Kybernetika 53 no. 4, 653-678, 2017

Disturbance observer-based second order sliding mode attitude tracking control for flexible spacecraft

Chutiphon Pukdeboon and Anuchit JitpattanakulDOI: 10.14736/kyb-2017-4-0653

Abstract:

This paper presents a composite controller that combines nonlinear disturbance observer and second order sliding mode controller for attitude tracking of flexible spacecraft. First, a new nonsingular sliding surface is introduced. Then, a second order sliding mode attitude controller is designed to achieve high-precision tracking performance. An extended state observer is also developed to estimate the total disturbance torque consisting of environmental disturbances, system uncertainties and flexible vibrations. The estimated result is used as feed-forward compensation. Although unknown bounded disturbances, inertia uncertainties and the coupling effect of flexible modes are taken into account, the resulting control method offers robustness and finite time convergence of attitude maneuver errors. Finite-time stability for the closed-loop system is rigorously proved using the Lyapunov stability theory. Simulation results are presented to demonstrate the effectiveness and robustness of the proposed control scheme.

Keywords:

finite-time convergence, extended state observer, second order sliding mode control, flexible spacecraft

Classification:

93C10, 93C95, 93D15

References:

  1. H. Bang, C.-K. Ha and J. H. Kim: Flexible spacecraft attitude maneuver by application of sliding mode control. Acta Astronautica 57 (2005), 841-850.   DOI:10.1016/j.actaastro.2005.04.009
  2. S. Bhat and D. Bernstein: Finite-time stability and continuous autonomus systems. SIAM J. Control. Optim. 38 (2000), 751-766.   DOI:10.1137/s0363012997321358
  3. Z. Chen and J. Huang: Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control. IEEE Trans. Automat. Control 54 (2009), 600-605.   DOI:10.1109/tac.2008.2008350
  4. Z. Chen and J. Huang: Attitude tracking of rigid spacecraft subject to disturbances of unknown frequencies. Int. J. Robust Nonlinear Control 16 (2014), 2231-2242.   DOI:10.1002/rnc.2983
  5. J. Davila, L. Fridman and A. Levant: Second-order sliding-modes observer for mechanical system. IEEE Trans. Automat. Control 50 (2005), 1785-1789.   DOI:10.1109/tac.2005.858636
  6. S. Di Gennaro: Passive attitude control of flexible spacecraft from quaternion measurements. J. Optim. Theory Appl. 116 (2003), 41-60.   DOI:10.1023/a:1022106118182
  7. S. Ding and W. X. Zheng: Nonsmooth attitude stabilization of a flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst 50 (2014), 1163-1181.   DOI:10.1109/taes.2014.120779
  8. H. Du, S. Li and C. Qian: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Automat. Control 56 (2011), 2711-2717.   DOI:10.1109/tac.2011.2159419
  9. J. Erdong and S. Zhaowei: Passivity-based control for a flexible spacecraft in the presence of disturbances. Int. J. Non-Linear Mech. 45 (2010), 348-356.   DOI:10.1016/j.ijnonlinmec.2009.12.008
  10. Y. Feng, X. Yu and Z. Man: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38 (2002), 2159-2167.   DOI:10.1016/s0005-1098(02)00147-4
  11. Q. Hu: Robust adaptive sliding mode attitude control and vibration damping of flexible spacecraft subject to unknown disturbance and uncertainty. Trans. Inst. Measurement and Control 34 (2012), 436-447.   DOI:10.1177/0142331210394033
  12. Q. Hu, B. Jiang and M. Friswell: Robust saturated finite time output feedback attitude stabilization for rigid spacecraft. J. Guid. Control Dyn. 37 (2014), 1914-1929.   DOI:10.2514/1.g000153
  13. Q. Hu, Z. Wang and H. Gao: Sliding mode and shaped input vibration control of flexible systems. IEEE Trans. Aerosp. Electron. Syst. 44 (2008), 503-519.   DOI:10.1109/taes.2008.4560203
  14. Y. Jiang, Q. Hu and G. Ma: Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures. ISA Trans. 49 (2010), 57-69.   DOI:10.1016/j.isatra.2009.08.003
  15. A. Levant: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58 (1993), 1247-1263.   DOI:10.1080/00207179308923053
  16. B. Li, Q. Hu and G. Ma: `Extended state observer based robust attitude control of spacecraft with input saturation. Aerosp. Sci. Technol. 40 (2016), 173-182.   DOI:10.1016/j.ast.2015.12.031
  17. J. Li, Y. Pan and K. D. Kumar: Design of asymptotic second-order sliding mode control for satellite formation flying. J. Guid. Control Dyn. 35 (2015), 309-316.   DOI:10.2514/1.55747
  18. S. H. Li, Z. Wang and S. M. Fei: `Comments on the paper: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking. Aerosp. Sci. Technol. 15 (2011), 193-195.   DOI:10.1016/j.ast.2010.11.005
  19. W. Luo, Y. C. Chung and K. V. Ling: Inverse optimal adaptive control for attitude tracking spacecraft. IEEE Trans. Automat. Control 50 (2005), 1639-1654.   DOI:10.1109/tac.2005.858694
  20. Z. H. Man, A. P. Paplinski and H. R. Wu: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Automat. Control 39 (1994), 2464-2469.   DOI:10.1109/9.362847
  21. J. A. Moreno: On strict Lyapunov functions for some non-homogeneous super-twisting algorithms. J. Franklin Inst. 351 (2014), 1902-1919.   DOI:10.1016/j.jfranklin.2013.09.019
  22. E. Moulay and W. Perruquetti: Finite-time stability and continuous autonomous systems. J. Math. Anal. Appl. 323 (2006), 1430-1443.   DOI:10.1016/j.jmaa.2005.11.046
  23. C. Pukdeboon and P. Kumam: Robust optimal sliding mode control for spacecraft position and attitude maneuvers. Aerosp. Sci. Technol. 43 (2015), 329-342.   DOI:10.1016/j.jmaa.2005.11.046
  24. C. Pukdeboon and P. Siricharuanun: Nonsingular terminal sliding mode based finite-time control for spacecraft attitude tracking. Int. J. Control Automat. Syst. 12 (2014), 530-540.   DOI:10.1007/s12555-013-0247-x
  25. C. Pukdeboon, A. S. I. Zinober and M.-W. L. Thein: Quasi-continuous higher-order sliding mode controllers for spacecraft attitude tracking manoeuvres. IEEE Trans. Ind. Electron. 57 (2010), 1436-1444.   DOI:10.1109/tie.2009.2030215
  26. Y. B. Shtessel, I. A Shkolnikov and A. Levant: A. Smooth second-order sliding modes: Missile guidance application. Automatica 43 (2007), 1470-1476.   DOI:10.1016/j.automatica.2007.01.008
  27. Z. Song, H. Li and K. Sun: Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique. ISA Trans. 53 (2014), 117-124.   DOI:10.1016/j.isatra.2013.08.008
  28. P. M. Tiwari, S. Janardhanan and M. un Nabi: Rigid spacecraft attitude control using adaptive integral second order sliding mode. Aerosp. Sci. Technol. 42 (2015), 50-57.   DOI:10.1016/j.ast.2014.11.017
  29. V. Utkin: Sliding Modes in Control and Optimization. Springer-Verlag, Berlin 1992.   CrossRef
  30. S. Wu, G. Radice and Z. Sun: Robust finite-time control for flexible spacecraft attitude maneuver. J. Aerosp. Engrg. 27 (2014), 185-190.   DOI:10.1061/(asce)as.1943-5525.0000247
  31. Y. Wu, X. Yu and Z. Man: Terminal sliding mode control design for uncertain dynamic system. Syst. Control Lett. 34 (1998), 281-288.   DOI:10.1016/s0167-6911(98)00036-x
  32. Y. Xia, Z. Zhu, M. Fu and S. Wang: Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Trans. Ind. Electron. 58 (2011), 647-659.   DOI:10.1109/tie.2010.2046611
  33. S. Yu, X. Yu, B. Shirinzadeh and Z. Man: Continuous finite-time control for roboti manipulators with terminal sliding mode. Automatica 41 (2005), 1957-1964.   DOI:10.1109/tie.2010.2046611
  34. D. Zhao, S. Li and F. Gao: A new terminal sliding mode control for robotic manipulators. Int. J. Control 82 (2009), 1804-1813.   DOI:10.1080/00207170902769928
  35. C. X. Zhong, Y. Guo, Z. Yu, L. Wang and Q. W. Chen: Finite-time attitude control for flexible spacecraft with unknown bounded disturbance. Trans. Institute of Measurement and Control 38 (2016), 2, 240-249.   DOI:10.1177/0142331214566223