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DIVERGENCE MEASURE BETWEEN FUZZY SETS
USING CARDINALITY

Vladiḿır Kobza

In this paper we extend the concept of measuring difference between two fuzzy subsets
defined on a finite universe. The first main section is devoted to the local divergence measures.
We propose a divergence measure based on the scalar cardinalities of fuzzy sets with respect
to the basic axioms. In the next step we introduce the divergence based on the generating
function and the appropriate distances. The other approach to the divergence measure is
motivated by class of the rational similarity measures between fuzzy subsets expressed using
some set operations (namely intersection, complement, difference and symmetric difference)
and their scalar cardinalities. Finally, this concept is extended into the fuzzy cardinality in the
last part. Some open problems omitted in this paper are discussed in the concluding remarks
section.
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1. INTRODUCTION, BASIC CONCEPTS

A way of measuring difference between two fuzzy sets by means of a function has been
proposed in [9, 10]. This function is called a divergence. The measure of the difference
of two fuzzy subsets is defined axiomatically in Definition 1.1.

The following general notation will be used. The universal set we will denote by X,
where X 6= ∅. We define the membership function µA as the map µA : X → [0, 1] such
that for each element x ∈ X the membership degree µA(x) is assigned. The pair (X,µA)
is said to be a fuzzy set.

The family of all fuzzy subsets defined on the universe X will be denoted by the
symbol F(X). More formally,

F(X) = {µA | µA : X → [0, 1]} = [0, 1]X .

Each fuzzy set A is uniquely determined by its membership function µA and vice
versa. Therefore, instead of µA(x) we will write shortly A(x) for a membership degree
of an element x ∈ X to the fuzzy set A.
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Also the universal set X, the empty set ∅ and the inclusion relation ⊆ will be defined
as follows:

A = X ⇔ A(x) = 1 for all x ∈ X,
A = ∅ ⇔ A(x) = 0 for all x ∈ X,
A ⊆ B ⇔ A(x) ≤ B(x) for all x ∈ X.

We recall now that the intersection (union) of two fuzzy subsets is defined by means
of a triangular norm T (triangular conorm S) as a function T (S) : [0, 1]× [0, 1]→ [0, 1]
which satisfies the following properties - commutativity, monotonicity, associativity and
boundary condition T (x, 1) = x and S(x, 0) = x, respectively. In this sense we define
(A ∩B)(x) = T (A(x), B(x)) and (A ∪B)(x) = S(A(x), B(x)) for all x ∈ X.

Some important examples of t-norms are:

• the minimum t-norm: TM (a, b) = min{a, b}, for all a, b ∈ [0, 1],

• the product t-norm: TP (a, b) = a · b, for all a, b ∈ [0, 1],

• the  Lukasiewicz t-norm: TL(a, b) = max{a+ b− 1, 0}, for all a, b ∈ [0, 1],

• the drastic t-norm:

TD(a, b) =
{

min {a, b} , if max {a, b} = 1,
0, otherwise.

For these basic t-norms, it holds that TD ≤ TL ≤ TP ≤ TM . In fact, for any t-norm
T it is fulfilled that TD ≤ T ≤ TM .

We will use a general notation for the triple (X,T, S) in the following text, where
X 6= ∅ and the t-norm T and t-conorm S are dual to each other, i.e. for all a, b ∈ [0, 1]
the equation T (a, b) = 1− S(1− a, 1− b) is fulfilled. The most widely used example is
the triple (X,TM , SM ) with the minimum t-norm TM and the maximum t-conorm SM .
More details about triangular norms and their applications in fuzzy set operations are
described in [6].

Definition 1.1. A map D : F(X) × F(X) → R is a divergence measure if and only if
the function D satisfies the following conditions:

(1) for all A ∈ F(X); D(A,A) = 0;

(2) for all A,B ∈ F(X); D(A,B) = D(B,A);

(3) for all A,B,C ∈ F(X); max {D(A ∪ C,B ∪ C), D(A ∩ C,B ∩ C)} ≤ D(A,B).

Obviously any divergence D is a nonnegative and symmetric function and it becomes
zero if the two fuzzy subsets coincide. Natural requirement is that the value of divergence
measure is smaller if the two fuzzy subsets to be compared become more similar. This
similarity can be formulated by means of a union or an intersection of these sets with
another fuzzy set C which is expressed by the third condition.
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We could replace the condition (1) by stronger one: for all A,B ∈ F(X);D(A,B) =
0⇔ A = B. However, we do not require it in our considerations.

Further in the text we will consider only the case where the universal set X is finite.
In sense of the third condition of divergence measure if we add a singleton {x} to the

fuzzy subsets A,B, we get the following inequality:

D(A ∪ {x} , B ∪ {x}) ≤ D(A,B).

Locality is the most important property of some divergence measures which allows
us to compute the divergence point-by-point. The definition of local divergence measure
was introduced in [9] as follows.

Definition 1.2. A divergence measure D is local if for all A,B ∈ F(X) and for all
x ∈ X we have:

D(A,B)−D(A ∪ {x} , B ∪ {x}) = h(A(x), B(x)),

where h is a function from [0, 1]× [0, 1] to R.

Theorem 1.3. (Representation Theorem) Let (X,T, S) be a triple with X a finite
universe and T and S any t-norm and t-conorm, respectively. Let D be a divergence
associated to X. D is local if and only if

D(A,B) =
∑
x∈X

h(A(x), B(x)),

where h is a map from [0, 1]×[0, 1] into R such that the following conditions are satisfied:

(1) for all a ∈ [0, 1]; h(a, a) = 0;

(2) for all a, b ∈ [0, 1]; h(a, b) = h(b, a);

(3) for all a, b, c ∈ [0, 1]; h(a, b) ≥ max {h(T (a, c), T (b, c)), h(S(a, c), S(b, c))}.

The proof can be found in [7].

We get a particular form of local divergence measure D if the function h will be
constructed by means of a suitable distance in [0, 1].

Example 1.4. For any pair of fuzzy sets in X we define the function D using the
Hamming distance as follows:

D(A,B) =
∑
x∈X
|A(x)−B(x)|.

According to [7] the map D is a local divergence measure, if we work on (X,TM , SM ),
(X,TP , SP ) or (X,TL, SL). However, the map D is not a divergence measure since
(X,TD, SD) to be considered.
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Now we introduce one example of divergence measure which is not local.

Example 1.5. Let us consider the map D defined as follows:

D(A,B) =
{

0, if A = B,
1, if A 6= B.

Then D is a divergence measure, but is not local. More details are discussed in [7].

2. CONCEPT OF DIVERGENCE MEASURE BASED
ON SCALAR CARDINALITY

The concept of fuzzy cardinality was discussed by Dan Ralescu in [11]. Wygralak [13]
introduced an axiomatic theory of scalar cardinality of fuzzy sets. J. Casasnovas and
J. Torrens have given an axiomatic approach to fuzzy cardinalities of finite fuzzy sets
in [2]. Our approach to a divergence measure will be based on both of them.

We recall the following definition from [11].

Definition 2.1. Let X be a universal set, let a ∈ [0, 1] and x ∈ X. A fuzzy singleton is
a finite fuzzy set over X (denoted by xa) such that:

xa(y) =
{
a, if y = x,
0, if y 6= x.

Definition 2.2. A mapping | · | : F(X) → [0,∞[ is called a scalar cardinality of fuzzy
set if the following conditions are satisfied:

(1) Coincidence: for all x ∈ X; |xa| = 1 if and only if a = 1;

(2) Monotonicity: for all a, b ∈ [0, 1], x, y ∈ X; a ≤ b⇒ |xa| ≤ |yb|;

(3) Additivity: for all A,B ∈ F(X); Supp(A) ∩ Supp(B) = ∅ ⇒ |A ∪B| = |A|+ |B|.

The following proposition is crucial for our purposes. The proof can be found in [15].

Proposition 2.3. A mapping | · | : F(X)→ [0,∞[ is a scalar cardinality if and only if
for each A ∈ F(X):

|A| =
∑

x∈Supp(A)

f (A(x)) ,

where f : [0, 1]→ [0, 1] is a function for which the following conditions are fulfilled:

(a) Boundary conditions: f(0) = 0, f(1) = 1;

(b) Monotonicity: for all a, b ∈ [0, 1]; a ≤ b⇒ f(a) ≤ f(b).

In case of crisp finite sets the definition of cardinality leads to the classical formulation
“number of elements” (having the membership values equal to 1).
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2.1. Distance-based divergence measure

Our aim is to extend the previous approach to measure a difference of two fuzzy subsets
discussed in [9] and [10] with new one based on cardinality. Motivation to it comes from
real life situations as far as we want to compare two real objects on the basis of required
criteria. Divergence measure given by suitable distance is well-founded however in the
same situation it does not give us a complete information.

Let A,B ∈ F(X). We assume the following membership degrees of elements x, y ∈
X : A(x) = 0.47, B(x) = 0.57, A(y) = 0.52, B(y) = 0.62. We have the following
question: What is a standard distance between the values A(x), B(x) and A(y), B(y)?
The answer should be 0.10 in both cases. For some reasons we can say that the elements
having the membership degrees less than 0.5 are not significant. The definition of scalar
cardinality allows us to modify by means of a function f as follows: we put f(A(x)) = 0
if A(x) < 0.5. Now we see that the elements x, y ∈ X become more different in this
sense.

Next, the definition of a distance for fuzzy sets will be introduced.

Definition 2.4. A map d : F(X)×F(X)→ R is a distance if and only if the function
d satisfies the following conditions:

(1) for all A,B ∈ F(X); d(A,B) ≥ 0 and d(A,B) = 0 if and only if A = B;

(2) for all A,B ∈ F(X); d(A,B) = d(B,A);

(3) for all A,B,C ∈ F(X); d(A,C) ≤ d(A,B) + d(B,C).

The divergences and distances are not related in general. One example of the distance,
which is not a divergence measure, will be shown in the following Example 2.5. More
general example can be found in [8].

Example 2.5. Consider the map d : F(X)×F(X)→ R defined by

d(A,B) =


0, if A = B,
1, if A 6= B, but A = X or B = X,
0.5, otherwise.

Let us prove that d is a distance. Positivity, the identity of indiscernibles and symmetry
trivially hold. It remains to show the triangular inequality property. Let A,B,C ∈
F(X).

• If d(A,C) = 0, the inequality trivially holds.

• If d(A,C) = 0.5, then A 6= C, and therefore either B 6= A or B 6= C, and
consequently d(A,C) = 0.5 ≤ d(A,B) + d(B,C).

• Finally, if d(A,C) = 1, we can assume, without loss of generality, that A = X.
If B = A, then d(A,B) = 0 and d(B,C) = 1, and therefore d(A,C) = 1 =
d(A,B)+d(B,C). Otherwise, if B 6= A, then d(A,B) = 1, and therefore d(A,C) =
1 ≤ d(A,B) + d(B,C).
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We conclude that d(A,C) ≤ d(A,B)+d(B,C) in all cases. Thus, the map d is a distance.
However, the map d is not a divergence measure. To see this, consider the universe

X = {x1, x2} and the fuzzy subsets A and B defined as:

A = {(x1, 1), (x2, 0)} , B = {(x1, 0), (x2, 1)} .

It holds that d(A,B) = 0.5. If we consider C = B, then A ∪ C = A ∪ B = X, and
therefore:

d(A ∪ C,B ∪ C) = d(X,B) = 1 > 0.5 = d(A,B).

Thus, the map d is not a divergence measure.

Remark 2.6. It is necessary to clarify the notion of a suitable distance. As we have
seen in Example 2.5, the set of distances and divergences are not comparable in general
since neither concept of these can imply the other one. The distances which are also the
divergence measures, are very important for our work and only this class of distances
in the further text will be considered. Both of the divergence measures introduced in
Example 1.4 and Example 1.5 are also the distances, simultaneously.

Let d : F(X) × F(X) → R be a distance and A,B ∈ F(X). Then we will define
pointwise for each x ∈ X as follows:

d(A,B) = d0(A(x), B(x)),

where d0 defined on [0, 1]× [0, 1] is a restricted distance of the original one d.

Proposition 2.7. Let A,B ∈ F(X) and | · | denotes a scalar cardinality. Let the map
D : F(X)×F(X)→ R be defined in the following way:

D(A,B) = |Φ (A,B)| ,

where Φ : F(X)×F(X)→ F(X) is a function defined axiomatically as:

A(x)×B(x) Φ7−→ C(x),

in which C(x) = d0(A(x), B(x)) and d0 : [0, 1] × [0, 1] → [0, 1] is a suitable distance
(see Remark 2.6).

Then the map D is a divergence measure between fuzzy sets A and B. We say that
the divergence measure D is generated by distance d0.

P r o o f . Let us check that D is a divergence measure. If two fuzzy subsets A,B are
the same, then Φ(A(x), B(x)) = 0 and f(0) = 0, and therefore the divergence between
A and B is zero. A reverse implication is not requested. It is evident that D is also
commutative, since:

D(A,B) = |Φ(A,B)| =
∑
x∈X

f (Φ(A(x), B(x))) =
∑
x∈X

f (Φ(B(x), A(x))) = D(B,A).
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If the fuzzy subsets A and B become more similar in sense of union or intersection,
then the value of divergence will decrease and the inequalities D(A ∪ C,B ∪ C) ≤
D(A,B), D(A ∩ C,B ∩ C) ≤ D(A,B) are fulfilled since we have used only special class
of distances (see Remark 2.6) and monotonicity of f from Proposition 2.3. �

We have introduced the class of distance-based divergence measure. It is obvious
that not all distances can be considered and a utility of the concept distance-based
divergences must be restricted to the special class of distances.

It is natural to ask if the distance-based divergence have a local property or not. The
result is obtained in the following proposition.

Proposition 2.8. Let D be a divergence measure which is generated by distance d0.
Then D has a local property.

P r o o f . The divergence D can be rewritten by Proposition 2.3 and Proposition 2.7 as
follows:

D(A,B) = |Φ(A,B)| =
∑
x∈X

f (Φ(A(x), B(x))) =
∑
x∈X

f (d0(A(x), B(x))) .

We can see that the divergence measure D can be expressed pointwise as a sum of
suitable distances d0. Each such distance d0 satisfies all conditions for the function h
from the Definition 1.2 and properties of local divergence given in Theorem 1.3. To
show it, the distance d0 takes the value 0 if both coordinates are the same. The map
d0 is also symmetric. The third axiom of divergence is fulfilled since we have considered
only restricted class of divergence-generating distances d0. Applying the function f from
Proposition 2.3 all properties of the function h (see Representation Theorem 1.3) are
kept without any change, more formally, for each x ∈ X the following conditions hold:

(1) f(Φ(A(x), A(x))) = f(0) = 0,

(2) f(Φ(A(x), B(x))) = f(Φ(B(x), A(x))),

(3) f(Φ((A∪C)(x), (B∪C)(x))) ≤ f(Φ(A(x), B(x))) and f(Φ((A∩C)(x), (B∩C)(x))) ≤
f(Φ(A(x), B(x))).

Then we can define h(a, b) = f(Φ(a, b)) for all a, b ∈ [0, 1]. It allows us to write:

D(A,B) = |Φ(A,B)| =
∑
x∈X

h(A(x), B(x)).

Thus, the divergence D has a local property. �

Example 2.9. Let X = {x1, x2, x3} and A,B ∈ F(X). Consider the following mem-
bership degrees: A(x1) = 0.2, A(x2) = 0.8, A(x3) = 0.7, B(x1) = 0.3, B(x2) = 0.3,
B(x3)= 0.3 and the functions f(x) = x; d0(x, y) = |x− y|. Then:

D(A,B) = |Φ(A,B)| =
∑
x∈X

f (d0(A(x), B(x))) =
∑
x∈X
|A(x)−B(x)| = 0.1+0.5+0.4 = 1.0.
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2.2. Rational divergence measure

We have shown some other ways based on scalar cardinality and distances to express
divergence measure D(A,B) between fuzzy subsets A and B in the previous paragraph,
while we still do not have more information about the function Φ. We have restricted
only to known examples of divergence-generating distances already. Motivated by [3]
and [4] we propose a class of the rational divergence measure fulfilling the conditions
(1) – (3) for the function Φ (|A|, |B|).

We recall that the binary fuzzy relation R defined on X×X is a T -equivalence if and
only if it satisfies the following properties for each x, y, z ∈ X and the t-norm T :

(a) reflexivity: R(x, x) = 1,

(b) symmetry: R(x, y) = R(y, x),

(c) T -transitivity: T (R(x, y), R(y, z)) ≤ R(x, z).

Sometimes the reflexivity condition can be replaced by weaker one named local reflex-
ivity: R(x, x) ≥ R(x, y) for fixed x ∈ X and each y ∈ X.

In [3] the following class of rational similarity measures is proposed:

S(A,B) =
a.αA,B + b.ωA,B + c.δA,B + d.νA,B
a′.αA,B + b′.ωA,B + c′.δA,B + d′.νA,B

,

where:

αA,B = min {|A \B|, |B \A|},
ωA,B = max {|A \B|, |B \A|},

δA,B = |A ∩B|,
νA,B = |(A ∪B)c|,

and a, b, c, d, a′, b′, c′, d′ ∈ {0, 1}.

The reflexive similarity measures can be identified by the condition c′ = c, d′ = d.
Some of them have some special properties. The similarity measure R is self-com-

plementary if and only if c = d and c′ = d′. For each similarity measure we can create
a complementary similarity measure (denoted by Rc) by changing the coefficients c↔ d
and c′ ↔ d′, analogously, where Rc(A,B) = R(Ac, Bc). It is true that Rc = R if and
only if R is self-complementary.

In [3] an explicit expression of 19 rational similarity measures is provided, while
16 of them are reflexive. Only the 10 reflexive rational similarity measures are self-
complementary, too.

Each similarity measure was reviewed and for each of them the validity of some
important properties has been verified such as boundary conditions, monotonicity and
T -transitivity:

(a) the first boundary condition: B1 : R(A, ∅) = |Ac|
n ,

(b) the second boundary condition: B2 : R(A,X) = |A|
n ,

(c) the third boundary condition: B3 : R(A,Ac) = 0,
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(d) the monotonicity condition: Cθ : R(A ∪B,A ∩B) θ R(A,B),

(e) the transitivity condition: T (R(A,B), R(B,C)) ≤ R(A,C) with the t-norm T as
strong as possible.

Altogether 28 similarity measures were verified and 13 of them are T -transitive for at
least one t-norm T ∈ {TD, TL, TP , TM} (including also nonreflexive and complementary
similarity measures) according to [3]. For all 9 reflexive T -transitive similarity mea-
sures were selected which are also T -equivalences. The reflexive T -transitive measures
discussed in [1] and [3] are suitable candidates for fuzzification.

Since the denominator of the following rational measures can not be equal zero, some
restrictions must be considered. In the following Example 2.10 we will consider measures
only between two fuzzy sets A and B for which the conditions:

(i) A 6= ∅ or B 6= ∅ for the measures R1, R3,

(ii) A 6= ∅ and B 6= ∅ for the measure R2,

are fulfilled.

Example 2.10. We show four examples of the reflexive rational similarity measures:

(a) R1(A,B) = |A∩B|
max{|A|,|B|} .

The similarity measure R1 fulfills the boundary conditions B2, B3, the monotonic-
ity condition C≤ and it is transitive for the  Lukasiewicz t-norm TL (and for any
weaker one).

(b) R2(A,B) = |A∩B|
min{|A|,|B|} .

The similarity measure R2 fulfills only the boundary condition B3, the mono-
tonicity condition C≥ and it is not transitive for any t-norm T .

(c) R3(A,B) = |A∩B|
|A∪B| .

The similarity measure R3 (Jaccard coefficient) fulfills the boundary conditions
B2, B3, the monotonicity condition C= and it is transitive for the  Lukasiewicz
t-norm TL.

(d) R4(A,B) = |(A∆B)c|
n .

The similarity measure R4 (Simple matching coefficient) fulfills all the bound-
ary conditions B1, B2, B3, the monotonicity condition C= and it is transitive for
the  Lukasiewicz t-norm TL.

The measure R2 is not a T -equivalence.

We have studied all 9 rational similarity measures which are also T -equivalences. All
of them have been changed so that the conditions (1) – (3) for the divergence measure
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are fulfilled. In the following text we introduce 9 rational measures D∗(A,B) derived
from T -equivalences, which will be fuzzified in the second step.

The explicit expression of this measures based on cardinalities are the following:

(1) D∗1(A,B) = max{|A\B|,|B\A|}
|A∩B| , where A ∩B 6= ∅,

(2) D∗2(A,B) = max{|A\B|,|B\A|}
|(A∆B)c| , where (A∆B)c 6= ∅,

(3) D∗3(A,B) = |A∆B|
|A∩B| , where A ∩B 6= ∅,

(4) D∗4(A,B) = |A∆B|
|(A∆B)c| , where (A∆B)c 6= ∅,

(5) D∗5(A,B) = max{|A|,|B|}−min{|A|,|B|}
min{|A|,|B|} , where A 6= ∅ and B 6= ∅,

(6) D∗6(A,B) = max{|A\B|,|B\A|}
min{|A\B|,|B\A|} , where A \B 6= ∅ and B \A 6= ∅,

(7) D∗7(A,B) = max{|A\B|,|B\A|}
min{|A|,|B|} , where A 6= ∅ and B 6= ∅,

(8) D∗8(A,B) = max{|A\B|,|B\A|}
min{|(A\B)c|,|(B\A)c|} , where A \B 6= ∅ and B \A 6= ∅,

(9) D∗9(A,B) = 0.

The introduced rational measures based on the cardinalities quantify the difference
between the sets only in the crisp case. There is a question how the measures could
be fuzzified. Some of the ideas are outlined in [1]. For our purposes we do it in the
following way.

Moreover, only the parametric family of Frank t-norms with parameter p, for which
0 ≤ p ≤ +∞, will be considered:

TFp (a, b) =


TM (a, b) = min {a, b} , if p = 0,
TP (a, b) = a.b, if p = 1,
TL(a, b) = max {a+ b− 1, 0} , if p = +∞,

logp
(

1 + (pa−1).(pb−1)
p−1

)
, otherwise.

Let A,B ∈ F(X), let T be a t-norm from the family of Frank t-norms and S be a t-
conorm such that T, S are dual. The complement of the set A we denote by Ac. For the
membership values A(xi), B(xi), C(xi) we will write simply ai,bi,ci, respectively, where
i ∈ {1, . . . , n} and |X| = n. Then we define the following:

|A ∩B| =
n∑
i=1

T (ai, bi),

|A ∪B| =
n∑
i=1

S(ai, bi) =
n∑
i=1

(ai + bi − T (ai, bi)) ,
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|A \B| = |A| − |A ∩B| =
n∑
i=1

(ai − T (ai, bi)) ,

|B \A| = |B| − |A ∩B| =
n∑
i=1

(bi − T (ai, bi)) ,

|A∆B| = |A ∪B| − |A ∩B| = |A \B|+ |B \A| =
n∑
i=1

(ai + bi − 2T (ai, bi)) ,

|Ac| = |X| − |A| = n−
n∑
i=1

ai =
n∑
i=1

(1− ai) .

In the following proposition we give an explicit expression of the divergence measures
D1 −D9, which are adapted from the previous measures D∗1 −D∗9 and also applicable
in a fuzzy case. The divergence D9 is quite trivial, however, we leave it on the list.

Proposition 2.11. Let (X,T, S) be a triple such that |X| = n, T = TM and S = SM .
Then the maps Di : F(X)×F(X)→ R for i ∈ {1, . . . , 9} are divergence measures.

Moreover, some special cases assigning zero in the denominators of D1−D8 for some
triple (X,T, S) depending on the parameter p from Frank’s family of t-norms TFp must
be excluded, the complete list of these conditions is shown in Tables 1 – 3.

(D1)

D1(A,B) =
max {

∑n
i=1 (ai − T (ai, bi)) ,

∑n
i=1 (bi − T (ai, bi))}∑n

i=1 T (ai, bi)
,

(D2)

D2(A,B) =
max {

∑n
i=1 (ai − T (ai, bi)) ,

∑n
i=1 (bi − T (ai, bi))}∑n

i=1 (1− ai − bi + 2T (ai, bi))
,

(D3)

D3(A,B) =
∑n
i=1 (ai + bi − 2T (ai, bi))∑n

i=1 T (ai, bi)
,

(D4)

D4(A,B) =
∑n
i=1 (ai + bi − 2T (ai, bi))∑n

i=1 (1− ai − bi + 2T (ai, bi))
,

(D5)

D5(A,B) =
|
∑n
i=1 ai −

∑n
i=1 bi|

min {
∑n
i=1 ai,

∑n
i=1 bi}

,

(D6)

D6(A,B) =
max {

∑n
i=1 (ai − T (ai, bi)) ,

∑n
i=1 (bi − T (ai, bi))}

min {
∑n
i=1 (ai − T (ai, bi)) ,

∑n
i=1 (bi − T (ai, bi))}

,
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(D7)

D7(A,B) =
max {

∑n
i=1 (ai − T (ai, bi)) ,

∑n
i=1 (bi − T (ai, bi))}

min {
∑n
i=1 ai,

∑n
i=1 bi}

,

(D8)

D8(A,B) =
max {

∑n
i=1 (ai − T (ai, bi)) ,

∑n
i=1 (bi − T (ai, bi))}

min {
∑n
i=1 (1− ai + T (ai, bi)) ,

∑n
i=1 (1− bi + T (ai, bi))}

,

(D9)
D9(A,B) = 0.

p = 0
D1(A,B) (∀i) min {ai, bi} = 0
D2(A,B) (∀i)(min {ai, bi} = 0 and max {ai, bi} = 1)
D3(A,B) (∀i) min {ai, bi} = 0
D4(A,B) (∀i)(min {ai, bi} = 0 and max {ai, bi} = 1)
D5(A,B) A = ∅ or B = ∅
D6(A,B) A ⊆ B or B ⊆ A
D7(A,B) A = ∅ or B = ∅
D8(A,B) (A = X and B = ∅) or (A = ∅ and B = X)
D9(A,B) −

Tab. 1. Restriction conditions for rational divergence measures for

p = 0 to be excluded.

0 < p <∞
D1(A,B) (∀i) min {ai, bi} = 0
D2(A,B) (∀i)(min {ai, bi} = 0 and max {ai, bi} = 1)
D3(A,B) (∀i) min {ai, bi} = 0
D4(A,B) (∀i)(min {ai, bi} = 0 and max {ai, bi} = 1)
D5(A,B) A = ∅ or B = ∅
D6(A,B) (∀i)(ai > 0⇒ bi = 1) or (∀i)(bi > 0⇒ ai = 1)
D7(A,B) A = ∅ or B = ∅
D8(A,B) (A = X and B = ∅) or (A = ∅ and B = X)
D9(A,B) −

Tab. 2. Restriction conditions for rational divergence measures for

0 < p <∞ to be excluded.



430 V. KOBZA

p =∞
D1(A,B) (∀i) ai + bi ≤ 1
D2(A,B) (∀i) ai + bi = 1
D3(A,B) (∀i) ai + bi ≤ 1
D4(A,B) (∀i) ai + bi = 1
D5(A,B) A = ∅ or B = ∅
D6(A,B) (∀i)(ai > 0⇒ bi = 1) or (∀i)(bi > 0⇒ ai = 1)
D7(A,B) A = ∅ or B = ∅
D8(A,B) (A = X and B = ∅) or (A = ∅ and B = X)
D9(A,B) −

Tab. 3. Restriction conditions for rational divergence measures for

p =∞ to be excluded.

P r o o f . In the first step, we check conditions for which the measures Di having zero
in the denominator, and therefore these fuzzy sets A,B must be excluded. For example,
take D1.

n∑
i=1

TFp (ai, bi) = 0⇔ TFp (ai, bi) = 0 for all i ∈ {1, . . . , n} .

• for p = 0: TFp = TM and TFp (ai, bi) = 0⇔ min {ai, bi} = 0,

• for p = 1: TFp = TP and TFp (ai, bi) = 0⇔ ai · bi = 0⇔ min {ai, bi} = 0,

• for 0 < p < ∞, p 6= 1: TFp (ai, bi) = 0 ⇔ logp
(

1 + (pai−1).(pbi−1)
p−1

)
= 0 ⇔

(pai − 1).(pbi − 1) = 0⇔ pai = 1 or pbi = 1⇔ ai = 0 or bi = 0⇔ min {ai, bi} = 0,

• for p =∞: TFp = TL and TFp (ai, bi) = 0⇔ max {ai + bi − 1, 0} = 0⇔ ai + bi ≤ 1.

The other cases can be done similarly, the results are scheduled in Tables 1 – 3.

In the second step, we must verify that the maps D1 −D9 are really divergences for
a triple (X,T, S), where T = TM and S = SM . It is evident that Di(A,B) = 0 if and
only if A = B and Di(A,B) = Di(B,A) for all i ∈ {1, . . . , 9}. It remains to show the
third condition from Definition 1.1. We will do it for the maps D1 and D5, the other
can be proven in similar way. Obviously, the map D9 is a divergence. Moreover, it is
named as a minimum divergence measure.

To show that the map D1 is a divergence we can divide it into 6 cases.

(i) If ai ≤ bi ≤ ci, then T (ai, ci)− T (T (ai, ci), T (bi, ci)) = ai − T (ai, bi)
and T (T (ai, ci), T (bi, ci)) = T (ai, bi).
Therefore T (ai,ci)−T (T (ai,ci),T (bi,ci))

T (T (ai,ci),T (bi,ci))
= ai−T (ai,bi)

T (ai,bi)
.
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(ii) If ai ≤ ci < bi, then T (ai, ci) − T (T (ai, ci), T (bi, ci)) = ai − T (ai, ci) = ai − ai =
0 = ai − T (ai, bi) and T (T (ai, ci), T (bi, ci)) = T (ai, ci) = ai = T (ai, bi).
Therefore T (ai,ci)−T (T (ai,ci),T (bi,ci))

T (T (ai,ci),T (bi,ci))
= ai−T (ai,bi)

T (ai,bi)
.

(iii) If ci < ai ≤ bi, then T (ai, ci)−T (T (ai, ci), T (bi, ci)) = ci−T (ci, ci) = ci−ci = 0 =
ai − ai = ai − T (ai, bi) and T (T (ai, ci), T (bi, ci)) = T (ci, ci) = ci ≤ ai = T (ai, bi).
Therefore T (ai,ci)−T (T (ai,ci),T (bi,ci))

T (T (ai,ci),T (bi,ci))
= 0 = ai−T (ai,bi)

T (ai,bi)
.

(iv) If bi < ai ≤ ci, then T (ai, ci)− T (T (ai, ci), T (bi, ci)) = ai − T (ai, bi)
and T (T (ai, ci), T (bi, ci)) = T (ai, bi).
Therefore T (ai,ci)−T (T (ai,ci),T (bi,ci))

T (T (ai,ci),T (bi,ci))
= ai−T (ai,bi)

T (ai,bi)
.

(v) If bi ≤ ci < ai, then T (ai, ci) − T (T (ai, ci), T (bi, ci)) = ci − T (ci, bi) = ci − bi ≤
ai − bi = ai − T (ai, bi) and T (T (ai, ci), T (bi, ci)) = T (ci, bi) = bi = T (ai, bi).
Therefore T (ai,ci)−T (T (ai,ci),T (bi,ci))

T (T (ai,ci),T (bi,ci))
≤ ai−T (ai,bi)

T (ai,bi)
.

(vi) If ci < bi < ai, then T (ai, ci)−T (T (ai, ci), T (bi, ci)) = ci−T (ci, ci) = ci−ci = 0 =
ai − ai = ai − T (ai, bi) and T (T (ai, ci), T (bi, ci)) = T (ci, ci) = ci ≤ bi = T (ai, bi).
Therefore T (ai,ci)−T (T (ai,ci),T (bi,ci))

T (T (ai,ci),T (bi,ci))
= 0 = ai−T (ai,bi)

T (ai,bi)
.

We have shown the inequality

T (ai, ci)− T (T (ai, ci), T (bi, ci))
T (T (ai, ci), T (bi, ci))

≤ ai − T (ai, bi)
T (ai, bi)

in all six cases. Similarly can be proved the inequality

T (bi, ci)− T (T (ai, ci), T (bi, ci))
T (T (ai, ci), T (bi, ci))

≤ bi − T (ai, bi)
T (ai, bi)

and hence the following relationship is fulfilled:

max {T (ai, ci)− T (T (ai, ci), T (bi, ci)), T (bi, ci)− T (T (ai, ci), T (bi, ci))}
T (T (ai, ci), T (bi, ci))

≤ max {ai − T (ai, bi), bi − T (ai, bi)}
T (ai, bi)

.

Applying the previous result to all n elements of the universal set X we obtain:

max {
∑n
i=1 (T (ai, ci)− T (T (ai, ci), T (bi, ci))) ,

∑n
i=1 (T (bi, ci)− T (T (ai, ci), T (bi, ci)))}∑n

i=1 T (T (ai, ci), T (bi, ci))

≤
max {

∑n
i=1 (ai − T (ai, bi)) ,

∑n
i=1 (bi − T (ai, bi))}∑n

i=1 T (ai, bi)
.

We have proven that D1(A ∩ C,B ∩ C) ≤ D1(A,B). Similarly can be proved the
inequality D1(A∪C,B ∪C) ≤ D1(A,B). We conclude that the map D1 is a divergence
measure.
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Now we are going to prove that the map D5 is a divergence measure. Without loss of
generality we can assume bi ≤ ai. Three following cases must be considered: bi ≤ ai < ci
or bi ≤ ci ≤ ai or ci < bi ≤ ai. In all cases we have |T (ai, ci) − T (bi, ci)| ≤ |ai − bi| by
Example 1.4. In detail, we have:

• if bi ≤ ai < ci, then |T (ai, ci)−T (bi, ci)| = |ai− bi| and min {T (ai, ci), T (bi, ci)} =
min {ai, bi}. Therefore |T (ai,ci)−T (bi,ci)|

min{T (ai,ci),T (bi,ci)} = |ai−bi|
min{ai,bi} .

• if bi ≤ ci ≤ ai, then |T (ai, ci)− T (bi, ci)| = |ci − bi| ≤ |ai − bi| and
min {T (ai, ci), T (bi, ci)} = min {ci, bi} = bi = min {ai, bi}.
Therefore |T (ai,ci)−T (bi,ci)|

min{T (ai,ci),T (bi,ci)} ≤
|ai−bi|

min{ai,bi} .

• if ci < bi ≤ ai, then |T (ai, ci) − T (bi, ci)| = |ci − ci| = 0 ≤ |ai − bi| and
min {T (ai, ci), T (bi, ci)} = min {ci, ci} = ci ≤ bi = min {ai, bi}.
Therefore |T (ai,ci)−T (bi,ci)|

min{T (ai,ci),T (bi,ci)} = 0 ≤ |ai−bi|
min{ai,bi} .

We have shown the inequality

|T (ai, ci)− T (bi, ci)|
min {T (ai, ci), T (bi, ci)}

≤ |ai − bi|
min {ai, bi}

in all three cases.

Applying the previous result to all n elements of the universal set X we obtain:

|
∑n
i=1 T (ai, ci)−

∑n
i=1 T (bi, ci)|

min {
∑n
i=1 T (ai, ci),

∑n
i=1 T (bi, ci)}

≤
|
∑n
i=1 ai −

∑n
i=1 bi|

min {
∑n
i=1 ai,

∑n
i=1 bi}

.

We have proven that D5(A ∩ C,B ∩ C) ≤ D5(A,B). Similarly can be proved the
inequality D5(A∪C,B ∪C) ≤ D5(A,B). We conclude that the map D5 is a divergence
measure. �

For the case A = B = ∅ we will define axiomatically D(A,B) = 0.

Let us study some important properties of these divergences focused on the mono-
tonicity and local property.

Proposition 2.12. For the divergences D1−D9 the following relations are fulfilled for
each t-norm T ∈ 〈TL, TM 〉:

(i) D8 ≤ D2 ≤ D4 ≤ D3 and D2 ≤ D1 ≤ D3, but the divergences D1 and D4 are not
comparable,

(ii) D7 ≤ D6,

(iii) D5 is not comparable with any other Di,

(iv) D9 ≤ Di for all i ∈ {1, . . . , 8}.
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P r o o f .

(i) T (ai, bi) ≥ ai+bi−1 for a  Lukasiewicz t-norm TL, while TL(ai, bi) = 0 if ai+bi−1 <
0 and TL(ai, bi) = ai + bi − 1 in other case. Since TL(ai, bi) ≥ ai + bi − 1 we have
T (ai, bi) ≥ ai + bi − 1 for each T ∈ 〈TL, TM 〉. It is equivalent to 1 − ai − bi +
2T (ai, bi) ≥ T (ai, bi). If we apply it to all elements of the universal set X, we
get

∑n
i=1 (1− ai − bi + 2T (ai, bi)) ≥

∑n
i=1 T (ai, bi). Since the denominator of

the divergence D2 increases and the nominator we keep without change, we get
D2 ≤ D1. Similarly, we can show D4 ≤ D3.
Since T (ai, bi) ≤ ai and T (ai, bi) ≤ bi, adding +bi−2T (ai, bi) to the first inequality
and +ai − 2T (ai, bi) to the second inequality it follows that
max {ai − T (ai, bi), bi − T (ai, bi)} ≤ ai + bi − 2T (ai, bi). It shows that D1 ≤ D3

and D2 ≤ D4.
Finally, from ai ≥ T (ai, bi) and bi ≥ T (ai, bi) adding 1 − ai − bi + T (ai, bi) to
both inequalities we get min {1− ai + T (ai, bi), 1− bi + T (ai, bi)} ≥ 1− ai − bi +
2T (ai, bi) and then D8 ≤ D2.
Now we show that the divergences D1 and D4 are not comparable. We give one
counterexample. Consider the fuzzy sets given as follows:
A1 = 0.8/x+ 1/y + 0.9/z;A2 = 0.2/x+ 0.7/y + 1/z;
B1 = 0.5/x+ 0.6/y + 0.4/z;B2 = 0.9/x+ 0/y + 0.6/z;

We compute the divergences D1 and D4 for the minimum t-norm TM :
D1(A1, B1) = 1.2

1.5 = 0.8 and D4(A1, B1) = 1.2
1.8 = 0.67, therefore D1 ≥ D4 for the

fuzzy sets A1, B1.
D1(A2, B2) = 1.1

0.8 = 1.38 and D4(A2, B2) = 1.8
1.2 = 1.5, therefore D1 ≤ D4 for the

fuzzy sets A2, B2.

(ii) D7 ≤ D6 follows directly from the inequalities ai ≥ ai − T (ai, bi) and bi ≥ bi −
T (ai, bi).

(iii) Consider again the fuzzy sets given in part (i) and for example, computing the
divergences D4 and D5 for the minimum t-norm TM we obtain:
D4(A1, B1) = 0.67 by (i) and D5(A1, B1) = 1.2

1.5 = 0.8, therefore D4 ≤ D5 for the
fuzzy sets A1, B1.
D4(A2, B2) = 1.5 by (i) and D5(A2, B2) = 0.4

1.5 = 0.27, therefore D4 ≥ D5 for the
fuzzy sets A2, B2.
We can see that the divergences D4, D5 are not comparable.

(iv) This holds trivially.

�

The divergences D3, D4 have a local property, since both of them can be expressed
as a sum

∑n
i=1 h(ai, bi), where the function h : [0, 1] × [0, 1] → R fulfills the conditions

(1) – (3) from the definition of local divergence. The first and second are trivial, the
third follows from the monotonicity of the t-norm T . The other divergences need not
be local in general.



434 V. KOBZA

3. CONCEPT OF DIVERGENCE MEASURE BASED ON FUZZY CARDINALITY

In the last part we define the divergence in case of the concept of fuzzy cardinality ac-
cording to [2]. We will do it through the α-cuts of the fuzzy cardinality C(A) represented
as a fuzzy number. We recall that a fuzzy number is an arbitrary fuzzy subset A ∈ F(R)
with universal set of real numbers R, for which the following properties are fulfilled:

(i) A is normalized, i.e. there exists an element x ∈ R such that A(x) = 1,

(ii) the α-cuts A(α) = {x ∈ R;A(x) ≥ α} are closed intervals for each α ∈ (0, 1],

(iii) the support Supp(A) = {x ∈ R;A(x) > 0} is a bounded subset of the universe R.

We assume that a fuzzy number is convex, see also [12]. The convexity condition may
be written as

(α1 < α2)⇒
(
A(α2) ⊂ A(α1)

)
.

Next we introduce an axiomatic definition of a fuzzy cardinality according to [2]. Let
CFN denote the set of convex fuzzy numbers and let X be the universal set.

Definition 3.1. A function C : F(X) → CFN is a fuzzy cardinality if and only if it
satisfies the following conditions:

(1) Additivity: Supp(A) ∩ Supp(B) = ∅ ⇒ C(A ∪B) = C(A)⊕ C(B);

(2) Variability: A,B ∈ F(X); i > |Supp(A)|, j > |Supp(B)| ⇒ C(A)(i) = C(B)(j);

(3) Consistency: A ⊂ X ⇒ ∀i ∈ N; C(A)(i) ∈ {0, 1} and C(A)(n) = 1 where n =
Supp(A);

(4) Monotonicity: If x, y ∈ X, a, b ∈ [0, 1], a ≤ b then: C(xa)(0) ≥ C(yb)(0) and
C(xa)(1) ≤ C(yb)(1).

The additivity property seems quite natural and it is only an extension of the addi-
tivity of the scalar cardinality. If an element x ∈ X does not belong to the support of
A, i.e. A(x) = 0, then the element x does not affect the cardinality of A. It is expressed
by variability property. Cardinality of the crisp sets must take only crisp values 0 or 1
as required by the consistency property. The last property requires that the cardinality
of singletons at 0 must take a value which is decreasing and in case of singletons at 1 is
increasing.

The appropriate α-cuts of C(A) will be denoted by C(A)α =
〈

C(A)(α)
L ,C(A)(α)

R

〉
,

where C(A) is a fuzzy cardinality of the fuzzy set A and C(A)(α)
L ,C(A)(α)

R are the left
(right) boundaries of the respective α-cuts.

Proposition 3.2. Let A,B ∈ F(X) and C(A),C(B) be the fuzzy cardinalities of the
fuzzy sets A,B. Then the map D : F(X)×F(X)→ R defined as

D(A,B) = max

{
sup
α∈[0,1]

∣∣∣C(A)(α)
L − C(B)(α)

L

∣∣∣ ; sup
α∈[0,1]

∣∣∣C(A)(α)
R − C(B)(α)

R

∣∣∣} .
is a divergence measure between fuzzy sets A and B.
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P r o o f . We must verify the axioms of divergence measure given in [9]. Obviously,
if two fuzzy sets A,B coincide, then also their α-cuts coincide and hence D(A,B) =
max {0, 0} = 0. Even in this case also the reverse implication is satisfied, i.e. if for
A,B ∈ F(X) is D(A,B) = 0, then we get A = B although the Definition 1.1 does not
require it. Next, the function D is commutative, too. Now let us check the last property.

Let A,B,C ∈ F(X) and C(A),C(B),C(C) denote their fuzzy cardinalities. From the
fuzzy set theory described in [6] we get the following relations:

[
C(A)(α) ∩ C(C)(α)

]
⊂

C(A)(α) and
[
C(B)(α) ∩ C(C)(α)

]
⊂ C(B)(α).

Since C(A),C(B),C(C) are convex sets we get the inequalities for all α ∈ [0, 1]:
|C(A ∩C)(α)

L −C(B ∩C)(α)
L | ≤ |C(A)(α)

L −C(B)(α)
L | and |C(A ∩C)(α)

R −C(B ∩C)(α)
R | ≤

|C(A)(α)
R − C(B)(α)

R |.
Hence D(A ∩ C,B ∩ C) ≤ D(A,B), as required. �

4. CONCLUDING REMARKS

We give an alternative approach how can the difference of two fuzzy subsets be measured.
In our considerations we have restricted ourselves to the case when the universe X is
finite. In case of an infinite universe X we cannot use the concept of cardinality as
above. It would be appropriate to find another approach to define a divergence measure
that could be used also in case of an infinite universe X.

A complete characterization of the set of all suitable functions Φ is still an open prob-
lem. We have shown that the local property of the divergence based on the cardinality
need not be fulfilled. Therefore our aim is to reduce the set of the functions Φ such
that for each element of them a local divergence can be defined. In future work we will
specify a class of some interesting properties which could be fulfilled by divergence D.

We have considered the value of divergence as a real number. A question how should
this concept be extended so that the values of divergence could be represented as fuzzy
numbers may be a quite interesting problem, but requiring a new approach.

(Received September 21, 2015)
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