zy be a feasible point for the problem @ and suppose that the
functions f and g¢;, i € I(xg) are {-stable at x9. Suppose that there are 3; > 0,
i €{1,2,...,m}, such that for each u € Sg» it holds

L'(zo)u=0 (20)

and moreover,

L'*(xo;u) >0, Yu € D(x). (21)

Then z( is an isolated minimizer of second-order for problem @

Proof. We will show that the assumptions of Corollary are satisfied. By Proposi-
tion the functions f and g;, ¢ € I(z0), are Gateaux differentiable at z¢ and Lipschitz
near zp. The condition implies the condition immediately (with A = 1).

We notice that g;(xg) = 0 for every i € I(xg). Then, since the Lagrange function
L is {—stable at ¢y € R", by Proposition and formula (20) we have L'*(z¢;u) =
L(_Q)(aco; 0,u) and the condition implies the condition 1)

Summarizing the previous considerations, all assumptions of Corollary are satis-

fied and it means that x( is an isolated minimizer of second-order for problem @
O
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We will compare the previous result with the result given in [28] where the authors
also stated the second-order sufficient optimality condition for the problem @ with
{—stable functions. S.J. Li and S. Xu considered the Lagrange function

L(z) = f(z) + Zﬁigi(x), Vr € R™,

where 8; > 0, i =1,...,m. Then they separated the set I(x) = {7;g;(z) = 0} into the
sets
M(z) ={i € I(x);8; = 0}

and

J(x) = {i € I(z); B; > 0}
Finally, they defined the set
E(z) = {u € Spn; gi(wo)u < 0,¥i € M(), gi(wo)u = 0,Vi € J(2)},
and stated the following theorem.

Theorem 4.6. (Liand Xu [28 Theorem 3.2]) Let x be a feasible point for the problem
@ and we suppose that the functions f and g;, i € {1,2,...,m}, are ¢-stable at z.
We suppose that there are 5; > 0, i € {1,2,...,m}, such that for each u € Sg~ it holds

Z Bigi(wo) = 0, (22)
i=1
and X
L'(zo)u=0. (23)
Moreover, we suppose that
L*(zo;u) >0, Yu e E(xg). (24)

Then x( is an isolated minimizer of second-order for problem @

Proof. We will prove that Theorem follows from Corollary From formula
it follows that ; = 0 for every ¢ € {1,2,...,m} \ I(xo) and thus L(z) = L(z). Now, it
suffices to show that

D(zo) C E(xp). (25)

We notice that for ¢—stable functions

{u € Sgn; fﬁl)(xo;u) < O,Qi(l)(fo;u) <0 for i€ I(xg)},

{u € Sgn; f(xo)u <0, gi(xo)u <0 fori e I(xg)},

D(zo)

and
E(x¢) = {u € Sgn; gi(xo)u < 0,Vi € M(x0),g:(zo)u = 0,Vi € J(z0)}.

So, let us consider that d € Sgn such that d ¢ E(xo). Then there are two possibilities.
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e Case 1. There exists ig € M(x¢) such that g; (z¢)d = gio(_l)(xo;d) > 0. Then
d ¢ D(x).

e Case 2. There exists ig € J(zo) such that g; (zo)d # 0. If we suppose that d €
D(xg), then g (z0)d <0, f'(z¢)d < 0 and gj(wo)d < 0 for every i € I(xo) \ {io}-

Then, L'(z0)d = L'(zo)d < 0, but it is a contradiction with the formula .
Therefore, d ¢ D(x).

Summarizing the previous considerations, we have that d ¢ E(zo) implies d ¢ D(zo).
Thus we proved the formula . O

Remark 4.7. It seems that the only advantage of Corollary with respect to Theo-
rem is the fact that the f—stability of the functions g; is required only for i € I(zy).

On the other hand, supposing moreover in Corollary that all functions g;, for
i €{1,2,...,m} are {-stable at xy, Theorem is equivalent to Corollary Indeed,
having in mind the previous proof, it suffices to show that F(xg) C D(zg). So, let us
consider d € Sg~ such that d ¢ D(zp). Then there are two possibilities.

e Case 1. There exists i € I(xo) such that g] (xo)d > 0. Then d ¢ E(xo).

e Case 2. It holds f'(xzg)d > 0. If we suppose that d € E(x¢), then g;(xq)d = 0 for
every i € J(zo) and because of 3; = 0 for every i € M(zo), we have 8;g}(zo)d =0
for every i € I(xg). Summarizing the previous facts, we obtain L'(zg)d > 0, but
it is a contradiction with the formula .

Finishing our paper, we present an example which illustrates the advantage of Corol-
lary [3.3 with respect to Theorem [4.6] and Corollary

Example 4.8. We define an objective function f as follows

_ M+ sin(ine))de it #£0,
f(x)—{ ’ 0 , ifx=0.

Let us consider the constrained programming problem @

wmin f(z).
such that g¢i(z) = x5 <0, go(z) =2% <0, g3(x)=22x—-5<0.

Since f'(z)h = x(33 + sin(In |z|)h for  # 0, h € R, and f/(0) = 0, f is C*! function.
The functions g, and g3 are C? functions. Therefore, f, go and g3 are also /-stable
functions at 0. On the other hand, the function g; is C'! function, but it is not ¢-stable
at 0.

Thus, to verify that 0 is an isolated local minimizer of order 2 we cannot use neither
Corollary [£.5 nor Theorem [4.6]
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But we can use Corollary We notice that 1(0) = {1,2}, S = {0} and D(0) =
{—1,1} because f'(0) = g1(0) = g5(0) = 0. To satisfy the conditions of Corollary [3.3| we
need to find A > 0, §; > 0, and B > 0 such that

Af'(0)u + By (0)u + F2g5(0) = 0,

for w = £1. Since f'(0) = ¢g1(0) = ¢g5(0) = 0, we can consider A =1, 3; =0 and 32 = 1.
Now, we check the condition from Corollary At first, we note that it is easy to
calculate

t2u/2 1
ftu) = 5+ thu'Q(Q sin(In [tu'|) — cos(In [tu'])), t € R.
Then
liminf W) +g2(te)
t10,u'—1 t2/2
C lmin t212/2 n %t2u/2(2 sin(In |tu/]) — cos(In |tu'])) + £33
o tll(g,rﬁri»l t2/2
= liminf (2 + 2u’2(2 sin(In [tu’|) — cos(In [tu'])) + tu’®
t10,u’—1 5 )
25
= 1- Tf > 0.

Analogously, also
tu’ tu/
lim inf f(t) + ga(t)
tl0,u'——1 t2/2
Thus, the assumptions of Corollary are satisfied and it means that 0 is an isolated
minimizer of second-order.

> 0.

(Received February 1, 2017)
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