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EVENT-TRIGGERED DESIGN
FOR MULTI-AGENT OPTIMAL CONSENSUS
OF EULER–LAGRANGIAN SYSTEMS

Xue-Fang Wang, Zhenhua Deng, Song Ma and Xian Du

In this paper, a distributed optimal consensus problem is investigated to achieve the opti-
mization of the sum of local cost function for a group of agents in the Euler–Lagrangian (EL)
system form. We consider that the local cost function of each agent is only known by itself and
cannot be shared with others, which brings challenges in this distributed optimization problem.
A novel gradient-based distributed continuous-time algorithm with the parameters of EL sys-
tem is proposed, which takes the distributed event-triggered control mechanism into account.
A sufficient condition is given to show that the performance of the global convergence to the
optimal point can be guaranteed under the proposed method. Moreover, the Zeno behavior of
triggering time can be excluded. Finally, to show the effectiveness of the presented algorithm,
an example is given along with simulation results.
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1. INTRODUCTION

Distributed optimization has drawn much attention since it has wide application back-
ground. One of the standard optimization problems is optimal consensus, which means
that all the agents solve a optimization problem in a consensus way. This problem has
been studied and applied to many research areas such as smart grids [3] and sensor
networks [4]. In this distributed optimization problem, each agent only knows its own
local cost function, while the objective for the whole network is to optimize a global
cost function in the form of the sum of all local cost functions cooperatively. So far,
there have been many meaningful results in continuous-time cases. For example, [5, 6]
developed gradient-based or subgradient-based algorithms to solve the constrained dis-
tributed optimization problem, while [7, 8] studied the distributed optimization problem
with external disturbances. Moreover, [16] designed an algorithm for distributed opti-
mization problem with discrete-time communication. Additionally, [2] provided various
connectivity conditions to solve the distributed continuous-time convex intersection com-
putation.
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In general, it should be noted that physical systems are indispensable part for achiev-
ing distributed optimization task, such as the cooperative search of radio sources [20],
the optimization design of multiple mechanical agents [21] and the distributed opti-
mal power flow [3]. Besides, Euler–Lagrangian (EL) systems have been widely studied,
which are very powerful in the modeling and design for many physical systems such as
mechanical/robotic systems [18, 19]. Up to now, EL systems have been widely applied
to accomplish many complicated tasks by their cooperation like the cooperative search
problem [20], the distributed tracking problem [17], and the set aggregation problem
[23]. Because many practical tasks can be viewed as a special case of optimal consensus,
it is very meaningful to study the optimization problem together with agent dynamics
in the form of EL systems. For example, [9] designed a distributed optimization algo-
rithm for multiple EL systems with global convergence, while [21] developed distributed
algorithms for such system with semi-global stability.

On the other hand, the cooperation between agents is the basis of completing a
distributed optimization task, which results in frequent communication among agents.
However, in some practical situations, these agents may have limited energy or capacity.
There are some strategies to deal with these problems including random sleep scheme [10]
and event-triggered scheme [13]. In fact, the event-triggered strategy provides suitable
rules to reduce the number of the communication rate and/or the actuator updates
effectively. Following the ideas, event-triggered schemes have been used in multi-agent
systems to reduce the cost of the communication between agents [11, 26]. However,
few studies were done to pay attention to the reduction of communication for event-
triggered control of optimal consensus problem, though some results can be found in
[12, 14, 15, 16], where different distributed event-triggered optimization algorithms were
presented for different situations.

The objective of this paper is to design a distributed event-triggered optimization
algorithm to solve optimal consensus problem of EL agents for the reduction of com-
munication. The contributions of this paper are summarized as follows. Different from
many distributed optimization results with the agents in the single integrator form (such
as [5, 6, 12, 14, 16]), a distributed event-triggered algorithm is designed for EL agents.
Also, the set aggregation problem discussed in [23] is a special case of the optimization
problem in this paper. In fact, the proposed algorithm of this paper can guarantee global
convergence to the exact optimal solution by extending the result given in [9], which did
not adopt any event-triggered strategy. Furthermore, the result of this paper is better
than that of [16], in which the algorithm only achieved the exponential convergence to
a neighborhood of the optimization point. Additionally, the proposed event-triggered
strategy can not only reduce the cost of communication but also avoid the Zeno behavior
of triggering time.

This paper is organized as follows. Section 2 formulates the problem and gives the
preliminaries. Section 3 proposes the distributed optimization design process and shows
the convergence results, and Section 4 gives an example to illustrate the effectiveness of
the proposed algorithms. Finally, Section 5 gathers the conclusions.

Notations: R and N stand for the set of real and natural numbers, respectively. Rn is
n-dimension Euclidean space. ⊗ and ‖·‖ denote the Kronecker product and the standard
Euclidean norm, respectively. AT is the transpose of matrix A. xi is the ith element
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of vector x, and col(x1, . . . , xn) = [xT1 , . . . , x
T
n ]T . In is n × n identity matrix. 1n and

0n are the column vectors of n ones and zeros, respectively. λmax(A) is the maximal
eigenvalue of matrix A.

2. PRELIMINARIES AND FORMULATION

In this section, some basic concepts are introduced for convex analysis [24] and graph
theory [25], and then the considered problem is formulated.

2.1. Convex analysis

The following knowledge about convex analysis can be found in [24]. A function f(·) :
Rm → R is said to be convex if

f(aζ1 + (1− a)ζ2) ≤ af(ζ1) + (1− a)f(ζ2), ∀ ζ1, ζ2 ∈ Rm, a ∈ [0, 1].

A differentiable function f is convex over Rm if

f(ζ1)− f(ζ2) ≥ ∇f(ζ2)T (ζ1 − ζ2), ∀ ζ1, ζ2 ∈ Rm, (1)

and f is strictly convex over Rm if the above inequality is strict whenever ζ1 6= ζ2, and
f is ω-strongly convex (ω > 0) over Rm if

(∇f(ζ1)−∇f(ζ2))T (ζ1 − ζ2) ≥ ω‖ζ1 − ζ2‖2, ∀ ζ1, ζ2 ∈ Rm. (2)

A function f : Rm → Rm is Lipschitz with constant θ > 0, or simply θ-Lipschitz, if

‖f(ζ1)− f(ζ2)‖ ≤ θ‖ζ1 − ζ2‖, ∀ ζ1, ζ2 ∈ Rm.

2.2. Graph theory

An undirected graph G = {V, E} consists of a finite vertex set V = {1, 2, . . . , n} and
an edge set E . An edge (i, j) ∈ E denotes that vertices i, j can obtain each other’s
information, that is, i and j are neighbors. Ni = {j : (j, i) ∈ E} denotes the neighbors
of vertex i. A path of length ι from vertex i1 to vertex iι+1 is a sequence of ι+1 distinct
vertices i1, . . . , iι+1 such that (iq, iq+1) ∈ E for q = 1, · · · , ι, in which i0 and iι are called
the end nodes of the path. If there is a path between any two vertices of a graph G,
then the graph is connected.
A = [aij ] ∈ Rn×n is the weighted adjacency matrix of G with aij as the weight-

ing of edge (i, j), where aii = 0, aij > 0 if (j, i) ∈ E , otherwise, aij = 0. D =
diag{d1, . . . , dn} ∈ Rn×n is the degree matrix of G, where di =

∑n
j=1 aij for i = 1, . . . , n,

and L = D − A is the Laplacian matrix of G. The eigenvalues of L are denoted by
λ1, . . . λn with λi ≤ λj for i ≤ j. Besides, λ1 = 0 is an eigenvalue with 1n as its cor-
responding eigenvector of L, and λ2 > 0 if and only if the graph G is connected. More
details of graph theory can be found in [25].
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2.3. Problem formulation

Consider a network of n agents with an interaction topology described by a graph G.
Agent i is equipped with a local cost function fi : Rm → R, only known by itself, and
its dynamics is described by the following EL equation:

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +Gi(qi) = ui, i = 1, 2, . . . , n, (3)

where qi, q̇i ∈ Rm denote the generalized position and velocity vectors, respectively;
Mi(qi) ∈ Rm×m is the positive definite inertia matrix; Ci(qi, q̇i)q̇i ∈ Rm is the Coriolis
and centripetal forces vector; Gi(qi) ∈ Rm is the gravity vector; and ui ∈ Rm is the
control force. It is known that an EL system satisfies the following properties [22]:

(i) Ṁi(qi)− 2Ci(qi, q̇i) is skew symmetric.

(ii) For any x, y ∈ Rm, Mi(qi)x + Ci(qi, q̇i)y + Gi(qi) = Ωi(qi, q̇i, x, y)ϕi, where
Ωi(qi, q̇i, x, y) ∈ Rm×p is a known regression matrix and ϕi ∈ Rp is a constant
vector consisting of the uncertain parameters of system (3).

As for the EL multi-agent system, agent i ∈ V is presented with a local cost function
fi : Rm → R, only known by agent i. The objective of the EL systems is to cooperatively
solve the following distributed optimal consensus problem:

min
p∈Rm

f(p), f(p) =
n∑
i=1

fi(p), (4)

where f(p) is called the global cost function of the network. To be strict, we give the
following definition.

Definition 2.1. The distributed optimization problem is solved for the system (3), if,
for any initial condition qi(0), q̇i(0) ∈ Rm with i ∈ V, all the Euler–Lagrangian agents
converge to the global optimal solution of problem (4), i. e.,

lim
t→∞

qi(t) = p∗, lim
t→∞

q̇i(t) = 0m, i ∈ V, (5)

where p∗ = arg min
p∈Rm

f(p).

The following assumption is about the graph and the cost functions, which was used
in [7, 9, 12, 16, 21].

Assumption 2.2. (a) The undirected graph G is connected; (b) The local cost function
fi is wi-strongly convex and differentiable, and its gradient is θi-Lipschitz on Rm.

From Assumption 2.2, it is obvious that f(p) is strongly convex, which implies that
problem (4) has a unique optimal solution p∗ := arg minp∈Rm f(p). Here we consider
the case of −∞ < ‖p∗‖ < +∞, i. e., the optimal solution is bounded.

The task in this paper is to design a control protocol ui with concerning the reduction
of communication cost such that the multi-agent system (3) still solves the optimization
problem p∗ = arg min

p∈Rm
f(p) by driving qi to p∗. To this end, an event-triggered scheme

will be given, which is a nonsmooth scheme. Therefore, we need the following definition
in the sequel.
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Definition 2.3. The upper Dini derivative of continuous function g : R→ R is denoted
by g′+, defined as

g′+ , limsup
h→0+

g(t+ h)− g(h)
h

.

3. MAIN RESULT

In this section, we provide a event-based optimal consensus protocol for EL multi-agent
systems with the optimization problem (4).

For each agent i, we assume that the system parameters are available, and then the
following gradient-based event-triggered optimization controller is developed:

ui = Ci(qi, q̇i)q̇i +Gi(qi)− kMi(qi)q̇i −Mi(qi)
∑
j∈Ni

aij(qi(tik)− qj(tjk))

−Mi(qi)Ofi(qi)−Mi(qi)vi,

v̇i =
∑
j∈Ni

aij(qi(tik)− qj(tjk) + q̇i(til)− q̇j(t
j
l )), i ∈ V, t ∈ [tik, t

i
k+1) ∪ [til, t

i
l+1), (6)

where k ≥ θ(1 + θ
4ω ) + 2 + 1

4λmax(L), θ = max{θ1, . . . , θn}, and ω = min{ω1, . . . , ωn}.
tik and tjk are the last event times of agent i and j corresponding to q, respectively.
tjl and tjl are the last event times of agent i and j corresponding to q̇, respectively.

Combining (3) and (6), we obtain the following closed-loop system

q̈i = −kq̇i −
∑
j∈Ni

aij(qi(tik)− qj(tjk))− Ofi(qi)− vi,

v̇i =
∑
j∈Ni

aij(qi(tik)− qj(tjk) + q̇i(til)− q̇j(t
j
l )). (7)

Without loss of generality, we assume that the first event is generated at time t0.
Then the triggering time sequence {tik} of position and sequence {til} of velocity for
agent i are defined iteratively by

tik+1 = inf{t : t > tik, f
i
p(t) > 0},

til+1 = inf{t : t > til, f
i
v(t) > 0}, (8)

where

f ip(t) = ‖eip(t)‖ − αβ1‖
∑
j∈Ni

aij(qi(tik)− qj(tjk))‖ − β2e
−γt,

f iv(t) = ‖eiv(t)‖ − αβ3‖q̇i(til)‖ − β4e
−γt (9)

are said to be the trigger functions for positive real numbers β1, β2, β3, β4, α (to be
determined later) and γ satisfying αβ1 <

1
d+a
√

6n
, αβ3 < 1 and 0 < γ < β

2λmax(Φ) with
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constant β to be determined later, d = max
i∈V
{di}, a = max

i,j∈V
{aij},

Φ =

 Φ1
1
2In

α
2

(
0Tn−1

In−1

)
∗ k

2 In 0n×(n−1)

∗ ∗ 1
2 (UTLU)−1 + α

2 In−1

 ,

Φ1 =
1
2
In +

α

2

(
0 0Tn−1

∗ In−1

)
,

eip(t) = qi(tik)− qi(t) and eiv(t) = q̇i(til)− q̇i(t). Therefore, eip(t) and eiv(t) are reset to 0
at t = tik and t = til, respectively.

It is time to give the main result to show that the distributed optimal consensus of
EL system (3) can be exponentially achieved under controller (6) with event-triggered
condition (8).

Theorem 3.1. Consider the heterogeneous EL multi-agent system (3), and suppose
that Assumption 1 holds. Then, for any initial conditions with

∑n
i=1 vi(0) = 0m, the

distributed optimal consensus of system (3) can be achieved exponentially under the
controller (6) with event-triggered condition (8). Furthermore, the Zeno behavior of the
event-triggered strategies can be excluded.

P r o o f . Let

η = col(η1, . . . , ηn) = q − q∗, ξ = col(ξ1, . . . , ξn) = [q̇T1 , . . . , q̇
T
n ]T ,

ϑ = col(ϑ1, . . . , ϑn) = [vT1 , . . . , v
T
n ]T − ϕ∗, h = Oq f̃(q)− Oq f̃(q∗),

where q = [qT1 , . . . , q
T
n ]T , q∗ = 1n ⊗ p∗, ϕ∗ = −Oq f̃(q∗), and f̃(q) :=

∑n
i=1 fi(qi).

Actually, one can find that eip(t) =
(
qi(tik)− q∗

)
− (qi(t)− q∗) = ηi(tik)− ηi(t).

Then, for system (7), we have

η̇i = ξi,

ξ̇i = −kξi −
∑
j∈Ni

aij(ηi(tik)− ηj(tjk))− Ofi(qi)− vi,

ϑ̇i =
∑
j∈Ni

aij [(ηi(tik)− ηj(tjk)) + (ξi(til)− ξj(t
j
l ))]. (10)

Moreover, it yields the compact form of system (10)

η̇ = ξ,

ξ̇ = −kξ − L(η + ep)− ϑ− h,
ϑ̇ = L(η + ep + ξ + ev). (11)

Since L is the Laplacian matrix associated with G, we have L1n = 0n, and then∑n
i=1 v̇i = 0m, which implies that

n∑
i=1

vi(t) =
n∑
i=1

vi(0) = 0m, ∀t ≥ 0. (12)
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Since G is connected, zero is the simple eigenvalue of L and all the other eigenvalues
are positive. With singular value decomposition, there is an orthogonal matrix P =
(r, U) ∈ Rn×n such that PTLP = diag{0, λ2, . . . , λn}, where r = 1n√

n
and U ∈ Rn×(n−1).

For convenience, we change some variables as follows:

η̂ = (PT ⊗ Im)η, ξ̂ = (PT ⊗ Im)ξ,

ϑ̂ = (PT ⊗ Im)ϑ, êp = (PT ⊗ Im)ep,
êv = (PT ⊗ Im)ev, (13)

then, system (11) can be rewritten as follows together with (12)

˙̂
ξ = −kξ̂ − (PTLP ⊗ Im)(η̂ + êp)− (PT ⊗ Im)(ϑ+ h),
˙̂η = ξ̂,

˙̂
ϑ = (PTLP ⊗ Im)(η̂ + êp + ξ̂ + êv). (14)

Furthermore, system (14) can be written as follows.

˙̂
ξ1 = −kξ̂1 − (rT ⊗ Im)h,

˙̂
ξ2:n = −ξ̂2:n − (UTLU ⊗ Im)(η̂2:n + êp2:n)− ϑ̂2:n − (UT ⊗ Im)h,

˙̂η1 = ξ̂1, ˙̂η2:n = ξ̂2:n,

˙̂
ϑ1 = 0m,

˙̂
ϑ2:n = (UTLU ⊗ Im)(η̂2:n + êp2:n + ξ̂2:n + êv2:n), (15)

where ξ̂1, η̂1, ϑ̂1 ∈ Rm and ξ̂2:n, η̂2:n, ϑ̂2:n ∈ R(n−1)m.
Take the following candidate Lyapunov function

V = V1 + αV2 = qT0 (Φ⊗ Im)q0, q0 = [ξ̂T , η̂T , ϑ̂T2:n]T , (16)

where

V1 =
1
2
‖ξ̂1‖2 + ξ̂T1 η̂1 +

k

2
‖η̂1‖2 +

1
2
‖ξ̂2:n‖2 + ξ̂T2:nη̂2:n +

k

2
‖η̂2:n‖2

+
1
2
ϑ̂2:n((UTLU)−1 ⊗ Im)ϑ̂2:n,

V2 =
1
2

(ξ̂2:n + ϑ̂2:n)2. (17)

Then the derivative of V1 along the trajectories of system (15) can be written as

V̇1 = −(k − 1)‖ξ̂1‖2 − (k − 1)‖ξ̂2:n‖2 − (ξ + η)Th− ξ̂T2:n(UTLU ⊗ Im)η̂2:n

−ξ̂T2:n(UTLU ⊗ Im)êp2:n − η̂T2:n(UTLU ⊗ Im)η̂2:n − êTp2:n
(UTLU ⊗ Im)η̂2:n

+ϑ̂2:nêp2:n + ϑ̂2:nêv2:n

= −(η̂2:n, ξ̂2:n)T (M⊗Im)(η̂T2:n, ξ̂
T
2:n)T−(α0 + 1)‖ξ̂2:n‖2−(k−1)‖ξ̂1‖2−(ξ+η)Th

−ξ̂T2:n(UTLU ⊗ Im)êp2:n − êTp2:n
(UTLU ⊗ Im)η̂2:n + ϑ̂2:nêp2:n + ϑ̂2:nêv2:n , (18)
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where α0 = θ(1 + θ
4ω ) and M =

[
UTLU 1

2U
TLU

∗ (k − α0 − 2)In−1

]
. According to Schur

Complement Lemma, it is clear thatM is nonnegative definite. Since Ofi is θi−Lipschitz,

− ξTh = −
n∑
i=1

ξTi (Ofi(ηi + p∗)− Ofi(p∗)) ≤ θ
n∑
i=1

|ξi||ηi|

≤ θ( θ
4ω

+ 1)‖ξ̂‖2 +
θω

θ + 4ω
‖η̂‖2. (19)

Moreover, since fi is ωi−strongly convex, it follows that

ηTh = −
n∑
i=1

ηTi (Ofi(ηi + p∗)− Ofi(p∗)) ≥ ω
n∑
i=1

‖ηi‖2 = ω‖η‖2. (20)

The trigger condition (9) enforces that

‖eip‖ ≤ αβ1‖
∑
j∈Ni

aij(ηi(tik)− ηj(tjk))‖+ β2e
−γt

≤ αβ1

∑
j∈Ni

aij‖eip‖+
∑
j∈Ni

aij‖ηi‖+
∑
j∈Ni

aij‖ηj‖+
∑
j∈Ni

aij‖ejp‖

+ β2e
−γt.

Then

‖ep‖2 ≤ 6α2β2
1(d2 + a2n)

(1− αβ1d)2 − 6α2β2
1a

2n
‖η‖2 +

2nβ2
2

(1− αβ1d)2 − 6α2β2
1a

2n
e−2γt.

In the same way, we obtain

‖ev‖2 ≤
2α2β2

3

(1− αβ3)2
‖ξ‖2 +

2nβ2
4

(1− αβ3)2
e−2γt.

Furthermore, in view of (13), it concludes that

‖êp‖2 ≤ 6α2β2
1(d2 + a2n)

(1− αβ1d)2 − 6α2β2
1a

2n
‖η̂‖2 +

2nβ2
2

(1− αβ1d)2 − 6α2β2
1a

2n
e−2γt, (21)

‖êv‖2 ≤
2α2β2

3

(1− αβ3)2
‖ξ̂‖2 +

2nβ2
4

(1− αβ3)2
e−2γt. (22)

Therefore, combining (19), (20), (21) and (22), we conclude that

V̇1 ≤ −‖ξ̂2:n‖2 − (k − 1− α0)‖ξ̂1‖2 +
α

2
‖ξ̂2:n‖2 −

4ω2

θ + 4ω
‖η̂‖2 +

α

2
‖η̂2:n‖2 +

α

12
‖ϑ̂2:n‖2

+
6αλ2

max(L)β2
1(d2 + a2(n− 1))

(1− αβ1d)2 − 6α2β2
1a

2(n− 1)
‖η̂2:n‖2 +

2(n− 1)λ2
max(L)β2

2

α(1− αβ1d)2 − 6α3β2
1a

2(n− 1)
e−2γt

+
18αβ2

1(d2 + a2(n− 1))
(1− αβ1d)2 − 6α2β2

1a
2(n− 1)

‖η̂2:n‖2 +
6(n− 1)β2

2

α(1− αβ1d)2 − 6α3β2
1a

2(n− 1)
e−2γt

+
α

12
‖ϑ̂2:n‖2 +

6αβ2
3

(1− αβ3)2
‖ξ̂2:n‖2 +

6β2
4(n− 1)

α(1− αβ3)2
e−2γt. (23)



Event-triggered design for multi-agent optimal consensus of Euler–Lagrangian systems 187

Likewise, we obtain

V̇2 = −‖ϑ̂2:n‖2 − k‖ξ̂2:n‖2 − (k + 1)ϑ̂T2:nξ̂2:n − ξ̂T2:n(UT ⊗ Im)h− ϑ̂T2:n(UT ⊗ Im)h

+ξ̂T2:n(UTLU ⊗ Im)ξ̂2:n + ϑ̂T2:n(UTLU ⊗ Im)ξ̂2:n + ξ̂T2:n(UTLU ⊗ Im)êv2:n

+ϑ̂T2:n(UTLU ⊗ Im)êv2:n

≤ −1
4
‖ϑ̂2:n‖2 + 2θ2‖η̂‖2 + k0‖ξ̂2:n‖2 +

1
2
‖ξ̂2:n‖2 +

13α2λ2
max(L)β2

3

(1− αβ3)2
‖ξ̂2:n‖2

+
1
24
‖ϑ̂2:n‖2 +

13λ2
max(L)β2

4(n− 1)
(1− αβ3)2

e−2γt, (24)

where k0 = k2 + k + 5
4 + λ2

max(L) + λmax(L). Then, in view of (23) and (24), we give

V̇ = V̇1 + αV̇2

≤ − α

24
‖ϑ̂2:n‖2 −R1‖ξ̂1‖2 −R2‖η̂‖2 −R3‖ξ̂2:n‖2 +R4e

−2γt, (25)

where

R1 = k − 1− α0,

R2 =
4ω2

θ + 4ω
− 6αλ2

max(L)β2
1(d2 + a2(n− 1))

(1− αβ1d)2 − 6α2β2
1a

2(n− 1)
− α

2

− 18αβ2
1(d2 + a2(n− 1))

(1− αβ1d)2 − 6α2β2
1a

2(n− 1)
− 2αθ2,

R3 = 1− α− 6αβ2
3

(1− αβ3)2
− k0α−

13α3λ2
max(L)β2

3

(1− αβ3)2
,

R4 =
2(n− 1)λ2

max(L)β2
2

α(1− αβ1d)2 − 6α3β2
1a

2(n− 1)
+

6(n− 1)β2
2

α(1− αβ1d)2 − 6α3β2
1a

2(n− 1)

+
6β2

4(n− 1)
α(1− αβ3)2

+
13λ2

max(L)β2
4(n− 1)

(1− αβ3)2
. (26)

By taking α
(

1 + 6β2
3

(1−αβ3)2 + k0 + 13α2λ2
max(L)β2

3
(1−αβ3)2

)
< 1 and

α

(
6λ2

max(L)β2
1(d2+a2(n−1))

(1−αβ1d)2−6α2β2
1a

2(n−1)
+

18β2
1(d2+a2(n−1))

(1−αβ1d)2−6α2β2
1a

2(n−1)

)
+α(

1
2

+2θ2)<
4ω2

θ+4ω
,

according to (16), we have

V̇ (t) ≤ −β‖q0(t)‖2 +R4e
−2rt, (27)

where β , min{ α24 , R1, R2, R3}.
Then it results from (16) and (27) that

‖q0(t)‖2 ≤ λmax(Φ)
λmin(Φ)

e−
β

λmax(Φ) t‖q0(0)‖2 +
R4λmax(Φ)

λmin(Φ)(β − 2γλmax(Φ))
(e−2γt − e−

β
λmax(Φ) t).
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Further, by applying the condition 0 < γ < β
2λmax(Φ) for t ≥ 0, we can give the following

result

‖q0(t)‖2 ≤
(
λmax(Φ)
λmin(Φ)

‖q0(0)‖2 +
R4λmax(Φ)

λmin(Φ)(β − 2γλmax(Φ))

)
e−2γt, (28)

which implies that the optimal consensus can be achieved exponentially.
In the following, we will explain why the Zeno behavior can be avoided.
According to paper [26], we first show that Zeno behavior is free for the communi-

cation of the position. Compute the upper Dini derivative of ‖eip(t)‖ over time interval
[tik, t

i
k+1), then we can derive that

D+‖eip(t)‖ ≤ ‖ėip(t)‖ = ‖q̇i(t)‖ = ‖ξi(t)‖ = ‖(P−T ⊗ Im)ξ̂i(t)‖ ≤ ‖ξ̂i(t)‖.

By applying (28), we have

D+‖eip(t)‖ ≤
√
Ne−γt, (29)

where N = λmax(Φ)
λmin(Φ) ‖q0(0)‖2 + R4λmax(Φ)

λmin(Φ)(β−2γλmax(Φ)) .

Combining (29) with eip(t
i
k) = 0, it follows that

‖eip(t)‖ ≤
√
N

γ
(e−γt

i
k − e−γt), t ∈ [tik, t

i
k+1).

The next communication will not be executed until the first trigger function of (9) crosses
zero, i. e.,

αβ1‖
∑
j∈Ni

aij(qi(tik)− qj(tjk))‖+ β2e
−γtik+1 = ‖eip(tik+1)‖ ≤

√
N

γ
(e−γt

i
k − e−γt

i
k+1).

Take T ik = tik+1 − tik, which yields

β2e
−γT ik ≤

√
N

γ
(1− e−γT

i
k). (30)

By (30), we obtain that {T ik > 0 :
√
N
γ (1 − e−γT ik) − β2e

−γT ik ≥ 0} is nonempty and
T = infk{T ik} > 0 for any i, which implies that the Zeno behavior is excluded for any
agent i.

Next, we present that velocity communication is free of Zeno behavior.
With the same approach, we can derive the upper right-hand Dini derivative of ‖eiv(t)‖

described as follows:
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D+‖eiv(t)‖ ≤‖ėiv(t)‖ = ‖ξ̇i(t)‖ = ‖(P−T ⊗ Im) ˙̂
ξi(t)‖ ≤ ‖ ˙̂

ξi(t)‖

≤k‖ξ̂i(t)‖+ λmax(L)‖η̂i(tik)‖+ ‖ϑi‖+ ‖hi‖

≤k
√
Ne−γt + λmax(L)‖η̂i(tik)‖+

√
Ne−γt + θ‖η̂i(t)‖

≤(k + 1 + θ)
√
Ne−γt + λmax(L)‖η̂i(tik)‖, t ∈ [til, t

i
l+1). (31)

It follows from (31) and eiv(t
i
l) = 0 that

‖eiv(t)‖ ≤
(k + 1 + θ)

√
N

γ
(e−γt

i
l − e−γt) + λmax(L)‖η̂i(tik)‖(t− til).

In the same sense, the next event will not be triggered until the second trigger function
of (9) crosses zero, i. e.,

αβ3‖ξi(til)‖+ β4e
−γtil+1 = ‖eiv(til+1)‖

≤ (k + 1 + θ)
√
N

γ
(e−γt

i
l − e−γt

i
l+1) + λmax(L)‖η̂i(tik)‖T il ,

where T il = til+1 − til.
Therefore,

β4e
−γT il ≤ (k + 1 + θ)

√
N

γ
(1− e−γT

i
l ) + λmax(L)‖η̂i(tik)‖T il . (32)

By (32), we see that {T il > 0 : (k+1+θ)
√
N

γ (1−e−γT il )+λmax(L)‖η̂i(tik)‖T il −β4e
−γT il ≥ 0}

is nonempty and T = inf l{T il } > 0 for any agent i, which implies no Zeno behavior.
Thus, the conclusion follows. �

Remark 3.2. In distributed optimization field, the dynamics of agents usually are with
the form of single integrator as given in [5, 6, 12, 14, 15, 16], while the considered multi-
agent system in this paper consists of multiple EL systems, which is more difficult than
single integrator. Thus the algorithm design of this paper is more complex than that of
single integrator. Moreover, compared with the results of [21] with exponential conver-
gence in the sense of semi-globally, the algorithm of this paper, which basically extends
the results given in [9] with global convergence, can also keep the global convergence to
the exact optimal solution along with the reduction of communication among agents.
Furthermore, the result of this paper is better than that of [16] since the algorithm of
[16] only achieved the exponential convergence to a neighborhood of the optimal point.
Additionally, the proposed event-triggered strategy can not only reduce the cost of com-
munication but also avoid the Zeno behavior of triggering time.

4. EXAMPLE

In this section, an example is given to illustrate the effectiveness of the proposed control
algorithm. Consider a network composed of five EL agents with all edge weights 1,
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which is depicted by Figure 1, and their local cost functions are presented respectively
as follows

f1(q) =(qx − 2)2 + (qy − 2)2
,

f2(q) =
q2
x√

q2
x + 1

+
q2
y√

q2
y + 1

+ ‖q‖2,

f3(q) =
q2
x

ln (q2
x + 2)

+
q2
y

ln
(
q2
y + 2

)
+ (qx − 5)2 + (qy − 5)2,

f4(q) = ln
(
e−0.05qx + e0.05qx

)
+ ln

(
e−0.05qy + e0.05qy

)
+ ‖q‖2,

f5(q) =
q2
x√

q2
x + 1

+
q2
y√

q2
y + 1

+ qx + qy + ‖q‖2,

where q = [qx qy]T is a vector.

Fig. 1. The interaction topology of system.

Similar to [21, 22, 23], the system dynamics are[
m11,i m12,i

m21,i m22,i

] [
q̈ix
q̈iy

]
+
[
c11,i c12,i

c21,i c22,i

] [
q̇ix
q̇iy

]
=
[
τix
τiy

]
where m11,i = θ1i + 2θ2i cos qiy, m12,i = m21,i = θ3i + θ2i cos qiy, m22,i = θ3i, c11,i =
−θ2i sin qiy q̇iy, c12,i = −θ2i sin qiy (q̇ix + q̇iy), c21,i = θ2i sin qiy q̇ix, c22,i = 0, θ1i = 1.301,
θ2i = 0.256, θ3i = 0.096, and Gi(qi) = [0 0]T , i = 1, . . . 5.

The initial conditions are set as follows: q1(0) = [4 3]T , q2(0) = [3 − 5]T , q3(0) =
[0 − 2.5]T , q4(0) = [−1 − 2]T , q5(0) = [−2 4]T , and q̇i(0) = [0 0]T with i = 1, . . . , 5.
The parameters of controller are: α = 0.0002, β1 = 2, β2 = 10, β3 = 5, β4 = 20,
γ = 0.2, θ = 2, ω = 1.96 and k = 5. The simulation results are shown in Figures 2 – 4.
From Figures 2 and 3, it is clear that, under (6), the state of each agent converges to
the global optimal point q∗, and meanwhile, the velocity of each agent tends to zero.
Besides, Figure 4 shows that, the Zeno behavior of triggering time can be avoided.
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Fig. 2. The position performance under control algorithm (6).
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Fig. 3. The velocity performance under control algorithm (6).
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Fig. 4. The inter-execution times of position.

5. CONCLUSIONS

In this paper, one of the distributed optimization problems, optimal consensus was stud-
ied for a group of multiple Euler–Lagrangian systems. A novel event-based distributed
continuous-time controller was designed. With the proposed event-triggered condition
to reduce the communication cost and also avoid the Zeno phenomena, the optimal
consensus of the considered system was shown to be achieved globally under the given
controller. An example with simulations was given to demonstrate the effectiveness of
the algorithms.

ACKNOWLEDGEMENT

This work was supported by the National Key Research and Development Program of China
(2016YFB0901902), National Natural Science Foundation of China (61325014, 61333001), and
Beijing Natural Science Foundation (4152057).

(Received August 24, 2016)

R E F E R E N C E S

[1] A. Nedic and A. Ozdaglar: Distributed subgradient methods for multi-agent optimization.
IEEE Trans. Automat. Control 54 (2009), 48–61. DOI:10.1109/tac.2008.2009515

[2] G. Shi, K. H. Johansson, and Y. Hong: Reaching an optimal consensus: dynamical
systems that compute intersections of convex sets. IEEE Trans. Automat. Control 58
(2013), 610–622. DOI:10.1109/tac.2012.2215261

http://dx.doi.org/10.1109/tac.2008.2009515
http://dx.doi.org/10.1109/tac.2012.2215261


Event-triggered design for multi-agent optimal consensus of Euler–Lagrangian systems 193

[3] S. Bose, S. H. Low, T. Teeraratkul, and B. Hassibi: Equivalent relaxations
of optimal power flow. IEEE Trans. Automat. Control 60 (2015), 729–742.
DOI:10.1109/tac.2014.2357112

[4] Y. Zhang, Y. Lou, Y. Hong. and L. Xie: Distributed projection-based algorithms for
source localization in wireless sensor networks. IEEE Trans. Wireless Commun. 14 (2015),
3131–3142. DOI:10.1109/twc.2015.2402672

[5] Q. Liu and J. Wang: A second-order multi-agent network for bound-constrained
distributed optimization. IEEE Trans. Automat. Control 60 (2015), 3310–3315.
DOI:10.1109/tac.2015.2416927

[6] P. Yi, Y. Hong, and F. Liu: Distributed gradient algorithm for constrained optimization
with application to load sharing in power systems. Systems Control Lett. 83 (2015),
45–52. DOI:10.1016/j.sysconle.2015.06.006

[7] X. Wang, P. Yi, and Y. Hong: Dynamical optimization for multi-agent systems with
external disturbance. Control Theory Technol. 12 (2014), 132–138. DOI:10.1007/s11768-
014-0036-y

[8] X. Wang, Y. Hong, and H. Ji: Distributed optimization for a class of nonlinear multia-
gent systems With disturbance rejection. IEEE Trans. Cybernet. 46 (2016), 1655–1666.
DOI:10.1109/tcyb.2015.2453167

[9] Y. Zhang, Z. Deng, and Y. Hong: Distributed optimal coordination for mul-
tiple heterogenous Euler–Lagrangian systems. Automatica 79 (2017), 207–213.
DOI:10.1016/j.automatica.2017.01.004

[10] P. Yi and Y. Hong: Stochastic sub-gradient algoirthm for distributed optimization with
random sleep scheme. Control Theory Technol. 13 (2015), 333–347. DOI:10.1007/s11768-
015-5100-8

[11] J. Hu, G. Chen, and H. Li: Distributed event-triggered tracking control of leader-follower
multi-agent systems with communication delays. Kybernetika 47 (2011), 630–643.

[12] Z. Deng and Y. Hong: Distributed event-triggered optimization for multi-agent systems
with disturbance rejection. In: 12th IEEE Int. Conf. Control and Autom., Kathmandu
2016, pp 13–18. DOI:10.1109/icca.2016.7505245

[13] P. Tabuada: Event-triggered real-time scheduling of stabilizing control tasks. IEEE
Trans. Automat. Control 52 (2007), 1680–1685. DOI:10.1109/tac.2007.904277

[14] W. S. Chen and W. Ren: Event-triggered zero-gradient-sum distributed con-
sensus optimization over directed networks. Automatica 65 (2016), 90–97.
DOI:10.1016/j.automatica.2015.11.015

[15] Z. Deng, X. Wang, and Y. Hong: Distributed optimization design with triggers for
disturbed continuous-time multi-agent systems. IET Control Theory Appl. 11 (2017), 2,
282–290. DOI:10.1049/iet-cta.2016.0795

[16] S. S. Kia, J. Cortes, and S. Martinez: Distributed convex optimization via continuous-
time coordination algorithms with discrete-time communication. Automatica 55 (2015),
254–264. DOI:10.1016/j.automatica.2015.03.001

[17] H. Cai and J. Huang: Leader-following consensus of multiple uncertain Euler–Lagrange
systems under switching network topology. Int. J. Gene. Sys., 43 (2014), 294–304.
DOI:10.1080/03081079.2014.883714

[18] S. J. Chung and J. J. E. Slotine: Cooperative robot control and concurrent syn-
chronization of lagrangian systems. IEEE Trans. Robotics 25 (2009), 686–700.
DOI:10.1109/tro.2009.2014125

http://dx.doi.org/10.1109/tac.2014.2357112
http://dx.doi.org/10.1109/twc.2015.2402672
http://dx.doi.org/10.1109/tac.2015.2416927
http://dx.doi.org/10.1016/j.sysconle.2015.06.006
http://dx.doi.org/10.1007/s11768-014-0036-y
http://dx.doi.org/10.1007/s11768-014-0036-y
http://dx.doi.org/10.1109/tcyb.2015.2453167
http://dx.doi.org/10.1016/j.automatica.2017.01.004
http://dx.doi.org/10.1007/s11768-015-5100-8
http://dx.doi.org/10.1007/s11768-015-5100-8
http://dx.doi.org/10.1109/icca.2016.7505245
http://dx.doi.org/10.1109/tac.2007.904277
http://dx.doi.org/10.1016/j.automatica.2015.11.015
http://dx.doi.org/10.1049/iet-cta.2016.0795
http://dx.doi.org/10.1016/j.automatica.2015.03.001
http://dx.doi.org/10.1080/03081079.2014.883714
http://dx.doi.org/10.1109/tro.2009.2014125


194 X. WANG, Z. DENG, S. MA AND X. DU

[19] W. E. Dixon: Nonlinear Control of Engineering Systems: A Lyapunov-Based Approach.
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