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CONE-TYPE CONSTRAINED RELATIVE
CONTROLLABILITY OF SEMILINEAR FRACTIONAL
SYSTEMS WITH DELAYS

Beata Sikora and Jerzy Klamka

The paper presents fractional-order semilinear, continuous, finite-dimensional dynamical
systems with multiple delays both in controls and nonlinear function f . The constrained relative
controllability of the presented semilinear system and corresponding linear one are discussed.
New criteria of constrained relative controllability for the fractional semilinear systems with
delays under assumptions put on the control values are established and proved. The conical
type constraints are considered. The results are illustrated by an example.
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1. INTRODUCTION

Studying the controllability of dynamical systems is one of the main elements in their
analysis. Due to a large number of mathematical models of dynamical systems with
delays, the controllability problem for such systems is especially important. Delay dif-
ferential equations are used in mathematical models of physical, biological, biochemical
and medical phenomena [7, 8, 9, 31], and many others.

Recent few decades in the mathematical modeling show that linear, semilinear and
nonlinear systems and processes have led to the use of not only the integer-order dif-
ferential equation but also fractional-order differential equations. It becomes clear that
fractional-order models reflect the behavior of many real-life processes more accurately
then the integer-order ones. Depth discussions about fractional differential equations
and their practical applications can be found in monographs [12, 19, 20, 22, 23, 25, 26].
Fractional differential equations occur, for example, in mathematical models of biological
and biochemical models such as: cancer models [1], population growth models [16, 29],
models of migration of interacting agents [18]. In [17], the fractional dynamics in DNA
have been modeled.

The controllability is an important qualitative property reflecting behavior of a dy-
namical system. Kaczorek in [10] and [11] analyzed controllability problems for positive

DOI: 10.14736/kyb-2017-2-0370

http://doi.org/10.14736/kyb-2017-2-0370


Constrained relative controllability of semilinear fractional systems with delays 371

linear continuous-time fractional systems with delays in control, without constraints.
Balachandran et al. in [3] studied relative controllability of linear fractional control sys-
tems with multiple delays in control. Controllability of linear fractional systems with
one control delay without constraints has been studied by Wei in [30]. Controllability
of time-delay fractional systems with multiple delays in control, with and without con-
straints, were studied by Sikora in [27]. All the mentioned works deal with constant
delays. In [15], the controllability criteria for linear fractional systems with varying
delays were proposed.

Controllability of linear systems with delays in the state without constraints was an-
alyzed by Zhang in [32], while different type constraints for the systems were studied by
Sikora in [28]. Moreover, controllability for a class of fractional neutral integrodifferen-
tial equations with unbounded delay and controllability of neutral fractional functional
equations with impulses and infinite delay were discussed in [2].

Balachandran et al. in [4] proposed some controllability criteria for nonlinear frac-
tional dynamical systems with time varying multiple delays and distributed delays in
control defined in finite dimensional spaces. In [5] the global relative controllability of
semilinear fractional dynamical systems with multiple delays in control without con-
straints for finite dimensional spaces was discussed. The results in [4] and [5] were
obtained by using the Schauder fixed point theorem. Sufficient conditions for the con-
trollability of nonlinear fractional delay systems obtained by using fixed point arguments
were proposed also by Balachandran in [6]. A detailed analysis of fractional systems with
and without control delays was presented in [21].

It should be stressed that papers on controllability of fractional-order systems address
mainly controllability issues for unconstrained controls. However, in practice, control
(input function) is not completely unlimited, it is usually constrained in various ways.

The majority of papers on semilinear and nonlinear fractional-order systems, both
with and without delays, are based on various fixed point theorems. Our proposal is to
use the Frechet derivative to solve some controllability problems for semilinear fractional
systems. As it is shown in the illustrative example, the proposed criteria are easy in
use. The aim of the paper is to give new controllability criteria for continuous-time
semilinear fractional systems with multiple delays in control and nonlinear function f
based on the Frechet derivative. We consider cone-type constraints of the control values,
the ones most frequently appearing in practical applications.

The paper is organized as follows. Section 2 includes some preliminary definitions
and formulas. Section 3 presents the mathematical model of the discussed semilinear
fractional dynamical systems with delays. The existence theorem for solution of the
discussed systems is formulated and proved in this section. Moreover, definitions of local
and global constrained controllability for the systems are formulated there. Section 4
contains the main results of the paper – the criteria for relative controllability of the
considered fractional systems with delays. Proofs of the theorems are provided in detail.
In Section 5 the theoretical results are illustrated by a numerical example. Finally, some
concluding remarks and future work are presented in Section 6.
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2. MATHEMATICAL PRELIMINARIES

In this section we present basic definitions, properties and notation that is used in
the paper. In the fractional calculus several definitions of derivatives can be found,
e.g. the Riemann–Liouville, the Grünwald–Letnikov, the Caputo fractional derivatives
[23]. In the paper, the Caputo fractional derivatives are used due to the fact that
the Caputo definition makes it possible to apply the initial conditions for fractional
differential equations in the same form as for the integer-order case.

The Caputo fractional derivative of an order α (n < α < n + 1, n ∈ N) for a
differentiable function f : R+ → R is defined as

CDαf(t) =
1

Γ(n− α+ 1)

∫ t

0

f (n+1)(τ)
(t− τ)α−n

dτ,

where Γ is the gamma function.
For α > 0, β > 0, the so-called Mittag–Leffler function [20, 23] is defined by the

following formula

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, z ∈ C.

Taking β = 1, for α > 0 and an arbitrary nth order square matrix A, a pseudo-
transition matrix Φ0(t) of the linear fractional system CDαx(t) = Ax(t) is

Φ0(t) = Eα,1(Atα) =
∞∑
k=0

Aktαk

Γ(kα+ 1)
.

Moreover, taking β = α, we have

Eα,α(Atα) =
∞∑
k=0

(Atα)k

Γ(αk + α)
=
∞∑
k=0

Aktαk

Γ((k + 1)α)
.

And we introduce the following denotation [10]

Φ(t) = tα−1Eα,α(Atα) = tα−1
∞∑
k=0

Aktαk

Γ((k + 1)α)
.

We also provide formulas for the inverse Laplace transform that are needed in the
paper [20]:

L−1[sα−1(sαI −A)−1] = Φ0(t),

L−1[(sαI −A)−1] = Φ(t).

There are several methods used to compute the functions Φ0(t) and Φ(t): the inverse
Laplace transform method (applying the above formulas), the Jordan matrix decom-
position method and the Cayley–Hamilton method. All the methods are presented in
[20]. In the paper, in an example, we apply the method based on the Cayley–Hamilton
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theorem which states that a matrix A satisfies its own characteristic equation. That is
(see also [10]), if

det[sαI −A] = (sα)n + an−1(sα)n−1 + · · ·+ a1s
α + a0,

then
An + an−1(A)n−1 + · · ·+ a1A

α + a0I = 0.

Finally, let L2([0,∞), Rm) denote the Hilbert spaces of square integrable functions
with values in Rm, L2

loc([0,∞), Rm) be the linear space of locally square integrable
functions with values in Rm, and L∞([0, T ], U) mean the Banach space of functions
bounded almost everywhere, defined on [0, T ] with values in U .

3. SYSTEM DESCRIPTION

Let us consider the following semilinear fractional dynamical systems with multiple
delays

CDαx(t) = Ax(t) +
M∑
i=0

Bi u(t− hi) + f(x(t), u(t), u(t− h1), . . . , u(t− hM )) (1)

for t ≥ 0, where the state x(t) ∈ Rn and the control values u(t) ∈ Rm, A is a (n × n)-
dimensional matrix with constant elements, Bi are (n ×m)-dimensional matrices with
constant elements for i = 0, 1, . . . ,M , hi : [0, T ]→ R, i = 1, 2 . . . ,M are constant delays
in control that satisfy the inequalities:

0 = h0 < h1 < . . . < hi < . . . < hM−1 < hM .

Moreover, the function f is the nonlinear mapping f : Rn×Rm×Rm× · · · ×Rm → Rn,
continuously differentiable near the origin in the space Rn × Rm × Rm × · · · × Rm such
that f(0, 0, 0, . . . , 0) = 0.

Let ω(0) = (x(0), u0) be given initial conditions called the initial complete state.

Theorem 3.1. For the given initial conditions ω(0) = (x(0), u0) ∈ Rn×L2([−hM , 0],Rm)
and a control u ∈ L2

loc([0,∞),Rm), there exists a unique solution x(t) = x(t, ω(0), u) of
the semilinear system (1), for each t ≥ 0, taking the form

x(t) = Φ0(t)x(0) +
∫ t

0

Φ(t− τ)
M∑
i=0

Bi u(τ − hi) dτ (2)

+
∫ t

0

Φ(t− τ)f(x(τ), u(τ), u(τ − h1), . . . , u(τ − hM )) dτ.

P r o o f . In the proof, the similar method is used as for the corresponding linear case
derived in [27]. Applying the Laplace transform to the fractional equation (1), for any
fixed t ≥ 0, we have

sαL[x(t)]− sα−1x(0) = AL[x(t)] +

+L
[ M∑
i=1

Biu(t− hi)
]

+ L
[
f(x(t), u(t), u(t− h1), . . . , u(t− hM ))

]
,
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Hence

L[x(t)] = (sαI −A)−1sα−1x(0) + (sαI −A)−1L
[ M∑
i=1

Biu(t− hi)
]

+(sαI −A)−1L
[
f(x(t), u(t), u(t− h1), . . . , u(t− hM ))

]
= L[Φ0(t)x(0)] + L

[
Φ(t)

]
L
[ M∑
i=1

Biu(t− hi)
]

+L
[
Φ(t)

]
L
[
f(x(t), u(t), u(t− h1), . . . , u(t− hM ))

]
.

Using the convolution theorem for the Laplace transform, we have

L[x(t)] = L[Φ0(t)x(0)] + L
[ ∫ t

0

Φ(t− τ)
M∑
i=1

Biu(τ − hi) dτ
]

+L
[ ∫ t

0

Φ(t− τ)f(x(τ), u(τ), u(τ − h1), . . . , u(τ − hM )) dτ
]
.

And finally, using the inverse Laplace transform, we obtain the solution (2). �

Let U be any non-empty subset of Rm. We define a set of reachable states (the
attainable set) for the semilinear system (1). The definition corresponds with the one
for integer-order dynamical systems (see [13]).

Definition 3.2. The attainable set from the initial complete state ω(0) = (x(0), u0) for
the time-delay fractional system (1) is the set

KT (U) =
{
x(T ) ∈ Rn : x(T ) = Φ0(T )x(0) +

∫ T

0

Φ(T − τ)
M∑
i=0

Bi u(τ − hi) dτ (3)

+
∫ T

0

Φ(t− τ)f(x(τ), u(τ), u(τ − h1), . . . , u(τ − hM )) dτ : u(t) ∈ U for t ∈ [0, T ]
}
.

Any control u ∈ L∞([0, T ], U) is called an admissible control for the system (1) on
the interval [0, T ]. Let the set of admissible controls be denoted as Uad. Definitions
of local and global constrained relative controllability for the semilinear system (1) on
[0, T ] are presented below. In the paper, we consider constraints put on control values.
Such constraints occur in practical problems concerning many industrial and biological
processes.

Definition 3.3. The semilinear fractional system (1) is called locally relatively U -
controllable on [0, T ] if the attainable set KT (U) contains a certain neighborhood of
zero in the space Rn.

Definition 3.4. The semilinear fractional system (1) is called (globally) relatively U -
controllable on [0, T ] if it is relatively U -controllable on [0, T ] for every initial complete
state ω(0) = (x(0), u0).

Remark 3.5. Definition 3.4 implies that the system (1) is (globally) relatively U -
controllable on [0, T ] if KT (U) = Rn, see [14].
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4. MAIN RESULTS

In this section we provide constrained relative controllability criteria for the semilinear
system with delays (1). We assume that the set U ⊂ Rn of values of admissible controls
is closed and convex cone with nonempty interior and vertex at zero.

For this purpose we start with formulating controllability results for the corresponding
linear system of the form

CDαx(t) = Ax(t) +
M∑
i=0

Bi u(t− hi). (4)

The unique solution x(t) = x(t, ω(0), u) of the linear fractional system (4), for every
t ≥ 0, takes the form (see [27])

x(t) = Φ0(t)x(0) +
∫ t

0

Φ(t− τ)
M∑
i=0

Bi u(τ − hi) dτ. (5)

Let us introduce the following denotation

B̃k(t) = [B0 B1 . . . Bj . . . Bk],

where B̃k(t) are n×m(k+ 1)-dimensional constant matrices defined for hk < t ≤ hk+1,
k=0,1,. . . ,M and hM+1 = +∞. The matrices B̃k(t) depend on time in a sense that the
subscript k specifying the number of component matrices depends on t.

Lemma 4.1. The fractional dynamical system with delays (4) is relatively U -controllable
on [0, T ] for hk < T ≤ hk+1, k = 0, 1, 2, . . . ,M, hM+1 = +∞, if and only if the fractional
dynamical system without delays in control

CDαx(t) = Ax(t) + B̃k(t) v(t) (6)

is V -controllable on [0, T ], where v ∈ L∞([0, T ], V ) and V = U ×U × · · ·×U ⊂ Rm(k+1)

is a given closed and convex cone with nonempty interior and vertex at zero.

P r o o f . Let us consider zero initial conditions ω(0) = (0, 0) and transform the equal-
ity (5). By substitution and definite integral properties, the solution (5) of the linear
system (4), for any t ∈ [0, T ], can be rewritten in the following form

x(t, z(0), u) = Φ0(t)x(0) +
M∑
i=0

∫ t−hi

−hi

Φ(t− τ − hi)Biu(τ) dτ

=
k∑
i=0

∫ t−hi

0

Φ(t− τ − hi)Biu(τ) dτ.

for t satisfying inequalities hi < t ≤ hi+1, 1 = 0, 1, . . . , k − 1.
Since the matrices Φ(T − t−hi) are nonsingular for any t ∈ [0, T ], they do not change

controllability property of the dynamical system. Therefore, relative controllability of
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linear fractional system with delays in control (4) is equivalent to controllability of a
linear fractional system without delays in control (6), which completes the proof. �

Lemma 4.1 is the generalization of constrained controllability results obtained in
[14] for integer-order systems with delays in control. It follows from Lemma 4.1 that
constrained relative controllability of the linear fractional system with delays in control
(4) is equivalent to constrained controllability of the linear system without delays (6).

From Lemma 4.1 it follows also that a condition for relative controllability of the
system (4) without any constraints is the following

rank [B0 B1 . . . Bk AB0 AB1 . . . ABk A2B0 A2B1 . . . A2Bk . . .

. . . An−1B0 An−1B1 . . . An−1Bk] = n,

for hk < T ≤ hk+1, k = 0, 1, 2, . . . ,M, hM+1 = +∞.
Next, let X and Y be given Banach spaces, and g : X → Y be a nonlinear mapping

continuously differentiable near the origin in the space X. Suppose g(0) = 0. It fol-
lows from the implicit-function theorem (see [24]) that if the Frechet derivative at zero
Dg(0) : X → Y maps the space X onto the whole space Y , then the nonlinear mapping
g transforms a neighborhood of zero in the space X onto some neighborhood of zero in
the space Y . The following theorem provides a property of the nonlinear mapping g,
which helps to prove our criterion.

Lemma 4.2. (Robinson [24]) Let X and Y be the Banach spaces, Ω be an open subset
ofX containing zero, and U ⊂ X be a closed and convex cone with nonempty interior and
vertex at zero. Let g : Ω→ Y be a nonlinear mapping which has the Frechet derivative
Dg on Ω, continuous at 0. Moreover, assume that g(0) = 0 and linear mapping Dg(0)
maps U onto the whole space Y . Then there exist neighborhoods of zero N0 ⊂ Y and
M0 ⊂ Ω such that the nonlinear equation x = g(u) has at least one solution u ∈M0 ∩U
for each x ∈ N0, where M0∩U is the so-called conical neighborhood of zero in the space
X.

Now we can formulate the constrained controllability criteria for the semilinear frac-
tional system (1).

Theorem 4.3. Let all the following conditions be satisfied:

(i) U ⊂ Rm is a closed and convex cone with nonempty interior and vertex at zero;

(ii) f(0, 0, . . . , 0) = 0;

(iii) rank [B0 B1 . . . Bk AB0 AB1 . . . ABk A2B0 A2B1 . . . A2Bk . . .
. . . An−1B0 An−1B1 . . . An−1Bk] = n,
for hk < T ≤ hk+1, k = 0, 1, 2, . . . ,M, hM+1 = +∞;

(iv) there is no real eigenvector v ∈ Rn of the matrix A∗ satisfying v∗B̃ku ≤ 0 for all
u = u(t) ∈ U, where ∗ means the transpose.

Then the semilinear fractional system (1) is locally relatively U -controllable on [0, T ].
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P r o o f . For the semilinear system (1) we define a nonlinear mapping g : L∞([0, T ], U)→
Rn by g(u) = x(T, ω(0), u). For the corresponding linear system (5) we define a linear
mapping H : L∞([0, T ], U)→ Rn by Hũ = x(T, ω(0), ũ).

If the conditions (i)-(iv) are satisfied, for the linear system (5) it is sufficient to reach
all states in Rn. In fact, since U is the cone with vertex at the origin and nonempty
interior, for any admissible control u also ku ∈ L2([0, T ], U) for all k ≥ 0. The attainable
set KT (U) is a convex set containing 0 in its interior (due to the third condition) and
it is a cone with vertex at the origin (because it is linear with respect to u(·)), hence it
has to be a whole space Rn. This means that the linear fractional system (4) is then
(globally) relatively U -controllable. Moreover, it follows from Definition 3.4 that the
linear operator H maps the cone Uad onto the whole space Rn, and by Lemma 4.2 we
obtain Dg(0) = H.

By (i), U ⊂ Rm is a closed and convex cone with nonempty interior and vertex at
zero, so the set of admissible controls Uad is also a closed and convex cone in the function
space L∞([0, T ], U). It follows that the nonlinear mapping g satisfies all the assumptions
of Lemma 4.2. Therefore, the nonlinear mapping g transforms a conical neighborhood of
zero in the set of admissible controls Uad onto some neighborhood of zero in the space Rn.
Whereas this fact is, by Definition 3.3, equivalent to the local relative U -controllability
of the semilinear fractional system (1) on the time interval [0, T ], which completes the
proof. �

Corollary 4.4. Let all the following conditions be satisfied:

(i) m = 1 and U = [0,+∞);

(ii) f(0, 0, . . . , 0) = 0;

(iii) rank [B0 B1 . . . Bk AB0 AB1 . . . ABk A2B0 A2B1 . . . A2Bk . . .
. . . An−1B0 An−1B1 . . . An−1Bk] = n,
for hk < T ≤ hk+1, k = 0, 1, 2, . . . ,M, hM+1 = +∞;

(iv) the matrix A has only complex eigenvalues.

Then the semilinear fractional system (1) is locally relatively U -controllable on [0, T ].

P r o o f . The criterion follows immediately from Theorem 4.3 and the fact that in case
of m = 1, the condition (iv) of the theorem is equivalent to the condition that the matrix
A has only complex eigenvalues. �

5. ILLUSTRATIVE EXAMPLE

In this section we present a numerical example to illustrate the obtained theoretical
results. As the below example shows, the proposed new criteria are easy to verify which
is an undoubted advantage of our method.
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Example 5.1. Let us be given the following semilinear fractional system with delays

CD
1
2x(t) = Ax(t) +B0(t)u(t) +B1(t)u(t− 1) +B2(t)u(t− 2)

+ f(x(t), u(t), u(t− 1), u(t− 2)), (7)

for t ∈ [0, 3] and u(t) ∈ [0,+∞), with initial conditions ω(0) = (0, 0), where

A =
[

0 −2
1 0

]
, B0 =

[
0
0

]
, B1 =

[
1
0

]
, B2 =

[
0
0

]
, x(t) =

[
x1(t)
x2(t)

]
and

f(x(t), u(t), u(t− 1), u(t− 2)) =
[

0
sinx1(t) + cosu(t− 2)− 1

]
.

We have α = 1
2 , n = 2,m = 1,M = 2, h0 = 0, h1 = 1 and h2 = 2. The set of

admissible control values U = [0,+∞) is a cone with vertex at zero and a nonempty
interior in the one-dimensional space R.

By the Cayley–Hamilton method we calculate the matrix E 1
2 ,

1
2
(At

1
2 ).

E 1
2 ,

1
2
(At

1
2 ) =

1∑
k=0

Ak t
k
2

Γ( 1
2 (k + 1))

=
[

1 0
0 1

]
t0√
π

+
[

0 −2
1 0

]
t

1
2

1
=

[
1√
π
−2t

1
2

t
1
2 1√

π

]

and then

E 1
2 ,

1
2
(A∗t

1
2 ) =

1∑
k=0

(A∗)k t
k
2

Γ( 1
2 (k + 1))

=

[
1√
π

t
1
2

−2t
1
2 1√

π

]
.

Since h2 < T , we have

rank[B0 B1 B2 AB0 AB1 AB2] = rank
[

0 1 0 0 1 0
0 0 0 0 1 0

]
= 2 = n. (8)

Moreover, the matrix A has only complex eigenvalues λ1,2 = ±i
√

2 and f(0,0,. . . ,0)=0.
Therefore, based on Corollary 4.4, we conclude that the semilinear fractional system (7)
is locally relatively U -controllable on [0, 3] for U = [0,+∞).

6. CONCLUSIONS

The constrained relative controllability of the semilinear fractional systems with delays
both in the control and nonlinear function f have been discussed in the paper. Con-
straints of the cone type imposed on the delay values have been considered. The formula
for a solution of the discussed systems has been derived with the use of the Laplace trans-
form (Theorem 3.1). Definitions of the local and global relative controllability in the
case of constrained control values have been formulated. Lemma 4.1 has provided the
necessary and sufficient conditions that reduce studying the relative U -controllability
of the semilinear system (1) to control some linear system with cone-type constraints.
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Theorem 4.3 and Corollary 4.4 have stated new controllability criteria for local rela-
tive U -controllability for the semilinear fractional systems described by the equation (1)
provided that U is a cone. The Frechet derivative method has been used to prove the
criteria. The numerical example has been presented to illustrate how to verify the local
relative controllability of the discussed systems with the use of the established criteria.

Systems with delays and cone-type constraints of controls appear in many industrial
processes. A possibility to use our method can be seen, for example, in modeling the
process of steel rolling where thickness can only be measured at some distances from
rolls which leads to measurement delays. Moreover, in networked control sampling,
encoding, transmission and decoding need measurement and actuation delays as well as
regenerative chatter in metal cutting modeling leads to delays depending on full rotation
time.

Our future work will focus on solving controllability problems for semilinear and
nonlinear fractional systems. We plan to propose a fractional model and find an optimal
control for the steel rolling process, since fractional calculus provides more accurate
models of systems under considerations. Moreover, our next proposal will be the use
of the Rothe fixed point theorem to analyze the controllability of nonlinear fractional
systems with delays.
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