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We establish consistent estimators of jump positions and jump altitudes of a multi-level step
function that is the best L2-approximation of a probability density function f . If f itself is a
step-function the number of jumps may be unknown.
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1. INTRODUCTION

Let X1, . . . , Xn be i.i.d. random variables defined on a probability space (Ω,A, P ) with
values in a compact interval [l, r] and with bounded probability density function (pdf)
f : [l, r] → R and cumulative distribution function (cdf) F . Furthermore, let there
exist a unique step function with d + 1 levels and domain [l, r], that has minimal L2-
distance to the pdf f . We call this step function a best approximation of the pdf f .
The goal is to estimate the positions and altitudes of the jump discontinuities of the
best approximating step function. As main result consistency of our estimators will be
established.

In the following, we define the problem more formally and thereby introduce necessary
notation. In general, a (d+1)-levels step function on the domain [l, r] with jump positions
t1, . . . , td and levels a0, a1, . . . , ad can be written as

ft,a(x) = a01[t0,t1](x) +
d∑
i=1

ai1(ti,ti+1](x), x ∈ [l, r], t0 := l, td+1 := r,

t = (t1, . . . , td) ∈ ∆d := {(t1, . . . , td) ∈ (l, r)d : t1 < . . . < td},

a = (a0, . . . , ad) ∈ Rd+1 := {(a0, . . . , ad) ∈ Rd+1 : ai 6= ai+1, i = 0, . . . , d− 1}.

We define

D(t, a) :=
∫ r

l

(f(x)− ft,a(x))2 dx (1)
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and note that
√
D(t, a)) is the usual L2-distance between f and ft,a. Furthermore, let

there exist a unique minimizer (τ, α) of D(t, a), i.e.

(τ, α) = argmin{D(t, a) : t ∈ ∆d, a ∈ Rd+1}. (2)

In other words, fτ,α is the unique best approximation of f w.r.t. the L2-distance. The
function fτ,α has jump positions τ = (τ1, . . . , τd) and levels α = (α0, . . . , αd). The main
issue of the present paper is to construct consistent estimators (τn, αn) for (τ, α). This
immediately leads to a density estimator fτn,αn of the step function fτ,α. We later
show that both fτn,αn

and fτ,α are indeed density functions. In particular, fτn,αn
is

a histogram, where the cells and the pertaining cell-heights both are random.
Suppose the pdf f a priori is known to be a step function with d jumps. Then the

best L2-approximation fτ,α of f coincides with f and consequently our estimate fτn,αn
of

fτ,α is an estimate of f . In fact, it is a tailor-made solution for such types of underlying
densities f . Moreover, even if the pdf f is not a step function, the function fτn,αn

estimates its best approximation, which in turn gives the low, middle and high density
regions. This classification can be used as an initial step in the usual kernel density
estimation, which makes the statistician to adapt the bandwidth in the corresponding
regions.

As explained above, our method will be particularly useful if the unknown pdf f itself
is a step function. It is to be noted that the usual kernel density estimator is continuous
and therefore performs poorly in that situation. Of course, it may happen that we do
not know the number d of steps. Then we are able to present an estimator for d.

In the next section 2 we derive appropriate estimators (τn, αn) of (τ, α). Weak and
strong consistency of these estimators for (τ, α) is the main result in section 3. Our proofs
rely on an argmin-Theorem for multivariate cadlag processes recently published in [6].
Moreover, we prove and apply a generalization of an inequality for sub-martingales in
continuous time which originally can be traced back to Birnbaum and Marshall [2]. Here,
martingale properties of the empirical process and probability bounds for its oscillation
modulus are of great importance.

Section 4 focuses on the case that f is a step-function with unknown number d of
jumps. We introduce an estimator for d and prove strong consistency. In section 5 we
report on a simulation study.

2. ESTIMATION OF JUMP POSITIONS AND JUMP ALTITUDES OF THE BEST
APPROXIMATING STEP FUNCTION

In this section, we derive estimators for the values of (τ, α) given by (2) under the
assumption that [l, r] is known. The next proposition is our starting point.

Proposition 2.1. The solution (τ, α) ∈ ∆d ×Rd+1 of the minimization (2) is

τ = (τ1, . . . , τd) = argmax
(t1,...,td)∈∆d

M(t1, . . . , td) (3)

with

M(t1, . . . , td) =

√√√√ d∑
i=0

{F (ti+1)− F (ti)}2
ti+1 − ti

,
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and

α = (α0, . . . , αd) with αj =
F (τj+1)− F (τj)

τj+1 − τj
, j = 0, 1, . . . , d, (4)

where τ0 := l, τd+1 := r.

P r o o f . We rewrite

D(t, a) =
d∑
i=0

∫ ti+1

ti

(f(x)− ai)2 dx

=
d∑
i=0

(∫ ti+1

ti

f2(x) dx− 2ai{F (ti+1)− F (ti)}+ ai
2(ti+1 − ti)

)

=
∫ r

l

f2(x) dx− 2
d∑
i=0

ai{F (ti+1)− F (ti)}+
d∑
i=0

a2
i (ti+1 − ti).

Consequently, for fixed t ∈ ∆d, we have

dD

daj
(t, a) = −2{F (tj+1)− F (tj)}+ 2aj(tj+1 − tj), j = 0, 1, . . . , d.

By equating dD
daj

(t, a) to zero for every j = 0, 1, . . . , d, one obtains

aj = aj(t) =
F (tj+1)− F (tj)

tj+1 − tj
, j = 0, 1, . . . , d. (5)

Since the Hessian is positive definite it follows that (a0(t), . . . , ad(t)) minimizes D(t, ·)
for every fixed t ∈ ∆d. Thus from Proposition 1.35 in [12],

τ = argmin
t∈∆d

D(t, a0(t), . . . , ad(t)),

and α is given by (4) through inserting τ into (5). From (5), we have

D(t, a0(t), . . . , ad(t)) =
∫ r

l

f2(x) dx−
d∑
i=0

{F (ti+1)− F (ti)}2

ti+1 − ti
. (6)

Because
∫ r
l
f2(x) dx is constant w.r.t. t and the square root function is strictly monotone

increasing, the minimization of D(t, a0(t), . . . , ad(t)) takes place at τ given by (3). �

As a consequence of Proposition 2.1, we can easily verify that the step function fτ,α
is indeed a density function:∫ r

l

fτ,α(u) du =
∫ r

l

d∑
j=0

αj1(τj ,τj+1](u) du =
d∑
j=0

F (τj+1)− F (τj)
τj+1 − τj

(τj+1 − τj) = 1. (7)
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Let

Fn(x) :=
1
n

n∑
i=1

1{Xi≤x}, x ∈ R,

be the empirical df pertaining to X1, . . . , Xn. By replacing the true cdf F in (3) with
Fn, we obtain the empirical analogue Mn of M :

Mn(t1, . . . , td) :=

√√√√ d∑
i=0

{Fn(ti+1)− Fn(ti)}2
ti+1 − ti

. (8)

Moreover, we restrict the domain ∆d of maximization to certain subsets

∆n,d ⊆ ∆d such that ∆n,d ↑ ∆d as n→∞. (9)

Thus every supremizer (as defined in [6]) of Mn,

τn = (τ1,n, . . . , τd,n) ∈ argsup
(t1,...,td)∈∆n,d

Mn(t1, . . . , td), (10)

is a reasonable estimator for τ .
Additionally, a consistent estimator for the vector α is needed. We propose the

following one that is induced by (4).

αn = (α0,n, . . . , αd,n) with αj,n :=
Fn(τj+1,n)− Fn(τj,n)

τj+1,n − τj,n
, j = 0, 1, . . . , d, (11)

where τ0,n := l, τd+1,n := r. We remark that the step function fτn,αn
is a density

function because the calculations in (7) remain valid if τ and α are replaced with their
respective estimators τn and αn.

Observe that Mn and M can be considered as random elements in the multivariate
Skorokhod space D(∆d) as defined in [6]. This can be seen directly from the definition
upon noticing that every cdf and every empirical df is right-continuous with left-hand
limits (rcll), and continuous transformations of rcll functions are again rcll.

3. WEAK AND STRONG CONSISTENCY

There are two basic assumptions. Firstly, it is required that

τ = argmax
t∈∆d

M(t)

is not only unique (as a consequence of (2)), but actually is well-separated in the sense
that

sup
t∈∂∆d

M(t) < M(τ),

where ∂∆d denotes the boundary of ∆d. Secondly, we need that f is bounded away
from zero and infinity, that is

ρ := inf
x∈[l,r]

f(x) > 0 and ||f || := sup
x∈[r,l]

|f(x)| <∞. (12)
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(If further information on τ is available one can drop this assumption as we will see later
on.) The following theorem is the main result in this chapter. Here, we deal with two
types of subsets ∆n,d, namely for every positive β let

∆n,d := {t ∈ (l, r)d : ti+1 − ti > n−2β ∀ 1 ≤ i ≤ d− 1} (13)

or alternatively,

∆n,d := {t ∈ (l, r)d : ti+1 − ti > n−2β ∀ 0 ≤ i ≤ d} (14)

Recall that by definition (10)

τn = (τ1,n, . . . , τd,n) ∈ argsup
t∈∆n,d

Mn(t),

Theorem 3.1. Assume that τ is the well-separated maximizing point of M and that f
is bounded away from zero and infinity.

If ∆n,d is of type (13), then

τn
P→ τ, n→∞, ∀ 0 < β < 1. (15)

If ∆n,d is of type (14), then

τn → τ a.s. n→∞, ∀ 0 < β < 1. (16)

The proof of Theorem 3.1 includes several steps that will be taken subsequently. The
main idea of the proof is to make use of an argmax-Theorem recently published in [6,
Theorem 3.3]. In short, this theorem guarantees that if

sup
t∈∆n,d

|Mn(t)−M(t)| → 0, n→∞, (17)

in probability or almost surely then every supremizer τn ∈ ∆n,d of the process Mn

converges to the true vector τ in probability or almost surely, respectively. Therefore,
the remainder of this section deals with checking the condition (17). As a start, the
following lemma gives an upper bound for |Mn(t)−M(t)|.

Lemma 3.2. There exists a constant γ > 0 such that for all t ∈ ∆d

|Mn(t)−M(t)| ≤ γ · n−1/2
d∑
i=0

{
|αn(ti+1)− αn(ti)|√

ti+1 − ti

}
, (18)

where
αn(s) :=

√
n(Fn(s)− F (s)), s ∈ [l, r],

denotes the empirical process.
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P r o o f . Because of the norm equivalence in Rd+1 there exists a γ > 0 such that
||x||2 ≤ γ · ||x||1 for all x ∈ Rd+1.

Now for t ∈ ∆d, let x = (x0, . . . ., xd) and y = (y0, . . . , yd) be defined by

xi :=
Fn(ti+1)− Fn(ti)√

ti+1 − ti
, 0 ≤ i ≤ d,

and

yi :=
F (ti+1)− F (ti)√

ti+1 − ti
, 0 ≤ i ≤ d.

Then
| Mn(t)−M(t) | =

∣∣ ||x||2 − ||y||2 ∣∣ ≤ ||x− y||2 ≤ γ · ||x− y||1
and

||x− y||1 =
d∑
i=0

|Fn(ti+1)− F (ti+1)− (Fn(ti)− F (ti))|√
ti+1 − ti

,

resulting in the right-hand side of (18). �

In what follows, we consider the sum on the right-hand side of (18) a little more in
detail. To begin with, we confine ourselves to considerations for t ∈ ∆n,d defined in
(13). Now the following upper estimates hold for the ith summands of the sum on the
right-hand side of (18), where for convenience we put

δn := n−2β .

Recall that t0 = l, td+1 = r. Further notice that Fn(l) = F (l) = 0 and Fn(r) = F (r) = 1.

• i = 0 : |αn(t1)−αn(t0)|√
t1−t0

= |αn(t1)|√
t1−l

≤ sup
l<u<r

|αn(u)|√
u−l .

• 0 < i < d : |αn(ti+1)−αn(ti)|√
ti+1−ti ≤ sup

l<u<v<r
v−u>δn

|αn(v)−αn(u)|√
v−u .

• i = d : |αn(td+1)−αn(td)|√
r−td

= |αn(td)|√
r−td

≤ sup
l<u<r

|αn(u)|√
r−u .

Thus by Lemma 3.2 we obtain for ∆n,d of type (13):

1
γ

sup
t∈∆n,d

|Mn(t)−M(t)| ≤ An + (d− 1) ·Bn + Cn, (19)

where

An := n−1/2 sup
l<u<r

|αn(u)|√
u− l

, (20)

Bn := n−1/2 sup
l<u<v<r
v−u>δn

|αn(v)− αn(u)|√
v − u

, (21)

Cn := n−1/2 sup
l<u<r

|αn(u)|√
r − u

. (22)
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Similarly, if ∆n,d is of type (14) then

1
γ

sup
t∈∆n,d

|Mn(t)−M(t)| ≤ (d+ 1) ·Bn. (23)

Consequently, by (19) and (23), it suffices to prove that each of the terms An, Bn, Cn
converges to zero in probability or a.s., respectively, in order to show condition (17).

For this, we need the following lemma, which generalizes the Birnbaum–Marshall
inequality, see [13, p. 873, Inequality 4]. The proof of the lemma is based on the Chow
Inequality [7, Theorem 6.6.1].

Lemma 3.3. Let (S(u),F(u)), u ∈ [a, b), 0 < a < b < ∞, be a submartingale
with trajectories that are right-continuous with existing left-handed limits (rcll). Let
S(u)+ := max {S(u), 0} and H(u) := E(S(u)+) < ∞, u ∈ [a, b). Furthermore, let
w : [a, b)→ (0,∞) be rcll and monotone decreasing. Then for all λ > 0

P

(
sup
a≤u<b

w(u)S(u) > λ

)
≤ λ−1

(∫ b

a

H(u)(−w)(du) + lim
u↗b

w(u)H(u)

)
.

P r o o f . We define

Im := {uk := a+ (b− a)k2−m : 0 ≤ k ≤ 2m − 1}.

Note that u0 = a, u1 ↘ a, and u2m−1 ↗ b as m→∞. Moreover, put

Sk := S(uk), Fk := F(uk), 1 ≤ k ≤ 2m − 1.

For every function f : [a, b)→ R rcll, we have that

sup
u∈[a,b)

f(u) = sup
m≥1

sup
u∈Im

f(u).

Conclude that

p(λ) := P

(
sup
a≤u<b

w(u)S(u) > λ

)
= P

 ⋃
m≥1

{
sup
u∈Im

w(u)S(u) > λ

}
= lim
m→∞

P

(
max

1≤k<2m
w(uk)Sk > λ

)
.

(24)

By the Chow Inequality, we obtain

lim
m→∞

P

(
max

1≤k≤2m−1
w(uk)Sk > λ

)
≤ λ−1 lim

m→∞

∑
1≤k≤2m−2

(w(uk)− w(uk+1)) E(S+
k ) + w(u2m−1)E(S+

2m−1). (25)
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Note that H(uk) = E(S+
k ). Define v(u) := −w(u), u ∈ [a, b). Then∑

1≤k≤2m−2

(w(uk)− w(uk+1))H(uk)

=
∑

2≤j≤2m−1

(w(uj−1)− w(uj))H(uj−1)

=
∑

1≤j≤2m−1

(v(uj)− v(uj−1))H(uj−1)− (v(u1)− v(u0))H(u0).

(26)

Since u1 ↘ a as m→∞, and u0 = a, it follows that

(v(u1)− v(u0))H(u0) → 0, m→∞. (27)

On combining (24), (25), (26), and (27), we arrive at

p(λ) ≤ λ−1

 lim
m→∞

∑
1≤j≤2m−1

((−w)(uj)− (−w)(uj−1))H(uj−1) + lim
u↗b

w(u)H(u)

 .

The first summand in brackets is in fact the integral
∫ b
a
H(u)(−w)(du). �

By the quantile transformation we can w.l.o.g. assume that

Xi = F−1(Ui), i ≥ 1,

where F−1 denotes the quantile function of F and Ui, i ≥ 1, are i.i.d. random variables
uniformly distributed on (0, 1). Let

Gn(x) := n−1
n∑
i=1

1{Ui≤x}, x ∈ (0, 1),

be the uniform empirical distribution function. Then the following simple relation

Fn(x) = Gn(F (x)), x ∈ R, (28)

will be very useful in our proofs below. Similarly, we will benefit a lot from the inequal-
ities

ρ(v − u) ≤ F (v)− F (u) ≤ ||f ||(v − u) ∀ l ≤ u ≤ v ≤ r, (29)

which follow from (12).

Lemma 3.4. Assume that (12) holds, that is f is bounded away from zero and infinity.
Then:

(1) An = n−1/2 sup
l<u<r

|αn(u)|√
u−l

P→ 0, n→∞,

(2) Cn = n−1/2 sup
l<u<r

|αn(u)|√
r−u

P→ 0, n→∞.
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P r o o f . According to (29) it is u− l ≥ ||f ||−1(F (u)−F (l)) = ||f ||−1F (u) ∀ u ∈ (l, r),
whence in combination with (28)

An = sup
l<u<r

|Fn(u)− F (u)|√
u− l

≤
√
||f || sup

l<u<r

|Gn(F (u))− F (u)|√
F (u)

≤
√
||f || sup

0<u<1

|Gn(u)− u|√
u

(30)
Now

sup
0<u<1

|Gn(u)− u|√
u

≤ max {an, bn} , (31)

where

an := sup
0<u<U1:n

|Gn(u)− u|√
u

, bn := sup
U1:n≤u<1

|Gn(u)− u|√
u

,

with U1:n := min1≤i≤n Ui the first order statistic in the sample U1, . . . , Un. From
Gn(u) = 0 for all u < U1:n infer that

0 ≤ an ≤
√
U1:n → 0 a.s., (32)

where the convergence follows from the First Borel–Cantelli Lemma observing that
P(|U1:n| > ε) = (1− ε)n for all ε ∈ (0, 1] and n ∈ N.

As to the second supremum bn observe that for every ε > 0 and c > 0:

P (bn > ε) ≤ γn + ζn, (33)

where

γn := P

(
bn > ε, U1:n >

1
nc

)
, ζn := P

(
U1:n ≤

1
nc

)
.

Now

γn ≤ P

(
sup

1/(nc)≤u<1

|Gn(u)− u)|√
u

> ε

)
(34)

and further

P

(
sup

1/(nc)≤u<1

|Gn(u)− u)|√
u

> ε

)
= P

(
sup

1/(nc)≤u<1

|Gn(u)− u|
1− u

· 1− u√
u

> ε

)

≤ P

(
sup

1/(nc)≤u<1

(
|Gn(u)− u|

1− u

)2

· (1− u)2

u
> ε2

)
.

(35)

Setting Sn(u) :=
(
Gn(u)−u

1−u

)2

and w(u) := (1−u)2

u gives

γn ≤ P

(
sup

1/(nc)≤u<1

Sn(u)w(u) > ε2

)
.
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It is well-known, confer Koul [10, section 2.4.3], that Vn(u) := Gn(u)−u
1−u , u ∈ [0, 1), is a

martingale with rcll trajectories, hence Sn(u) = Vn(u)2 is a non-negative submartingale
with rcll trajectories. Let Hn(u) := E(Sn(u)+) = E(Sn(u)) and note that u 7→ w(u) is
rcll and monotone decreasing. Then Lemma 3.3 yields

γn ≤ ε−2

(∫ 1

1/(nc)

Hn(u)(−w)(du) + lim
u↗1

w(u)Hn(u)

)
. (36)

Since EGn(u) = u and V ar(Gn(u)) = n−1u(1− u) it follows that Hn(u) = E(Sn(u)) =
1
n

u
1−u , whence w(u)Hn(u) = n−1(1− u) and thus

lim
u↗1

w(u)Hn(u) = 0. (37)

Integration by parts yields∫ 1

1/(nc)

Hn(u)(−w)(du) = Hn(u)(−w(u))
∣∣∣∣1
1/(nc)

−
∫ 1

1/(nc)

(−w(u))Hn(du). (38)

Obviously,

Hn(u)(−w(u))
∣∣∣∣1
1/(nc)

= n−1(1− 1/(nc)) ≤ n−1.

Furthermore, since H ′n(u) = n−1(1− u)−2, we have that

−
∫ 1

1/(nc)

(−w(u))Hn(du) = n−1

∫ 1

1/(nc)

u−1 du = n−1 log(nc). (39)

Finally, looking back over (36) and (37) - (39), we can conclude that

γn ≤ ε−2

(
1
n

log(nc) +
1
n

)
→ 0, n→∞, ∀c > 0. (40)

In view of ζn recall that nU1:n converges in distribution to the Exponential with param-
eter 1. Thus

lim
n→∞

ζn = lim
n→∞

P (nU1:n ≤
1
c

) = 1− e−1/c ∀ c > 0. (41)

Since (33), (40) and (41) hold for all c > 0 taking the limit c→∞ yields that

bn
P→ 0, n→∞.

Consequently, by (32) and (31) we obtain that

sup
0<u<1

|Gn(u)− u|√
u

P→ 0, n→∞, (42)

which finally by (30) yields part (1) of the lemma.
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Similarly as in the derivation of (30) we obtain that

Cn ≤
√
||f || sup

0<u<1

|Gn(u)− u|√
1− u

=
√
||f || sup

0<u<1

|Gn(1− u)− (1− u)|√
u

. (43)

Since (Ui : 1 ≤ i ≤ n) L= (1− Ui : 1 ≤ i ≤ n) it follows that

(Gn(1−uk) : 1 ≤ k ≤ q) L= (1−Gn(uk−) : 1 ≤ k ≤ q) ∀ 0 < u1 < · · · < uq < 1 ∀ q ∈ N.
(44)

If uk := uk,m := k2−m, 1 ≤ k < 2m, then for every x ∈ R

P ( sup
0<u<1

|Gn(1− u)− (1− u)|√
u

> x)

= lim
m→∞

P ( max
1≤k<2m

|Gn(1− uk)− (1− uk)|
√
uk

> x)

= lim
m→∞

P ( max
1≤k<2m

|Gn(uk−)− uk|√
uk

> x) by (44)

= P ( sup
0<u<1

|Gn(u−)− u)|√
u

> x),

whence

sup
0<u<1

|Gn(1− u)− (1− u)|√
u

L= sup
0<u<1

|Gn(u−)− u)|√
u

= sup
0<u<1

|Gn(u)− u)|√
u

,

where the last equality holds because Gn is rcll and so is the ratio as well. Thus (42)
and (43) immediately yield the second part (2) of the lemma. �

Lemma 3.5. Assume that is f is bounded away from zero and infinity. If δn = n−2β

with 0 < β < 1, then:

Bn = n−1/2 sup
l<u<v<r
v−u>δn

|αn(v)− αn(u)|√
v − u

→ 0 a.s. as n→∞.

P r o o f . Let ᾱn be the uniform empirical process, i. e.,

ᾱn(t) :=
√
n(Gn(t)− t), t ∈ [0, 1].

It follows from the inequalities (29) that

Bn = n−1/2 sup
l<u<v<r
v−u>δn

|αn(v)− αn(u)|√
v − u

≤
√
||f || n−1/2 sup

0<u<v<1
v−u>δ̄n

|ᾱn(v)− ᾱn(u)|√
v − u

, (45)

where
δ̄n := ρδn = ρn−2β .
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Observe that

sup
0<u<v<1
v−u>δ̄n

|ᾱn(v)− ᾱn(u)|√
v − u

≤ sup
0<s<1

sup
δ̄n<u<1−s

|ᾱn(s+ u)− ᾱn(s)|√
u

. (46)

Now let kn :=
⌊
nβ
⌋
, s ∈ (0, 1), u ∈ (δ̄n, 1− s).

Case A: s = j/kn for some j = 0, 1, . . . , kn − 1. Then

|ᾱn(s+ u)− ᾱn(s)|√
u

≤ max
0≤j<kn

sup
δ̄n<u<1− j

kn

|ᾱn( j
kn

+ u)− ᾱn( j
kn

)|
√
u

.

Case B: s ∈ ( j
kn
, j+1
kn

) for some j = 0, 1, . . . , kn − 1. Then

|ᾱn(s+ u)− ᾱn(s)|

=
∣∣∣∣ᾱn(

j

kn
+ u)− ᾱn(

j

kn
) + ᾱn(

j

kn
)− ᾱn(s) + ᾱn(s+ u)− ᾱn(

j

kn
+ u)

∣∣∣∣
≤
∣∣∣∣ᾱn(

j

kn
+ u)− ᾱn(

j

kn
)
∣∣∣∣+
∣∣∣∣ᾱn(

j

kn
)− ᾱn(s)

∣∣∣∣+
∣∣∣∣ᾱn(s+ u)− ᾱn(

j

kn
+ u)

∣∣∣∣ .
Therefore,

|ᾱn(s+ u)− ᾱn(s)|√
u

≤ max
0≤j<kn

sup
δ̄n<u<1− j

kn

{
|ᾱn( j

kn
+ u)− ᾱn( j

kn
)|

√
u

}
+

2√
δ̄n
ωn(

1
kn

), (47)

where
ωn(a) := sup

|u−v|≤a
|ᾱn(u)− ᾱn(v)|, a ∈ (0,∞),

denotes the oscillation modulus of ᾱn. For verifying inequality (47), note that |s− j
kn
| <

1
kn

and | jkn
+ u− (s+ u)| < 1

kn
.

Taking Case A and Case B together, we arrive with (45) and (46) at

Bn ≤
√
||f ||(cn + dn), (48)

where

cn := n−
1
2 max

0≤j<kn

sup
δ̄n<u<1− j

kn

{
|ᾱn( j

kn
+ u)− ᾱn( j

kn
)|

√
u

}
,

dn := n−
1
2

2√
δ̄n
ωn(

1
kn

).
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First, we prove cn → 0 a.s. as n→∞. For this, let ε > 0. Now

P (cn > ε) ≤
∑

0≤j<kn

pj,n (49)

with

pj,n := P

n− 1
2 sup
δ̄n<u<1− j

kn

|ᾱn( j
kn

+ u)− ᾱn( j
kn

)|
√
u

> ε

 . (50)

Next we use the differential property of the uniform empirical process:

{ᾱn(y + u)− ᾱn(y) : 0 ≤ u ≤ 1− y} L= {ᾱn(u) : 0 ≤ u ≤ 1− y} ∈ D[0, 1− y]

for every fixed y ∈ [0, 1]. This is a simple consequence of the stationarity of the in-
crements of ᾱn (confer, e.g., Dudley [4], Lemma 1.14(b)) and of Theorem 12.5 (iii) in
Billingsley [1]. Infer from (50) that

pj,n = P

n− 1
2 sup
δ̄n<u<1− j

kn

|ᾱn(u)|√
u

> ε


≤ P

(
sup

δ̄n≤u≤1/2

|ᾱn(u)|√
u

> ε
√
n

)
+ P

(
sup

1/2≤u<1

|ᾱn(u)|√
u

> ε
√
n

)
=: rn(ε) + sn(ε). (51)

Since

rn(ε) ≤ P

(
sup

δ̄n≤u≤1/2

|ᾱ+
n (u)|√
u

> 1/2ε
√
n

)
+ P

(
sup

δ̄n≤u≤1/2

|ᾱ−n (u)|√
u

> 1/2ε
√
n

)
=: r+

n (ε) + r−n (ε), (52)

we can apply Corollary 1 in Shorack and Wellner [13], p. 446 (with b := δ := 1/2 there).
It says when 0 < a ≤ 1/4, and λ > 0 one has the inequality

P ( sup
a≤u≤1/2

|ᾱ±n (u)|√
u

> λ) ≤ 6 log(1/(2a)) exp{−1
8
γ±λ2}, (53)

where γ− = 1 for all λ > 0 and γ+ ≥ 3/4
√
na/λ, if λ ≥ 3/2

√
na. Put λ := 1/2ε

√
n and

a := δ̄n = ρn−2β ≤ 1/4 for some n0 ∈ N. Then by (53) we have that

r−n (ε) ≤ 6 log(1/(2ρ)n2β) exp{−1/32ε2n} ∀ n ≥ n0. (54)

As to r+
n (ε) observe that λ ≥ 3/2

√
na iff n−β ≤ 1/(3

√
ρ)ε. Consequently, there exists

some integer n1 = n1(ε) such that

r+
n (ε) ≤ 6 log(1/(2ρ)n2β) exp{−3/64

√
ρεn1−β} ∀ n ≥ n1. (55)
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Combining (54) and (55) results in

rn(ε) ≤ 6 log(1/(2ρ)n2β)
(
exp{−1/32ε2n}+ exp{−3/64

√
ρεn1−β}

)
∀ n ≥ n2, (56)

with n2 := n0 ∨ n1 ∈ N. Since sup1/2≤u<1
|ᾱn(u)|√

u
≤
√

2 sup0≤u≤1 |ᾱn(u)| Massart’s [11]
inequality yields that

sn(ε) ≤ 2 exp{−nε2} ∀ n ≥ 1. (57)

From (49) and (51) it follows that

P (cn > ε) ≤ kn(rn(ε) + sn(ε)) ≤ nβ(rn(ε) + sn(ε)),

whence (56) and (57) guarantee that∑
n≥1

P (cn > ε) <∞ ∀ε > 0

form which in turn we can conclude with the First Borel–Cantelli Lemma that

cn −→ 0 a.s. as n→∞. (58)

We now prove that dn → 0 a.s. as n→∞. For every ε > 0 we obtain:

P (dn ≥ 2ε) = P
(
ωn(k−1

n ) ≥ ε
√
nδ̄n

)
= P

(
ωn(a) ≥ λ

√
a
)
, (59)

where a := k−1
n ∈ (0, 1/2] for all n larger than some n3 ∈ N and λ := ε

√
nδ̄nkn > 0.

Therefore we can apply the inequality of Mason, Shorack and Wellner [13, p. 545] (with
δ := 1/2 there). It gives

P
(
ωn(a) ≥ λ

√
a
)
≤ 160 a−1 exp{−1/32 λ2 ψ(λ/

√
na)} (60)

with function ψ(u) := 2
u2 [(1 + u) log(1 + u)− u] , u > 0. Inserting a and λ in (60) yields

P
(
ωn(a) ≥ λ

√
a
)
≤ 160 kn exp{−1/32 ε2nδ̄nknψ(ε kn

√
δ̄n)}. (61)

By Proposition 1 on p. 441 in [13] ψ is strictly positive and decreasing on (0,∞). Since
kn
√
δ̄n ≤

√
ρ the factor ψ

(
εkn
√
δ̄n

)
is greater or equal to ψ(ε

√
ρ) > 0. Moreover,

kn ≥ (1/2)nβ for all n larger some n4 ∈ N and so nδ̄nkn ≥ (1/2)ρn1−β . Consequently,
we can infer from (59) and (61) that the following inequality holds:

P (dn ≥ 2ε) ≤ 160nβ exp{−L n1−β} ∀ n ≥ n5

with positive and finite constant L = − 1
64ρψ(ε

√
ρ) and natural number n5 = max{n3, n4}.

Thus, with the First Borel–Cantelli Lemma we arrive at

dn → 0 a.s. as n→∞, (62)

which in conclusion with (48) and (58) gives the desired result. �
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Now we are able to prove Theorem 3.1.

P r o o f . [Theorem 3.1] We make use of Theorem 3.3 and Remark 3.1 in [6]. In the
sequel, the validity of the assumptions there are verified. Firstly, ∆n,d ↑ ∆d for ∆n,d of
type (13) and (14). Thus in particular in both cases

lim inf
n→∞

∆n,d = ∆d.

Secondly, as a result of (19) and Lemmas 3.4 and 3.5 , we see that

sup
t∈∆d,n

|Mn(t)−M(t)| P→ 0, n→∞, if ∆n,d is of type (13),

and by (23) and Lemma 3.5

sup
t∈∆d,n

|Mn(t)−M(t)| → 0 a.s. as n→∞, if ∆n,d is of type (14).

Thirdly, for every n ∈ N the estimator τn is a supremizing point of the restriction
of Mn on ∆n,d, and τ is the well-separated maximizer of M on ∆d. Herewith, all
requirements of Theorem 3.3 in [6] are fulfilled, which yields the weak (15) and strong
(16) consistency of τn. �

Assume the statistician has knowledge about the minimal distance between the jump-
positions in the sense that

min{τi+1 − τi : 0 ≤ i ≤ d} > m, (63)

where m > 0 is known. Then τ lies in the region

∆̂ := {t = (t1, . . . , td) ∈ (l, r)d : ti+1 − ti > m},

whence a reasonable estimator is now given by

τ̂n = (τ̂1,n, . . . , τ̂d,n) ∈ argsup
t∈b∆ Mn(t).

In this case we need no boundedness condition on f . Moreover, the mathematical
treatment is very easy.

Theorem 3.6. If τ is the well-separated maximizing point of M , then

τ̂n → τ a.s. as n→∞.

P r o o f . It follows from Lemma 3.2 that

sup
t∈b∆ |Mn(t)−M(t)| ≤ γ 1√

m
2(d+ 1) sup

u∈R
|Fn(u)− F (u)|,
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where the right-hand side converges to zero (for every df F ) with probability one by
the Glivenko-Cantelli Theorem. Thus, an application of Theorem 3.3 in [6] finishes the
proof. �

Recall the definition of αn in (11). Its natural counterpart is given by

α̂n = (α̂0,n, . . . , α̂d,n) with α̂j,n :=
Fn(τ̂j+1,n)− Fn(τ̂j,n)

τ̂j+1,n − τ̂j,n
, j = 0, 1, . . . , d, (64)

where τ̂0,n := l, τ̂d+1,n := r.

Corollary 3.7. Assume that τ is the well-separated maximizing point of M and that
f is bounded away from zero and infinity.

If ∆n,d is of type (13), then

(τn, αn) P→ (τ, α) n→∞, ∀ 0 < β < 1. (65)

If ∆n,d is of type (14), then

(τn, αn)→ (τ, α) a.s. n→∞, ∀ 0 < β < 1. (66)

P r o o f .
For the proof of (65) it suffices by (15) of Theorem 3.1 to show that αn

P→ α. Since

|Fn(τj,n)− F (τj)| ≤ |Fn(τj,n)− F (τj,n)|+ |F (τj,n)− F (τj)|
≤ sup

s∈R
|Fn(s)− F (s)|+ |F (τj,n)− F (τj)|

P→ 0, n→∞,

one can deduce from the Glivenk-Cantelli Theorem and (15) of Theorem 3.1 that
Fn(τj,n) P→ F (τj), n → ∞, j = 0, 1, . . . , d + 1, upon noticing that F is continuous.
Therefore, by the continuity theorem for convergence in probability

αj,n
P→ F (τj+1)− F (τj)

τj+1 − τj
, n→∞, j = 0, 1, . . . , d,

From Proposition 2.1, we know that αj = F (τj+1)−F (τj)
τj+1−τj

, j = 0, 1, . . . , d. To sum up it

follows that (τn, αn) P→ (τ, α), n→∞ as desired. The proof for (66) follows in the same
line. �

Similarly, for ∆̂ with known m given in (63) we obtain analogously as above that the
following corollary is true.

Corollary 3.8. If τ is the well-separated maximizing point of M , then

(τ̂n, α̂n)→ (τ, α) a.s. n→∞. (67)



214 D. FERGER AND J. VENZ

Remark 3.9. Kanazawa [8] uses the Hellinger-distance in place of the L2-distance, i. e.,
he considers

D̃(t, a) :=
∫ r

l

(
√
f(x)−

√
ft,a(x))2 dx.

and

(τ̃ , α̃) = argmin{D̃(t, a) : t ∈ ∆d, a ∈ Rd+1,

d∑
i=0

ai(ti+1 − ti) = 1}.

The corresponding minimization problem can be solved by the method of Lagrange
multipliers and gives

τ̃ = (τ̃1, . . . , τ̃d) = argmax
(t1,...,td)∈∆d

M̃(t1, . . . , td),

where

M̃(t1, . . . , td) =

√√√√ d∑
i=0

(
∫ ti+1

ti

√
f(x) dx)2

ti+1 − ti
. (68)

Comparing M̃ with our M in (3) we see that f is simply replaced by
√
f . Now, Kanazawa

[8] makes a further transformation based on∫ ti+1

ti

√
f(x) dx =

∫ ti+1

ti

(f(x))−1/2F (dx) =
∫ F (ti+1)

F (ti)

(f(F−1(u))−1/2 du

and similarly

ti+1 − ti =
∫ F (ti+1)

F (ti)

(f(F−1(u))−1 du.

Therefore,
M̃(t1, . . . , td)2 = C(F (t1), . . . , F (td))

with

C(p1, . . . , pd) =
d∑
i=0

(
∫ pi+1

pi
(f(F−1(u))−1/2 du∫ pi+1

pi
(f(F−1(u))−1 du

.

Let
π = (π1, . . . , πd) := argmax

0<p1<...<pd<1
C(p1, . . . , pd).

Since F is continuous and strictly increasing the map (t1, . . . , td) 7→ (F (t1), . . . , F (td))
is a bijection, whence

πj = F (τ̃j), 1 ≤ j ≤ d,

or equivalently
τ̃j = F−1(πj) 1 ≤ j ≤ d. (69)

Kanazawa [8] motivates an empirical analogue Cn of C which is based on the spacings
of the observations Xi. This leads to the estimator

pn = (p1,n, . . . , pd,n) = argmax
0<p1<...<pd<1

Cn(p1, . . . , pd).
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He proves that

pn
P→ π, n→∞. (70)

In view of (69) a reasonable estimator τ̃n = (τ̃1,n, . . . , τ̃d,n) for τ̃ is given by

τ̃j,n = F−1
n (pj,n), 1 ≤ j ≤ d.

For the proof of the consistency (70) he requires (amongst others) that F−1 is twice
continuously differentiable with first derivative such that 0 < m ≤ (F−1)′ ≤ M for all
u ∈ [0, 1] with constants m and M , confer A.1-A.4 in [8]. In this case F−1

n converges to
F−1 uniformly on (0, 1) with probability one. Consequently, one obtains from (70) that

τ̃n
P→ τ̃ , n→∞.

Note that it is cannot be taken for granted that τ̃ = τ . In fact, this is not true in general.
To see this consider d = 1 and the density

f(x) := (5− x2)/12, x ∈ [−1, 2].

Here, τ1 = 1.25, whereas τ̃1 = 1.34087. (The pertaining levels are α0 = 0.380208, α1 =
0.192708 and α̃0 = 0.3751114, α̃1 = 0.177895, respectively.)

On the other hand, if f = fτ,α is a d-step function, then (τ, α) = (τ̃ , α̃), because then

0 = D(τ, α) < D(t, a) ∀ (t, a) ∈ ∆d ×Rd+1

and

0 = D̃(τ, α) < D̃(t, a) ∀ (t, a) ∈ ∆d ×Rd+1

upon noticing that the L2-distance between two step-functions is zero if and only if both
coincide and the same holds for the Hellinger-distance.

However, we would like to point out that the case f = fτ,α is excluded by Kanazawa’s
differentiability assumption on F−1.

If f is continuous there is no correct number of steps as Kanazawa [9] points out.
As a consequence to obtain a consistent estimator d should depend on the sample size
n. Kanazawa [9] suggests a sample-based d = d̃n and shows that d̃n ∼ λ(f)n1/3 in
probability and gives an explicit formula for the functional λ(f).

Remark 3.10. Recall that our estimators are specifically designed for densities f = fτ,α
that are d-step functions with known number d of jumps. Our approach is global in the
sense that we do not estimate f locally at each point x ∈ [l, r] as it is done in kernel-
density estimation. In particular, no smoothing parameter is involved in contrast to the
problem of bandwidth-selection for kernel-density estimators. On the other hand, here
d may be unknown, confer, e. g., Chu and Cheng [3]. We treat this case for our global
approach in the next section.
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4. ESTIMATION OF THE NUMBER OF STEPS

Throughout this section f is a step-function with unknown number d of steps. We wish
to estimate the true value d0 of d under the additional information that d0 ≤ d̄, where
the upper bound d̄ is known. Notice that our involved functions depend on d, that is
D = D(d),M = M (d), τ = τ (d), α = α(d),Mn = M

(d)
n , τn = τ

(d)
n , αn = α

(d)
n . Define

d̂n := argmax
1≤d≤d̄

M (d)
n (τ (d)

n ).

Theorem 4.1. Assume for every d ∈ {1, . . . , d̄} that τ (d) is the well-separated maxi-
mizing point of M (d) and that α(d) > 0 (componentwise) as well as ∆n,d is of type (14).
Then

P(d̂n = d0 for eventually all n ∈ N) = 1. (71)

P r o o f . Define Qn(d) := M
(d)
n (τ (d)

n ) and Q(d) := M (d)(τ (d)), 1 ≤ d ≤ d̄. Observe for
each such d we have that:

|Qn(d)−Q(d)| ≤ sup
t∈∆n,d

|M (d)
n (t)−M (d)(t)|+ |M (d)(τ (d)

n )−M (d)(τ (d))|.

By (23) and Lemma 3.5

sup
t∈∆d,n

|M (d)
n (t)−M (d)(t)| → 0 a.s. as n→∞.

An application of Theorem 3.1 yields that τ (d)
n → τ (d) a.s., whence by continuity of M (d)

we see that Qn(d)→ Q(d) a.s. Since there are only finitely many d it follows that

sup
1≤d≤d̄

|Qn(d)−Q(d)| → 0 a.s. (72)

Let || · || denote the L2-Norm. Notice that f = fτ(d0),α(d0) , since d0 is the true number
of steps. By definition (1) of D = D(d) it is

D(d)(τ (d), α(d)) = ||fτ(d0),α(d0) − fτ(d),α(d) ||2
{

= 0, d = d0

> 0, d 6= d0,
(73)

where the second relation holds, because the L2-distance between two step-functions is
zero if and only if both coincide as already stated above. On the other hand, it follows
from (6) with t := τ (d) that

D(d)(τ (d), α(d)) = ||f ||2 −M (d)(τ (d))2

and thus (73) guarantees that

Q(d)
{

= ||f ||, d = d0

< ||f ||, d 6= d0.
(74)
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So, d0 is the unique maximizing point of Q and (72) in combination with Corollary 2.3
of Ferger [5] ensures that d̂n → d0 a.s. In fact, we arrive at the desired result (71), for
d̂n and d0 are natural numbers. �

The following result yields a consistent estimate for the positions of the jumps and
the pertaining levels if the number of jumps is unknown, but with known upper bound.

Corollary 4.2. Under the assumptions of Theorem 4.1 it follows that

(τ (d̂n)
n , α(d̂n)

n )→ (τ (d0), α(d0)) a.s.

P r o o f . Since

{(τ (d0)
n , α(d0)

n )→ (τ (d0), α(d0)), n→∞} ∩ {d̂n = d0 for eventually all n ∈ N}

⊆ {(τ (d̂n)
n , α(d̂n)

n )→ (τ (d0), α(d0)), n→∞}

the assertion follows immediately from Theorem 3.1 and Theorem 4.1. �

5. SIMULATION

In this section, we present results of a small simulation study for the estimator τn that is
based on an explicit ’true’ pdf with two jump points (d = 2). Here we confine ourselves
to a simple and specific case. Considerations for a broad simulation study are given at
the end of this section. The underlying true pdf f of a virtual set of datapoints shall be

f(x) =


0.5 0 ≤ x ≤ 0.25
2 0.25 < x ≤ 0.5
0.75 0.5 < x ≤ 1.

(75)

In the notation of this article, that is (τ1, τ2) = (0.25, 0.5) and (α0, α1, α2) = (0.5, 2, 0.75).
The simulation procedure is as follows. For given sample sizes, we draw samples of ran-
dom numbers that are distributed according to the above pdf. Specifically, we draw
10000 replications for each sample size. Then for each sample, by assuming d = 2 is
known, an estimate (τ1,n, τ2,n) is calculated by maximizing the function Mn from (8) on
a triangular grid ∆̃ that is defined as follows:

∆̃ :=
{

(t1, t2) ∈ E2 : 0 < t1 < t2 < 1
}
, where E := {0.01, 0.02, 0.03, . . . , 0.99}.

The grid is chosen to achieve computational tractability but also ensures that ∆̃ is a
true subset of ∆n,2 of type (14) even for n = 50, since for (t1, t2) ∈ ∆̃ holds ti+1 − ti ≥
0.1 > 50−2·0.8, i = 0, 1, 2. The use of a grid instead of a continuous domain induces
some error which is a limitation of this simulation study. Nevertheless, aggregated
results over 10000 replications will give a reasonable impression of the order of empirical
performance measures for the estimator (τ1,n, τ2,n). All simulations and calculations
were done in Matlab R2014a [Ref: MATLAB and Statistics Toolbox Release 2014a, The
MathWorks, Inc., Natick, Massachusetts, United States.].
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τ1,n τ2,n
n Mean Bias MSE Mean Bias MSE
50 0.3290 0.0790 0.0223 0.4476 -0.0524 0.0172
100 0.2813 0.0313 0.0048 0.4732 -0.0268 0.0050
150 0.2644 0.0144 0.0015 0.4850 -0.0150 0.0021
200 0.2581 0.0081 0.0006 0.4818 -0.0182 0.0010
300 0.2538 0.0038 0.0002 0.4949 -0.0051 0.0003
500 0.2518 0.0018 <0.0001 0.4978 -0.0022 0.0001

Tab. 1. Simulation results for estimates (τ1,n, τ2,n) of

(τ1, τ2) = (0.25, 0.5) from pdf (75); 10000 replications in each

simulation; n denotes sample size; MSE = mean squared error.

The results of the simulations are presented in Table 1. We calculated the empiri-
cal mean, bias, and empirical mean squared error (MSE) of (τ1,n, τ2,n) over all 10000
replications for each given sample size. For sample sizes of 150 and above, the MSE is
of order 10−3 or below for both τ1,n and τ2,n. However, for sample sizes 50 or 100, we
observe quite notable bias. For all sample sizes, the bias is positive for the smaller τ1,n,
and negative for the greater τ2,n.

A specific example estimate fτn,αn
of f along with a normal kernel density estimate

can be found in Figure 1. (The normal kernel bandwidth is the bandwidth that is the-
oretically optimal for estimating normal densities. Other choices of bandwidth couldn’t
improve the fit significantly.)
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Fig. 1. example density estimates of pdf (75), sample size n=200.
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A full comprehensive simulation study including comparisons with histogram estima-
tors is beyond the scope of this article. The performance of the estimators will likely
depend on the true vs. assumed number of jump points, the distance between jump
points and the jump heights. All these influences need to be considered at the same
time in a thoroughly conducted simulation study that may be included in future work.

(Received April 1, 2016)
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