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DIRECTIONAL QUANTILE REGRESSION IN R

Pavel Boček and Miroslav Šiman

Recently, the eminently popular standard quantile regression has been generalized to the
multiple-output regression setup by means of directional regression quantiles in two rather
interrelated ways. Unfortunately, they lead to complicated optimization problems involving
parametric programming, and this may be the main obstacle standing in the way of their wide
dissemination. The presented R package modQR is intended to address this issue. It originates
as a quite faithful translation of the authors’ moQuantile toolbox for Octave and MATLAB,
and provides all the necessary computational support for both the directional multiple-output
quantile regression methods to the wide statistical public. The article offers a concise summary
of the statistical theory behind modQR, overviews the package in brief, points out its departures
from moQuantile, comments on its use and performance, and demonstrates its application.
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Classification: 62-04, 65C60, 62H05, 62J99

1. INTRODUCTION

Roughly speaking, the directional regression quantile concepts discussed here first asso-
ciate each direction in the response space with a (regression) quantile hyperplane and
its upper (regression) quantile halfspace, and then define (regression) quantile regions
as the convex intersections of the upper (regression) quantile halfspaces over all the di-
rections. Such concepts have been theoretically investigated in several articles including
[8, 9, 10, 16], and [19], their computational side has been successfully addressed in [17]
and [18], and their practical applications still grow in number; see, e. g., [15] and [20].
Similar ideas also appear in other articles such as [3, 5, 6, 13, 14] and [4].

There already exists a toolbox moQuantile [2] for Octave and MATLAB that imple-
ments the algorithms of [17] and [18] in a professional way and makes the directional
multiple-output quantile regression accessible to ordinary users. The R package modQR
[1] presented here (and already available from CRAN) is its faithful R translation by its
authors that primarily aims at those many statisticians using R as their only computing
environment.

The codes probably have no close competitors in the general regression case as the
concept of multivariate quantile regression is quite novel in the statistical literature.

DOI: 10.14736/kyb-2017-3-0480

http://doi.org/10.14736/kyb-2017-3-0480


Directional quantile regression in R 481

However, there exist some R packages on robust regression, data depth, regression depth,
multiple-output regression, and single-response quantile regression, all of which touching
at least one aspect of the directional multiple-output quantile methodology.

The article proceeds with a brief review of the properties of both the directional
(regression) quantile methods of interest because R documentation is not suitable for
stating complex mathematical expressions. Both of them are motivated by standard
single-output quantile regression, introduced in [12] and surveyed in [11]. The package
and its functionality are overviewed next. The interpretation of the results is then
briefly discussed and followed with two demo examples. At the end, a telegraphic speed
comparison of modQR with moQuantile concludes the presentation.

2. METHODOLOGY

Consider a random sample (Y >i ,Z
>
i )> ∈ Rm+p−1, i = 1, . . . , n, where m-dimensional

responses Y i are coupled with both p-dimensional regressors Xi = (1,Z>i )> and weights
wi = wi(Y i,Zi) > 0, i = 1, . . . , n > m+p−1. Assume that (Y >i ,Z

>
i )> ∈ Rm+p−1, i =

1, . . . , n, come from a continuous distribution. Next consider only integer parameters
m ≥ 2 and p ≥ 1 where p = 1 corresponds to the location case when (Y ′i,Z

′
i)
′ = Y i

and all vectors Zi’s can thus be viewed as empty.
These assumptions guarantee that all the directional quantiles considered below are

uniquely defined and that the algorithms of [17] and [18] should theoretically work fine
almost surely for all but a finite number of quantile levels τ ’s such as τ = i/n, i =
0, 1, 2, . . . , n, in the location case with unit weights. All the exceptional τ values and
almost never occurring data configurations will be ignored in this section for the sake of
simplicity and clarity. They will be recalled later in the discussion of practical applica-
tions of the package.

Analogous but different entities figuring in both directional approaches are denoted
with the same symbol hereinafter to highlight the similarity of the two methods. It
should not cause any confusion because the method should always be clear from the
context if it is important for the validity of the claims being made.

Both the methods define, for each quantile level τ ∈ (0, 1) and each direction u ∈
Rm \ {0}, the directional (regression) τ -quantile as one directional (regression) quantile
hyperplane πτu associated with its upper directional (regression) τ -quantile halfspace
H+
τu:

πτu =
{

(y>, z>)> ∈ Rm+p−1 : b>τuy − a>τux = 0, x = (1, z>)>
}
,

H+
τu =

{
(y>, z>)> ∈ Rm+p−1 : b>τuy − a>τux ≥ 0, x = (1, z>)>

}
.

The difference lies only in the quantile coefficient vector (b>τu,a
>
τu)> ∈ Rm+p−1 that is

defined as the solution to the same minimization problem up to a method-specific linear
constraint:

(a>τu, b
>
τu)> = argmin

(a>,b>)>

n∑
i=1

wiρτ (b>Y i − a>Xi)

subject to b>u = 1 (Method 1 of [9]) or b = u (Method 2 of [16]) where ρτ (x) =
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x
(
τ − I(x < 0)

)
is the well-known quantile check function and

Ψτu =
n∑
i=1

wiρτ (rτu,i) =
n∑
i=1

wiρτ (b>τuY i − a>τuXi)

stands for the optimal value of the objective function computed from the residuals
rτu,i = b>τuY i − a>τuXi, i = 1, . . . , n. The constraint used by Method 1 is associated
with the scalar Lagrange multiplier λτu equal to Ψτu while that of Method 2 results in
the Lagrange multiplier vector µb

τu linked to Ψτu in a straightforward way: Ψτu = µb>
τuu.

Note that Method 2 is more or less the ordinary τ -quantile regression of projections
u>Y i’s on Xi’s.

Only unit weights wi = 1, i = 1, . . . , n, are assumed from now on because the
weighted case can be transformed to the unweighted one by substitutions Y i := wiY i

and Xi := wiXi that change neither the optimal value of the objective function nor the
quantile hyperplane coefficients.

The upper quantile halfspaces are important for defining two meaningful, convex,
and polyhedral (regression) τ -quantile regions, namely the exact one (REτ ) and the
approximate one (RAτ ):

REτ = ∩πτu∈Πτ
H+
τu

and
RAτ = convhull

{
(Y >i ,Z

>
i )> ∈ Rm+p−1 : (Y >i ,Z

>
i )> ∈ REτ

}
where Πτ denotes the finite set of all distinct directional (regression) τ -quantile hyper-
planes passing through exactly m+ p− 1 observations:

Πτ =
{
πτu : u ∈ Rm, ‖u‖ = 1, πτu contains m+ p− 1 observations

}
.

In other words, RAτ stands for the convex hull of all the observations contained in REτ
where REτ is the intersection of all upper directional (regression) τ -quantile halfspaces
with m+ p− 1 observations in their bordering directional (regression) τ -quantile hyper-
planes. The borders ofREτ andRAτ are referred to as (exact) and approximate τ -quantile
contours, respectively. In a general regression case, the z0-cuts REτ (z0) and RAτ (z0):

REτ (z0) =
{
y ∈ Rm : (y>, z>0 )> ∈ REτ

}
and

RAτ (z0) =
{
y ∈ Rm : (y>, z>0 )> ∈ RAτ

}
,

if computed for various z0 ∈ Rp−1, may provide valuable information about the trend
and heteroscedasticity.

It is important to know that Πτ , REτ , and RAτ do not depend on the directional
quantile method used and that REτ must be non-empty (and thus contain at least one
point of Rm+p−1) for any τ ≤ 1/(m + p). The approximate region RAτ asymptotically
approaches the exact one and can be determined even if REτ is difficult to obtain due to
the very large number of hyperplanes in Πτ . It is because the observations in REτ are
known even before computing its vertices and facets. Unlike density contours, the regions
always remain convex, even if the distribution behind the observations is multimodal.
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Such a distribution may arise unexpectedly even from very simple mixtures, see, e. g.,
[7].

Fortunately, parametric linear programming can solve exactly (for all u ∈ Rm \ {0})
the minimization problems involved in both Method 1 and Method 2. It says that the
space Rm \ {0} of all directions can be partitioned into blunt polyhedral cones where
the solution has a simple form and the observations with zero residuals do not change.
Furthermore, the technique also produces, in each such cone, the Lagrange multipliers
associated with the constraint and the residuals. Those multipliers corresponding to
positive and negative residuals always equal −τ and 1 − τ , respectively. The Lagrange
multiplier vector µr0

τu associated with zero residuals is more interesting as it must have
all its data-dependent coordinates in (−τ, 1− τ). It can be interpreted like rank scores
in standard quantile regression and used for defining halfspace depth of individual ob-
servations as in (5.1) of [16].

The finite conic segmentation Γ(τ) = {Cq(τ) : q = 1, . . . Nτ} of Rm corresponding
to Method 1 consists of non-degenerate closed convex polyhedral cones Cq(τ) where
aτu = aq,τ/dq,τ (u), bτu = bq,τ/dq,τ (u), λτu = λq,τ/dq,τ (u), (Ψτu = λτu), and µr0

τu =
Vq,τu/dq,τ (u) for any 0 6= u ∈ Cq(τ) where dq,τ (u) = b>q,τu and bq,τ ∈ Rm, aq,τ ∈ Rp,
λq,τ ∈ R, and Vq,τ ∈ R(m+p−1)×m are constant up to their possible dependence on τ
and q. All directions u inside Cq(τ) thus lead to the same hyperplane coming through
m+p−1 observations although the hyperplane coefficients may differ by a multiplicative
u-dependent scaling factor.

Similarly, the finite conic segmentation Γ(τ) = {Cq(τ) : q = 1, . . . , Nτ} of Rm corre-
sponding to Method 2 consists of non-degenerate closed convex polyhedral cones Cq(τ)
where aτu = Aq,τu, bτu = u, µb

τu = µb
q,τ , (and Ψτu = µb>

q,τu), and µr0
τu = µr0

q,τ for
any u ∈ Cq(τ) where Aq,τ ∈ Rp×m, µb

q,τ ∈ Rm, and µr0
q,τ ∈ Rp may depend on τ and q

but not on u. Each direction u inside Cq(τ) thus leads to a different hyperplane con-
taining the same p observations. Any τ -quantile hyperplane passing through m+ p− 1
observations then corresponds to a vertex direction of some Cq(τ). Nevertheless, such
directions may also be associated with τ -quantile hyperplanes having some of their co-
efficients zero and passing through less than m + p − 1 observations. It is because two
adjacent cones of Γ(τ) can sometimes differ only in the sign of one of the (regression)
τ -quantile hyperplane coefficients and not necessarily in the p observations fitted by the
hyperplanes associated with their inner directions.

As you probably realize, all the entities bτu, aτu, Ψτu, µr0
τu, Γ(τ), and Nτ are method-

dependent although the method does not explicitly appear in their notation.
The package modQR implements both methods and makes it possible both to find

the conic segmentations with all the cone-wise quantile-related characteristics mentioned
above and to compute and evaluate the (regression) quantile contours. It is described
in the next section.

3. PACKAGE FUNCTIONALITY

The package modQR results from the Octave toolbox moQuantile as its faithful R trans-
lation. It has a detailed documentation expanding on the summary presented here.

The package contains seven functions for end users. The names of functions associ-
ated solely with Method 1 or Method 2 end with M1u or M2u, respectively. In other
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words, the functions compContourM2u, getCTechSTM2u, and getCharSTM2u are anal-
ogous to compContourM1u, getCTechSTM1u, and getCharSTM1u but relate to the
second method. The remaining function evalContour analyses and evaluates any convex
polytope given by a set of linear inequalities such as a (regression) quantile region.

Although the following text focuses only on Method 1, everything also applies to
Method 2 after changing M1u to M2u, except for the explicitly mentioned differences.

The optimization problem behind Method 1 can be solved with compContourM1u.
The function admits up to four input arguments: (1) the scalar quantile level τ , (2) the
matrix with all the responses Y i’s in rows, i = 1, . . . , n, (3) (optionally) the matrix with
all the corresponding regressors Xi’s in rows, i = 1, . . . , n, and (4) (optionally) the list
CTechST of parameters driving the computation (described two paragraphs below). If
(3) is missing, then the unit vector of the right length is automatically considered. If
(4) is missing, then the default list produced by getCTechSTM1u is used instead, which
usually works well for common tasks and small to moderate data sets.

The function compContourM1u expects τ ∈ (0, 0.5), n > m + p − 1, and 2 ≤ m ≤
6, and it could be used reliably at least when the triple (m,n, p) is lexicographically
smaller than (2, 10000, 10), (3, 500, 5), or (4, 150, 3). That is to say that the computation
increasingly tends to numerical errors and prohibitive computation times with growing
m, n, p, and τ (denoted as M, N, P, and Tau in the documentation).

As for the argument CTechST, its fields determine such things as the amount of the
output (BriefOutputI) and if it is stored in the files (OutSaveI), the output file names
(OutFilePrefS), if some auxiliary information regarding the progress of the computation
is displayed on the screen (ReportI), the function used for computing the output list field
CharST (getCharST, equal to getCharSTM1u by default), and also the modifications
of the algorithm (D2SpecI, CubRegWiseI, . . . ) and the storing mechanism (ArchAllFI)
employed.

The output list resulting from compContourM1u includes some fields containing error
and warning messages (CompErrMsgS, CTechSTMsgS, ProbSizeMsgS, TauMsgS) as
well as some information about the problem size (NDQFiles, NumB, MaxLWidth) and
computational reliability (NIniNone, NIniBad, NSkipCone). It also includes the field
PosVec, which is the vector of length n describing the position of each observation with
respect to the τ -quantile (regression) region (its ith coordinate usually equals 0/1/2
if the ith observation lies in the interior/border/exterior of the region, i = 1, . . . , n).
Last but not least, it contains the important list CharST (produced, by default, by
getCharSTM1u passed to compContourM1u as the field getCharST of CTechST).

The list CharST bears some information about the preprocessing step discarding all
the redundant artificially induced directions and about the reliability of the computation
(NUESkip, NBZSkip, NAZSkip). If m ≤ 4, then it also includes the matrix field HypMat
withm+p columns where only the coefficient vectors (b>τu,a

>
τu)> with no zero coordinate

of all distinct (regression) τ -quantile hyperplanes passing through m+p−1 observations
are stored in rows after being normalized with ‖bτu‖ for Method 1, rounded, and sorted
lexicographically. Then both Method 1 and Method 2 should lead to the same HypMat
field.

Furthermore, CharST always includes two method-specific matrix fields CharMin-
Mat and CharMaxMat that respectively contain (slightly rounded) minima and max-
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ima of certain directional (regression) τ -quantile characteristics over all the (regression)
τ -quantile hyperplanes without any zero coefficient and passing through m + p− 1 ob-
servations. Each row of these matrices contains one such minimum or maximum in the
last coordinate and one of the (L2- or L∞-normalized) directions u where it is attained
in the preceding ones:

Method 1:

CharMaxMat =

u> max ‖bτu‖
u> max Ψτu

u> max
(
Ψτu/‖bτu‖

)
u> max

∥∥(a(2)
τu, . . . , a

(p)
τu)>

∥∥
u> max

(∥∥(a(2)
τu, . . . , a

(p)
τu)>

∥∥/‖bτu‖
)

u> max |a(2)
τu|

u> max
(
|a(2)
τu|/‖bτu‖

)
· · · · · ·
u> max |a(p)

τu |
u> max

(
|a(p)
τu |/‖bτu‖

)


CharMinMat =
u> min ‖bτu‖
u> min Ψτu

u> min
(
Ψτu/‖bτu‖

)
u> min

∥∥(a(2)
τu, . . . , a

(p)
τu)>

∥∥
u> min

(∥∥(a(2)
τu, . . . , a

(p)
τu)>

∥∥/‖bτu‖
)



Method 2:

CharMaxMat =

u> max Ψτu

u> max ‖µb
τu‖

u> max
∥∥(a(2)

τu, . . . , a
(p)
τu)>

∥∥
u> max |a(2)

τu|
· · · · · ·
u> max |a(p)

τu |


CharMinMat = u> min Ψτu

u> min ‖µb
τu‖

u> min
∥∥(a(2)

τu, . . . , a
(p)
τu)>

∥∥


where a(i)
τu stands for the ith component of aτu, i = 1, . . . , p. The last rows are included

only if p ≥ 2.
The users interested only in the (regression) quantile contours or their cuts will need

only HypMat. They need not modify the default function getCharSTM1u if they do not
intend to experiment with five- or six-dimensional responses when the HypMat field is
not present by default due to its expected large size. That is to say that PosVec and
CharST are included in the output list to make the file output and its processing as
unnecessary as possible.

The function evalContour can compute and evaluate a polyhedral region or contour
either from a user-defined input, or from the output of compContourM1u and compCon-
tourM2u. If the region is described by a set of inequalities, say Az ≤ b, and contains an
interior point v, then evalContour takes A, b, and (optionally) v as its input (denoted
as AAMat, BBVec and IPVec in the documentation, respectively) and produces a list
with the matrix (TVVMat) of clearly distinct contour vertices (in rows), the matrix
(TKKMat) of clearly distinct elementary contour facets (in rows, described by means of
the indices to their corner vertices in TVVMat), the number of clearly distinct contour
vertices (NumV), the number of clearly distinct contour facets (NumF), and both the
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approximate volume (Vol) and area (Area) of the region. Of course, all the output is
sensitive to the degree of rounding used for HypMat and TVVMat, and all that happens
only if evalContour runs successfully and the output Status field is equal to zero. The
information about the interior point improves the speed, accuracy, and reliability of the
computation.

All the functions are thoroughly documented in the package and have their close
counterparts in the moQuantile toolbox. The differences are nevertheless worth men-
tioning.

One of them stems from the fact that the SeDuMi optimization toolbox for MAT-
LAB and Octave has not yet been ported to R and had to be replaced. The linear
programming problems are therefore solved with function lp contained in the package
lpSolve that lacks high flexibility, does not seem to support sparse matrices and works
only with non-negative variables. The codes thus had to be changed accordingly, and
the modification might affect their performance.

Also, all the structures and cell arrays have been changed to lists although their
original names have been preserved for maximum similarity.

Next, the output list produced with evalContour contains the field Area unlike its
counterpart in Octave. It states the (approximate) surface area of the resulting contour.

Furthermore, the Octave demo examples are translated rather vaguely to remain
simple despite the different plotting tools available in R.

Finally, the separate Octave m-functions getCharSTM1u.m and getCharSTM2u.m
have become fields of CTechST produced respectively by functions getCTechSTM1u
and getCTechSTM2u so that the user could approach and modify them easily.

Both the functions should be comprehensible with the aid of [17] and [18], respectively.
The articles describe the underlying algorithms and contain all the boring technical
details too spacious to be repeated here.

In fact, all the method-specific functions can be studied side by side because they have
been intentionally written in a way highlighting their similarities. Equal line numbers
thus correspond to analogous lines (if there are any). Similarly, the lines of all R functions
should match those of the corresponding m-functions in the Octave toolbox. The desire
for maximum similarity explains why the guidelines for writing R extensions are not
followed to the last dot, especially regarding naming conventions and maximum line
length.

Potential problems with the computation are also described meticulously in the doc-
umentation. They may be caused by the bad choice of τ , bad configuration of data
points, bad scale of the data, bad expectations (e. g., by unexpected computational
time, quantile crossing, empty or unbounded (regression) contours, the absence of Hyp-
Mat in CharST for m ≥ 4), or by using the same file output names in different tasks. Of
course, the models can also be designed or interpreted erroneously. The ways to handle
all these issues are mentioned in the documentation. In particular, it is recommended
to always perturb the data with some random noise of a reasonably small magnitude
before the computation. One can also fight the troubles by means of weights, affine
equivariance, or a tiny change of τ .

The next section shows how modQR can be used.
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4. DEMONSTRATION

The package includes five demo examples ExampleA to ExampleE that focus on the
essential functionality and avoid unnecessary or fancy features in order to be short and
easy to understand. They should guide the reader through the most common appli-
cations, i. e., through the interpretation of the output resulting from evalContour and
compContourM1u or compContourM2u (ExampleA) and through the computation and
plotting of a few 2D location quantile contours (ExampleB), a 3D location quantile
contour (ExampleC), and both parametric (ExampleD) and nonparametric (ExampleE)
regression quantile contour cuts. Consequently, this section contains only a short illus-
trative interpretation of the output and a couple of motivational pictures.

The interpretation of the results generated by compContourM1u and evalContour
can be elucidated with the short output of ExampleA. It only analyses n = 7 bivariate
responses accompanied with one nontrivial regressor (n = 7, m = 2, p = 2, and τ =
0.20) for the sake of illustration as any statistical analysis of such a small data set
would be meaningless. The specific regression case leads to the following output list of
compContourM1u (where the second column actually follows after the first one):

[1] "Method No 1:"

$CTechSTMsgS
[1] ""

$ProbSizeMsgS
[1] ""

$CompErrMsgS
[1] ""

$TauMsgS
[1] ""

$CharST
$CharST$CharMaxMat

[,1] [,2] [,3]
[1,] 0.72125618 -0.69266841 1.5698165
[2,] -0.48469491 0.87468328 1.0504376
[3,] -0.01511641 0.99988574 0.9950834
[4,] 0.24441775 0.96967003 1.4791022
[5,] 0.99996117 0.00881287 1.1463858
[6,] 0.24441775 0.96967003 1.4791022
[7,] 0.99996117 0.00881287 1.1463858

$CharST$CharMinMat
[,1] [,2] [,3]

[1,] -0.6600165 -0.7512511 1.00020333
[2,] -0.6600165 -0.7512511 0.64877013
[3,] -0.6600165 -0.7512511 0.51793198
[4,] -0.9922859 -0.1239703 0.03612446
[5,] -0.4846949 0.8746833 0.03225298

$CharST$NUESkip
[1] 0

$CharST$NAZSkip
[1] 0

$CharST$NBZSkip
[1] 0

$CharST$HypMat
[,1] [,2] [,3] [,4]

[1,] -0.94177775 0.3362360 -0.69880593 0.03225298
[2,] -0.64473516 -0.7644060 -0.77413249 -0.11421401
[3,] -0.17895976 0.9838564 0.14075498 0.13219642
[4,] -0.07449065 -0.9972217 -0.60544939 -0.41437394
[5,] 0.17836987 0.9839635 -0.45315479 -0.87225069
[6,] 0.80216550 0.5971017 -0.23850321 1.14638577
[7,] 0.81276492 -0.5825918 -0.52146711 0.17995888
[8,] 0.92072087 0.3902218 0.06224986 0.60158347

$PosVec
[,1]

[1,] 1
[2,] 1
[3,] 1
[4,] 0
[5,] 2
[6,] 2
[7,] 1

$NDQFiles
[1] 1

$NumB
[1] 9

$MaxLWidth
[1] 1

$NIniNone
[1] 0

$NIniBad
[1] 0

$NSkipCone
[1] 0
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The analysed problem was evidently small in size (NumB, MaxLWidth, NDQFiles).
No warning/error messages (CTechSTMsgS, ProbSizeMsgS, CompErrMsgS, TauMsgS)
indicate that the input was correct and that the computation probably ended success-
fully. Such an expectation is further supported with the facts that there were no prob-
lems with finding the initial solution(s) starting the algorithm (NIniNone, NIniBad)
and that no almost degenerate cones have been encountered during the computation
(NSkipCone).

It is also immediately apparent that two observations lie outside the τ -quantile region,
four in its boundary, and the fourth one in its interior (PosVec).

The list field CharST collects the information regarding the (regression) τ -quantile
hyperplanes. Obviously, there were no misleading hyperplanes (NUESkip) or potentially
problematic hyperplanes with zero coefficients (NAZSkip, NBZSkip) to be excluded
from HypMat. (Such hyperplanes would routinely occur for m > 2 or in Method 2,
for example.) It also appears that eight distinct (regression) τ -quantile hyperplanes
with m + p − 1 = 3 observations have been found. That is to say that their coefficient
vectors (b>τu,a

>
τu)> are normalized with ‖bτu‖, rounded, sorted lexicographically, and

then recorded in the rows of HypMat. The first row of HypMat thus corresponds to the
hyperplane −0.94177775y1 + 0.3362360y2 + 0.69880593− 0.03225298z = 0.

Most importantly, the fields CharMaxMat and CharMinMat of CharST respectively
contain not only the maxima and minima of some statistics over all the hyperplanes of
HypMat (before their coefficients are normalized with ‖bτu‖), but also the directions
when the extremes are attained (one direction for each extreme). For example, the first
row of CharMaxMat reveals that max ‖bτu‖

.= 1.5698 in Method 1 corresponds (e. g.)
to u

.= (0.7213,−0.6927)>.
The fields of the output list of evalContour follow (actually in one column):

$Status
[1] 0

$Vol
[1] 0.4213127

$NumF
[1] 10

$NumV
[1] 7

$TVVMat
[,1] [,2] [,3]

[1,] -0.5768124 0.3290967 -0.7728145
[2,] -0.3984807 0.4661213 -0.4109964
[3,] -0.2681254 0.0276619 -0.4958983
[4,] 0.2290980 0.9483334 0.8623007
[5,] 0.3315653 0.2822571 0.5870709
[6,] 0.8351256 0.1756013 -0.8883929
[7,] 0.8634514 0.4400569 1.0414408

$TKKMat
[,1] [,2] [,3]

[1,] 6 4 1
[2,] 6 4 7
[3,] 5 4 7
[4,] 5 6 7
[5,] 2 4 1
[6,] 2 5 4
[7,] 3 6 1
[8,] 3 5 6
[9,] 3 2 1

[10,] 3 2 5

$Area
[1] 4.726156

They reveal some properties of the resulting (regression) τ -quantile region after its
successful analysis (Status). It has (approximate) volume 0.421 (Vol), (approximate)
surface area 4.726 (Area), 7 vertices (NumV), and 10 facets (NumF). The vertices
are stored in the rows of TVVMat after being rounded and sorted lexicographically.
The coordinates of the first vertex are thus roughly equal to (−0.577, 0.329,−0.773)>.
The facets are stored in the rows of TKKMat. The ninth facet is thus defined by its
corner vertices in the first three rows of TVVMat.
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The code of ExampleA also shows how HypMat and PosVec might be used to find the
input parameters AAMat, BBVec, and IPVec of evalContour, and how the regression
τ -quantile contour can be plotted.
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Fig. 1. The figure shows three bivariate location τ -quantile contours,

τ = 0.3579, 0.1357, and 0.0135, obtained from n = 1357 (red) independent

random points coming from the model (Y1, Y2)> ∼ U([−1, 1]2). The

contours were computed in three different ways leading to the same

graphical output (blue, green, and white). Check ExampleB for all the

technical details.
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Fig. 2. Given τ = 0.35, x0 = −0.8,−0.6, . . . , 0.8, and n = 1 999 (red)

bivariate random points coming from the model (Y1, Y2)> = (X,X2)> + ε

with independent X ∼ U([−1, 1]) and ε ∼ U([−1, 1]2), this figure shows

(green) x0-cuts through the local constant (i. e., nonparametric) regression

τ -quantile regions obtained for each x0 with the aid of normal kernel

weights corresponding to bandwidth 0.4. The cuts lighten with increasing

x0 and the points darken with decreasing regressor values. Check ExampleE

for all the technical details.
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The other examples are also worth consulting. They employ only the first method
as both Method 1 and Method 2 should lead to the same graphical output. The sec-
ond method would be used if one changed compContourM1u to compContourM2u and
getCTechSTM1u to getCTechSTM2u everywhere in the codes. The graphical output
generated by ExampleB and ExampleE is also included here in Figures 1 and 2 to con-
vince the reader to give the multiple-output quantile regression a try. Figure 1 presents
a bunch of 2D location quantile contours that sort the observations from the center
outwards and identify possible outliers. They have been obtained in three different
ways: (a) directly from the original data (green), (b) by using weights and replacing
the observations surely in the interior of the computed quantile region with a single
pseudo-observation (blue), and (c) by changing τ and deleting the observations surely
in the interior of the computed quantile region (white). The last two ways (mentioned
in [17] and [18]) compute the (nested) contours from the innermost one outwards.

Figure 2 shows the τ -quantile cuts through several fixed regression values that were
obtained by means of the locally constant regression of [8]. They strongly (and rightly)
suggest that the observations follow a homoscedastic model with a quadratic trend.

5. SPEED COMPARISON

It may be interesting to know how the R package (modQR) compares with the Octave
toolbox (moQuantile) in terms of the computational speed. Table 1 shows the average
execution times of default Method 1 (or, compContourM1u) based on 10 runs for

τ
0.010 0.025 0.05

m p n Octave R Octave R Octave R
2 1 249 0.342 0.092 0.560 0.170 0.638 0.235

2499 2.103 1.962 3.699 2.790 5.835 3.880
2 249 0.343 0.086 0.510 0.190 0.760 0.266

2499 2.407 2.234 4.315 3.200 6.572 4.456
4 249 0.432 0.102 0.672 0.241 0.967 0.344

2499 3.313 2.814 5.593 4.247 8.831 6.123
8 249 0.666 0.189 0.895 0.315 1.303 0.484

2499 4.635 4.132 8.318 6.420 13.106 9.448
3 1 49 2.528 1.731 5.696 5.426 11.717 10.906

249 23.710 23.730 101.353 119.872 274.294 308.170
2 49 4.139 3.440 5.222 4.546 12.182 11.567

249 28.673 33.863 115.514 137.929 329.735 380.401
4 49 9.800 9.117 9.882 9.307 15.835 15.333

249 41.382 47.746 166.286 195.949 464.829 525.607

Tab. 1. Average execution times of default Method 1 for uniformly

distributed responses and (non-intercept) regressors, obtained on a

computer with processor Intel I7-2600 3400GHz and 16GB RAM.
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uniformly distributed responses and regressors (except for the first unit regressor) and
for some representative values of τ , m, n, and p. The codes were executed on a decent
computer (processor Intel I7-2600 3400Ghz, 16GB RAM) with Windows 7, Octave 3.8.2
and R 3.3.1.

Apparently, modQR is faster than moQuantile for small problems and loses its supe-
riority as the problem size grows, at least within the scope of this simulation study.
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Miroslav Šiman, Institute of Information Theory and Automation, The Czech Academy
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