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FRACTIONAL DELAY INTEGRODIFFERENTIAL SYSTEMS
WITH MULTIPLE DELAYS IN CONTROL

Rajagopal Joice Nirmala and Krishnan Balachandran

This paper describes the controllability of nonlinear fractional delay integrodifferential sys-
tems with multiple delays in control. Necessary and sufficient conditions for the controllability
criteria for linear fractional delay system are established. Further sufficient conditions for the
controllability of nonlinear fractional delay integrodifferential system are obtained by using
fixed point arguments. Examples are provided to illustrate the results.

Keywords: fractional delay integrodifferential equation, Laplace transform, controllability,
Mittag–Leffler function, Caputo fractional derivative

Classification: 34A08, 93B05

1. INTRODUCTION

The future of many processes in the world around us depends not only on the present
state, but is also significantly determined by the entire prehistory. Such systems oc-
cur in automatic control, economics, medicine, biology and other areas. Mathematical
description of these processes can be done with the help of differential equations, with
delay, integral and integrodifferential equations. A related study on analytic solutions
of linear delay differential equations has been made by Bellman and Cooke [8], Smith
[36], Halaney [12], Oguztoreli [28], Smith and Hale [13]. It is interesting to study these
models in fractional sense to give better results compared to me integer order case.

In some real world problems, fractional derivative provides an excellent tool for the
description of memory and hereditary properties of various materials and processes. The
mathematical modeling of systems and processes in the fields of physics, chemistry, aero-
dynamics, electrodynamics of complex medium, polymer rhenology etc involves deriva-
tive of fractional order. As a consequence, the subject of fractional differential equations
is gaining more importance and attention. Fractional differentials and integrals provide
more accurate models of systems under consideration. Many authors have demonstrated
applications of fractional calculus in the frequency dependent damping behavior of visco-
elastic materials [1, 2], dynamics of interfaces between nanoparticles and substrates [9],
the nonlinear oscillation of earthquakes [32], bioengineering [23], continuum and statis-
tical mechanics [24], signal processing [30], filter design, circuit theory and robotics [33].
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Based on experimental data fractional partial differential equations for seepage flow in
porous media are suggested in [14] and differential equations with fractional order have
recently proved to be valuable tools in the modeling of many physical phenomena. More-
over Machoda et al. [21, 22] analyzed and designed the fractional order digital control
systems and also modeled the fractional dynamics in DNA. Practical systems like man-
ufacturing systems, chemical processes, transmission lines and rolling mill systems have
delays in their dynamics. Typical time-delay systems with multiple time-varying delays
include a turbojet engine, a microwave oscillator, the inferred grinding model and models
of population dynamics. Satisfactory modeling of time-varying delays is also important
for the synthesis of effective control systems since they show significantly different char-
acteristics from those of fixed time delays. It is essential that system models must take
into account these time delays in order to predict the true system dynamics.

The important qualitative behavior of a dynamical system is controllability. It is used
to influence an object behavior so as to accomplish a desired goal. It plays a major role in
both finite and infinite dimensional systems. Dauer and Gahl [10] obtained the controlla-
bility of nonlinear delay systems. Balachandran and Dauer [4] studied the controllability
problems for both linear and nonlinear delay systems. The relative controllability of non-
linear fractional dynamical system with multiple delays and distributive delays in control
have been discussed by Balachandran et al. [5, 6, 7]. Klamka [18, 19] established the
controllability of both linear and nonlinear systems with time variable delay in control.
Manzanilla et al. [25] obtained the controllability of a differential equation with delay
and advanced arguments. Recently Mur et al. [27] studied the relative controllability of
linear systems of fractional order with delay. Controllability of fractional control sys-
tems with control delay has been studied by Wei [37] and controllability of time delay
fractional systems with and without constraints [35]. Detailed study on controllability
of fractional delay dynamical systems is made in [15, 16], the Laplace transform method
is used to obtain the solution representation which has been employed in this paper
to obtain the relative controllability of fractional delay integrodifferential systems with
multiple delay in control. After providing preliminary results in section 2, we establish
in section 3, necessary and sufficient conditions for the controllability criteria for linear
fractional delay systems by defining the Grammian matrix. In section 4, sufficient con-
ditions for the controllability of nonlinear fractional delay integrodifferential systems are
established using Schauder’s fixed point theorem. Examples with numerical simulations
are given in section 5 to illustrate the theory.

2. PRELIMINARIES

This section begins with definitions and properties of fractional operator, special func-
tions and their Laplace transformations [13, 17, 20, 26, 31, 34].

(a) Let f be a real or complex valued function of the variable t > 0 and s is a real or
complex parameter. The Laplace transform of f is defined as

F (s) =
∫ ∞

0

e−stf(t)dt, for Re(s) > 0. (1)

An important function occurring in electrical systems is the delayed unit step
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function

ua(t) =
{

1, t ≥ a
0, t < a

(2)

and its Laplace transformation is given by

L[ua(t)](s) =
e−as

s
, s > 0, a > 0, Re(s) > 0. (3)

(b) The Caputo fractional derivative of order α > 0, n− 1 < α < n, is defined as

CDαf(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds,

where the function f has absolutely continuous derivatives upto order n− 1. The
Laplace transform of Caputo derivative is

L[CDαx(t)](s) = sαL[x(t)](s)−
n−1∑
k=0

xk(0)sα−1−k, n− 1 < α ≤ n.

(c) The Mittag–Leffler functions of various type are defined as

Eα(z) = Eα,1(z) =
∞∑
k=0

zk

Γ(αk + 1)
, z ∈ C, Re(α) > 0, (4)

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, z, β ∈ C, Re(α) > 0, (5)

Eγα,β(−λtα) =
∞∑
k=0

(γ)k(−λ)k

k!Γ(αk + β)
tαk, (6)

where (γ)n is a Pochhamer symbol which is defined as γ(γ + 1) . . . (γ +n− 1) and
(γ)n = Γ(γ+n)

Γ(γ) . The Laplace transform of Mittag–Leffler functions (4), (5) and (6)
are given by

L[Eα,1(±λtα)](s) =
sα−1

(sα ± λ)
, Re(α) > 0, (7)

L[tβ−1Eα,β(±λtα)](s) =
sα−β

(sα ± λ)
, Re(α) > 0, Re(β) > 0, (8)

L[tβ−1Eγα,β(±λtα)](s) =
sαγ−β

(sα ± λ)γ
, Re(s) > 0,Re(β) > 0, |λs−α| < 1. (9)

(d) If F (s) = L[f(t)](s) for Re(s)>0, then [34]

F (s− a) = L[eatf(t)](s),

and

L[ua(t)f(t− a)](s) = e−asF (s), a ≥ 0.
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3. LINEAR DELAY SYSTEMS

Consider the fractional delay dynamical system with multiple delays in control

CDαx(t) = Ax(t) +Bx(t− h) +
M∑
i=0

Ciu(σi(t)), t ∈ J = [0, T ], (10)

x(t) = φ(t), −h < t ≤ 0,

where 0 < α < 1, x ∈ Rn, u ∈ Rm, A,B are n× n matrices and Ci are n×m matrices
for i = 0, 1, 2, . . .M. Assume the following conditions:

(H1) The functions σi : J → R, i = 0, 1, 2, . . .M, are twice continuously differentiable
and strictly increasing in J . Moreover

σi(t) ≤ t, i = 0, 1, 2 . . .M, for t ∈ J. (11)

(H2) Introduce the time lead functions ri(t) : [σi(0), σi(T )] → [0, T ], i = 0, 1, 2, . . .M ,
such that ri(σi(t)) = t for t ∈ J . Further σ0(t) = t and for t = T . The following
inequalities holds

σM (T ) ≤ σM−1(T ) ≤ . . . σm+1(T ) ≤ 0 = σm(T ) < σm−1(T ) = · · · = σ1(T )
= σ0(T ) = T. (12)

The following definitions of complete state of the system (10) at time t and relative
controllability are assumed.

Definition 3.1. (Balachandran [3]) The set y(t) = {x(t), β(t, s)}, where β(t, s) = u(s)
for s ∈ [min hi(t), t) is said to be the complete state of the system (10) at time t.

Definition 3.2. System (10) is said to be relatively controllable on [0, T ] if for every
complete state y(t) and every x1 ∈ Rn, there exists a control u(t) defined on [0, T ], such
that the solution of system (10) satisfies x(T ) = x1.

The solution of the system (10) is expressed as [15, 16]

x(t) = Xα(t)φ(0) + B

∫ 0

−h
(t− s− h)α−1Xα,α(t− s− h)φ(s)ds

+
∫ t

0

(t− s)α−1Xα,α(t− s)
M∑
i=0

Ciui(σi(s))ds. (13)

Using the time lead functions ri(t), the solution can be written as

x(t) = Xα(t)φ(0) +B

∫ 0

−h
(t− s− h)α−1Xα,α(t− s− h)φ(s)ds

+
M∑
i=0

∫ σi(t)

σi(0)

(t− ri(s))α−1Xα,α(t− ri(s))Ciṙi(s)u(s)ds. (14)
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The solution (14) can be rewritten as

x(t) = xL(t;φ) +
M∑
i=0

∫ σi(t)

σi(0)

(t− ri(s))α−1Xα,α(t− ri(s))Ciṙi(s)u(s)ds,

where

xL(t;φ) = Xα(t)φ(0) +B

∫ 0

−h
(t− s− h)α−1Xα,α(t− s− h)φ(s)ds.

By using the inequalities (12), we get

x(t) = xL(t;φ) +
m∑
i=0

∫ 0

σi(0)

(t− ri(s))α−1Xα,α(t− ri(s))Ciṙi(s)β(s)ds

+
m∑
i=0

∫ t

0

(t− ri(s))α−1Xα,α(t− ri(s))Ciṙi(s)u(s)ds

+
M∑

i=m+1

∫ σi(t)

σi(0)

(t− ri(s))α−1Xα,α(t− ri(s))Ciṙi(s)β(s)ds.

For simplicity, let us write the solution as

x(t) = xL(t;φ) +H(t) +
m∑
i=0

∫ t

0

(t− ri(s))α−1Xα,α(t− ri(s))Ciṙi(s)u(s)ds, (15)

where

H(t) =
m∑
i=0

∫ 0

σi(0)

(t− ri(s))α−1Xα,α(t− ri(s))Ciṙi(s)β(s)ds

+
M∑

i=m+1

∫ σi(t)

σi(0)

(t− ri(s))α−1Xα,α(t− ri(s))Ciṙi(s)β(s)ds.

Now let us define the controllability Grammian matrix by

W =
m∑
i=0

∫ T

0

(Xα,α(t− ri(s))Ciṙi(s))(Xα,α(t− ri(s))Ciṙi(s))∗ds,

where the ∗ denotes the matrix transpose.

Theorem 3.3. The linear system (10) is relatively controllable on [0, T ] if and only if
the controllability Grammian matrix

W =
m∑
i=0

∫ T

0

(Xα,α(t− ri(s))Ciṙi(s))(Xα,α(t− ri(s))Ciṙi(s))∗ds

is positive definite for some T > 0.

The proof of the theorem is similar as in [16].
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4. INTEGRODIFFERENTIAL SYSTEMS

Consider the nonlinear fractional delay Integrodifferential systems with multiple delays
in control of the form

CDαx(t) = Ax(t) +Bx(t− h) +
M∑
i=0

Ciu(σi(t)) (16)

+f(t, x(t), x(t− h),
∫ t

0

g(t, s, x(s− h))ds, u(t)), t ∈ J,

with x(t) = φ(t),−h < t ≤ 0, where 0 < α < 1, x ∈ Rn, u ∈ Rm and A,B are n × n
matrices, Ci for i = 0, 1, . . .M , are n×m matrices and f : J × Rn × Rn × Rm → Rn is
a continuous function. Further we made the following assumptions:

(H3) The continuous function f satisfies the condition

lim
p→∞

|f(t, p)|
|p|

= 0, (17)

uniformly in t ∈ J , where p = |x|+ |y|+ |u|.

(H4) The continuous function f satisfies the condition

||f(t, p)|| ≤
q∑
j=1

ρj(t)φj(p), (18)

where φj : Rn × Rn × Rm → R+ are measurable functions and ρi : J → R+ are L1

functions for j = 1, 2, . . . q.
Let Q be the Banach space of continuous Rn × Rm valued functions defined on the

interval J with the norm
||(x, u)|| = ||x||+ ||u||,

where ||x|| = sup{x(t) : t ∈ J} and ||u|| = sup{u(t) : t ∈ J}. That is, Q =
Cn(J) × Cm(J), where Cn(J) is the Banach space of continuous Rn valued functions
defined on the interval J with the sup norm.

(H5) g : J × J × Rn → Rn is continuous and satisfies the following condition

|
∫ t

0

g(t, s, x(s, h))ds| ≤ sup
(∫ t

0

|a(t, s)|ds
)
||x||

such that sup
(∫ t

0
|a(t, s)|ds

)
≤ 1.

Similar to the linear system, the solution of nonlinear system (17) using time lead func-
tion ri(t) is given as

x(t) = xL(t;φ) +H(t) +
m∑
i=0

∫ t

0

(t− ri(s))α−1Xα,α(t− ri(s))Ciṙi(s)u(s)ds (19)

+
∫ t

0

(t− s)α−1Xα,α(t− s)f(s, x(s), x(s− 1),
∫ t

0

g(t, s, x(s− h))ds, u(s))ds.
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Theorem 4.1. Assume that the hypotheses (H1) – (H3) and (H5) are satisfied and sup-
pose that the linear fractional delay dynamical system (10) is relatively controllable.
Then the nonlinear system (17) is relatively controllable on J .

P r o o f . Define Ψ : Q→ Q by

Ψ(x, u) = (y, v)

where

v(t) = (T − ri(t))1−α(Xα,α(T − ri(t))C∗i ṙi(t))∗ (20)

× W−1

[
x1 − xL(T ;φ)−

m∑
i=0

∫ 0

σi(0)

(T − ri(s))α−1Xα,α(T − ri(s))Ciṙi(s)β(s)ds

−
M∑

i=m+1

∫ T

0

(T − ri(s))α−1Xα,α(T − ri(s))Ciṙi(s)β(s)ds

−
∫ T

0

(T − s)α−1Xα,α(T − s)f(s, x(s), x(s− h),
∫ t

0

g(t, s, x(s− h))ds, u(s))ds
]
,

and

y(t) = xL(t;φ) +
m∑
i=0

∫ 0

σi(0)

(t− ri(s))α−1Xα,α(t− ri(s))Ciṙi(s)β(s)ds (21)

+
m∑
i=0

∫ t

0

(t− ri(s))α−1Xα,α(t− ri(s))Ciṙi(s)v(s)ds

+
M∑

i=m+1

∫ t

α0

(t− ri(s))α−1Xα,α(t− ri(s))Ciṙi(s)β(s)ds

+
∫ t

0

(t− s)α−1Xα,α(t− s)f(s, x(s), x(s− 1),
∫ t

0

g(t, s, x(s− h))ds, v(s))ds.

Let

ai = sup ||Xα,α(T − ri(s))||, bi = sup ||ṙi(s)||, i = 0, 1, 2, . . . ,M,

ν = sup ||β(s)||, ϑ = sup ||Xα,α(T − s)||,

µ =
m∑
i=0

aibi||Ci||Ni +
M∑

i=m+1

aibi||Ci||Mi,

ci = 4aibi||C∗i ||||W−1||να−1Tα, di = 4aibi||C∗i ||||W−1||[|x1|+ β + µ],

a = max{bα−1Tα||Ci||, 1}, b =
m∑
i=0

aibiLi, c2 = 4ϑα−1Tα, d2 = 4[β + νµ],

Ni =
∫ 0

σi(0)

(T − ri(s))α−1ds,Mi =
∫ σi(T )

σi(0)

(T − ri(s))α−1ds,
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Li =
∫ T

0

(T − ri(s))α−1ds, c = max{ci, c2}, d = max{di, d2}

sup |f | = {sup |f(t, x(t), x(t− 1),
∫ t

0

g(t, s, x(s− h))ds, u(t))|, t ∈ J}.

Then

|v(t)| ≤ ||C∗i ||aibi||W−1||[||x1||+ β + µ] + aibi||C∗i ||||W−1||ϑα−1Tα

≤
(
di
4a

+
ci
4a

sup |f |
)

≤ 1
4a

(d+ c sup |f |)

and

|y(t)| ≤ β + νµ+

(
m∑
i=0

aibi||Ci||Liα−1Tα

)
v(s) + ϑα−1Tα sup |f |

≤ d

4
+

1
4

(d+ c sup |f |) +
c

4
sup |f |

≤ d

2
+
c

2
sup |f |.

By Proposition 1 in [11], the function f satisfies the following conditions. For each pair
of positive constants c and d, there exists a positive constant r such that, for |p| ≤ r,

c|f(t, p)|+ d ≤ r for all t ∈ J. (22)

Also, for given c and d, if r is a constant such that r < r1, r will also satisfy (22). Now
take c and d as given above and choose r so that (22) is satisfied. Therefore ||x|| ≤ r

2
and ||u|| ≤ r

2 , then |x(s)| + |y(s)| ≤ r, for all s ∈ J . It follows that d + c sup |f | ≤ r.
Therefore |u(s)| ≤ r

4a for all s ∈ J and hence ||u|| ≤ r
4a , which gives ||x|| ≤ r

2 . Thus

Q(r) = {(x, u) ∈ Q : ||x|| ≤ r

2
and ||u|| ≤ r

2
}.

Then Ψ maps Q(r) into itself. Our objective is to show that Ψ has a fixed point; since
f is continuous, it follows that Ψ is continuous. Let Q0 be a bounded subset of Q.
Consider a sequence {(yj , vj)} contained in Ψ(Q0), where we let

(yj , vj) = Ψ(xj , uj),

for some (xj , uj) ∈ Q0, for j = 1, 2, . . .. Since f is continuous, |f(s, xj(s), xj(s −
h),
∫ t

0
g(t, s, xj(s − h))ds, uj(s))| is uniformly bounded for all s ∈ J and j = 1, 2, 3, . . . .

It follows that {(yj , vj)} is a bounded sequence in Q. Hence {vj(t)} is equicontinuous
and a uniformly bounded sequence on [0, t1]. Since {yj(t)} is a uniformly bounded and
equicontinuous sequence on [−h, t1], an application of Ascoli’s theorem yields a further
subsequence of {(yj , vj)} which converges in Q to some (y0, v0). It follows that Ψ(Q0) is
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sequentially compact, hence the closure is sequentially compact. Thus Ψ is completely
continuous. Since Q(r) is closed, bounded and convex, the Schauder fixed point theorem
implies that Ψ has a fixed point (x, u) ∈ Q(r), such that (y, v) = Ψ(x, u) = (x, u). It
follows that

x(t) = xL(t;φ) +H(t) +
m∑
i=0

∫ t

0

(t− ri(s))α−1Xα,α(t− ri(s))Ciṙi(s)u(s)ds

+
∫ t

0

(t− s)α−1Xα,α(t− s)f(s, x(s), x(s− h), u(s))ds, (23)

for t ∈ J and x(t) = φ(t) for t ∈ [−h, 0].

x(T ) = xL(T ;φ) +H(T ) +
m∑
i=0

∫ T

0

(T − ri(s))α−1Xα,α(T − ri(s))Ciṙi(s)

×
{

(T − ri(s))1−α(Xα,α(T − ri(s))Ciṙi)∗W−1

×
[
x1 − xL(T ;φ)−H(T )−

∫ T

0

(T − s)α−1

×Xα,α(T − s)f(s, x(s), , x(s− h), u(s))ds
]}

ds

+
∫ T

0

(T − s)α−1Xα,α(T − s)

×f(s, x(s), x(s− h),
∫ t

0

g(t, s, x(s− h))ds, u(s))ds,

= x1.

Hence the system (17) is relatively controllable on J. �

Theorem 4.2. Assume that the hypotheses (H1), (H2), (H4) and (H5) are satisfied
and suppose that

detW (0, T ) > 0. (24)

Then the nonlinear system (17) is relatively controllable on J .

P r o o f . Now let

ψj(r) = sup{φj(p); ||p|| ≤ r}.

Since (H3) holds, there exists r0 > 0 such that

r0 −
q∑
i=1

cjψj(r0) ≥ d,
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which implies that
q∑
j=1

cjψj(r0) + d ≤ r0.

Define the operator Ψ : Q→ Q by

Ψ(x, u) = (y, v)

where y and v are defined as in (20) and (21). Similar to the proof of Theorem 4.1, it
can be shown that Ψ has a fixed point (z, v) ∈ Q(r), such that Ψ(x, u) = (y, v) = (x, u).
Hence x(t) is the solution of the system (17) and easy to verify x(T ) = x1. Thus the
control u(t) steers the system (17) from the initial complete state y(0) to x1 on J. Hence
the system (17) is relatively controllable on J . �

5. EXAMPLES

In this section, we apply the results obtained in the previous sections to the following
fractional delay dynamical systems with multiple delays in control.

Example 5.1. Consider the linear fractional delay dynamical system with delay in
control of the form

CD
1
2x(t) = x(t) + x(t− 2) + u(t) + u(t− 1), (25)
x(t) = 1,−2 ≤ t ≤ 0,

where α = 1
2 , h = 2, σ = 1, φ(t) = 1, A = 1, B = 1, C0 = 1 and C1 = 1; the solution of

the equation (25) by taking Laplace transform is of the form

x(t) =
[t]∑
n=0

(t− n)
1
2nE 1

2 ,
1
2n+1((t− n)

1
2 )

+
[t]∑
n=0

Bn+1

∫ 0

−2

(t− s− n− 2)
1
2n−

1
2E 1

2 ,
1
2 (n+1)((t− s− n− 2)

1
2 )φ(s)ds

+
[t]∑
n=0

∫ t−n

0

(t− s− n)
1
2n−

1
2E 1

2 ,
1
2n+ 1

2
((t− s− n)

1
2 )u(s)ds

+
[t]∑
n=0

∫ t−n

0

(t− s− n)
1
2n−

1
2E 1

2 ,
1
2n+ 1

2
((t− s− n)

1
2 )u(s− 1)ds. (26)

Now consider the controllability on [0, 2] , where [t] = 0. The solution (26) reduces to
the form

x(t) = E 1
2
(t

1
2 ) +

∫ 0

−2

(t− s− 2)−
1
2E 1

2 ,
1
2
((t− s− 2)

1
2 )ds

+
∫ t

0

(t− s)− 1
2E 1

2 ,
1
2
((t− s) 1

2 )u(s)ds+
∫ t

0

(t− s)− 1
2E 1

2 ,
1
2
((t− s) 1

2 )u(s− 1)ds,
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where

Xα(t) = E 1
2
(t

1
2 ),

Xα,α(t− s− 2) = (t− s− 2)−
1
2E 1

2 ,
1
2
((t− s− 2)

1
2 )

and

Xα,α(t− s) = (t− s)− 1
2E 1

2 ,
1
2
((t− s) 1

2 ).

Using time lead function, the solution can be written in the form

x(t) = E 1
2
(t

1
2 ) + t

1
2E 1

2 ,
3
2
(t

1
2 )

+
1∑
i=0

∫ t

0

(t− ri(s))−
1
2E 1

2 ,
1
2
((t− ri(s))

1
2 )ṙi(s)u(s)ds,

where r0(s) = s and r1(s) = s− 1. The controllability Grammian matrix is defined by

W =
1∑
i=0

∫ 2

0

[E 1
2 ,

1
2
((2− ri(s))

1
2 )ṙi(s)][E 1

2 ,
1
2
((2− ri(s))

1
2 )ṙi(s)]∗ds,

=
1∑
i=0

∫ 2

0

[E 1
2 ,

1
2
((2− ri(s))

1
2 )][E 1

2 ,
1
2
((2− ri(s))

1
2 )]∗ds,

=
∫ 2

0

(E 1
2 ,

1
2
((2− s) 1

2 ))(E 1
2 ,

1
2
((2− s) 1

2 ))∗ds

+
∫ 2

0

(E 1
2 ,

1
2
((2− s+ 1)

1
2 ))(E 1

2 ,
1
2
((2− s+ 1)

1
2 ))∗ds;

on simplifying, we get

W = 530.780 > 0

is positive definite. Hence, by the Theorem 3.3, the system is controllable on [0, 2]. Next
we give the numerical simulation of the state and control variables for the system (25)
and the control

u(t) = [(2− t) 1
2 (E 1

2 ,
1
2
(2− t) 1

2 )∗ + (1− t) 1
2 (E 1

2 ,
1
2
(1− t) 1

2 )∗]W−1(10− E 1
2
(2)− E 1

2 ,
3
2
(2)),

which steers x(0) = 1 to x(2) = 10.
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Figure 1 represents the trajectory of the equation (25) without control starting from
the initial point 1 and not reaching the final point 10 in [0, 2], Figure 2 represents the
trajectory of the equation (25) with control starting from the initial point 1 and reaching
the final point 10 in [0, 2] and Figure 3 represents the steering control.

Example 5.2. Consider the nonlinear fractional delay dynamical system with delay in
control of the form

CD
1
2x(t) = x(t) + x(t− 2) + C0u(t) + C1u(t− 1) +

x(t) + x(t− 2) +
∫ t

0
sinxe−

1
2 (t−s)ds

x2(t) + x2(t− 2) + u(t)
,

x(t) = φ(t), (27)

where α, σ, h, φ, A,B,C0 and C1 are defined as in (5.1) and the nonlinear function is

f(t, x(t), x(t− 2),
∫ t

0

g(t, s, x(s))ds, u(t)) =
x(t) + x(t− 2) +

∫ t
0

sinxe−
1
2 (t−s)ds

x2(t) + x2(t− 2) + u(t)
. (28)

Consider the controllability on [0, 2]. Let

lim
p→∞

|x(t)|+ |x(t− 2)|+ |
∫ t

0
sinxe−

1
2 (t−s)ds|

(|x2(t)|+ |x2(t− 2)|+ |u(t)|)|p|
≤ 3|x(t)|

(|x(t)|+ |u(t)|)(2|x2(t)|+ |u(t)|)

which tends to zero as p→∞. Since the linear delay system (25) is controllable on [0, 2]
and the nonlinear function satisfies the hypotheses in the Theorem 4.1, the nonlinear
delay system (27) is controllable on [0, 2].

Examples 5.1 and 5.2 describes the conditions when A,B,C0 and C1 are constant.
Following these examples, 5.3 and 5.4 illustrate the conditions when A,B,C0 and C1

are matrices.

Example 5.3. Consider the linear fractional delay dynamical systems with delay in
control of the form

CD
3
4x(t) =

(
−1 0
0 −2

)
x(t) +

(
0 0
−1 0

)
x(t− 2)

+
(

1
0

)
u(t) +

(
0
1

)
u(t− 1), (29)
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where α = 3
4 , h = 2, σ = 1 A =

(
−1 0
0 −2

)
, B =

(
0 0
−1 0

)
, C0 =

(
1
0

)
and

C1 =
(

0
1

)
and x(t) = φ(t) ∈ R2 with initial condition x(0) =

(
4
0

)
and finial

condition x(2) =
(

15
5

)
. Here x(t) is not the state variable but it is the pseudo state

variable. The solution of the equation (29), by using Laplace transform, is of the form

x(t) =
[t]∑
n=0

Bn(t− n)
3
4nE 3

4 ,
3
4n+1(A(t− n)

3
4 )

+ B

[t]∑
n=0

Bn
∫ 0

−1

(t− s− n− 2)
3
4n+ 3

4−1E 3
4 ,

3
4 (n+1)(A(t− s− n− 2)

3
4 )φ(s)ds

+
[t]∑
n=0

1∑
i=0

Bn
∫ t−n

0

(t− ri(s)− n)
3
4n−

1
4 (A(t− ri(s)− n))

3
4Ciṙi(s)u(s)ds.

Now considering the controllability on [0, 2], where [t]=0, we have

x(t) = E 3
4 ,1

(At
3
4 )x(0) +B

∫ 0

−2

(t− s− 2)−
1
4E 3

4 ,
3
4
(A(t− s− 2)

3
4 )x(s)ds

+
1∑
i=0

∫ t

0

(t− ri(s))−
1
4E 3

4 ,
3
4
(A(t− ri(s))

3
4 )Ciṙi(s)u(s)ds;

on further solving, we get

x(t) = E 3
4
(At

3
4 )x(0) +Bt

3
4E 3

4 ,
7
4
(A(t

3
4 ))x(0)

+
1∑
i=0

∫ t

0

(t− ri(s))−
1
2E 1

2 ,
1
2
(A(t− ri(s))

1
2 )Ciṙi(s)u(s)ds,

where

E 3
4 ,1

(At
3
4 ) =

(
E 3

2 ,1
(2t

3
2 ) t

3
2E 3

2 ,
7
4
(2t

3
2 )

−2t
3
4E 3

2 ,
7
4
(2t

3
2 ) E 3

2 ,1
(2t

3
2 )

)
, E 3

4 ,
3
4
(A(2− s) 3

4 ) =
(
a11 a12

a21 a22

)
,

where

a11 = (2− s)− 1
4E 3

2 ,
3
4
(2(2− s) 3

4 ),

a12 = (2− s) 1
2E 3

2 ,
3
2
(2(2− s) 3

2 ),

a21 = −2(2− s) 1
2E 3

2 ,
3
2
(2(2− s) 3

2 ),

a22 = (2− s)− 1
4E 3

2 ,
3
4
(2(2− s) 3

4 ),

and

E 3
4 ,

3
4
(A(2− s+ 1)

3
4 ) =

(
b11 b12

b21 b22

)
,
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b11 = (2− s+ 1)−
1
4E 3

2 ,
3
4
(2(2− s+ 1)

3
4 ),

b12 = (2− s+ 1)
1
2E 3

2 ,
3
2
(2(2− s+ 1)

3
2 ),

b21 = −2(2− s+ 1)
1
2E 3

2 ,
3
2
(2(2− s+ 1)

3
2 ),

b22 = (2− s+ 1)−
1
4E 3

2 ,
3
4
(2(2− s+ 1)

3
4 ).

The Grammian matrix is defined by

W =
1∑
i=0

∫ 2

0

[E 3
4 ,

3
4
(A(2− ri(s))

3
4 )Ciṙi(s)][E 3

4 ,
3
4
(A(2− ri(s))

3
4 )Ciṙi(s)]∗ds,

where ri(s) is a time lead function which is defined by r0(s) = s and r1(s) = s−1. Then
the Grammian matrix can be written as

W =
∫ 2

0

[E 3
4 ,

3
4
(A(2− s)) 3

4 )C0][E 3
4 ,

3
4
(A(2− s)) 3

4 )C0]∗ds

+
∫ 2

0

[E 3
4 ,

3
4
(A(2− s+ 1))

3
4 )C1][E 3

4 ,
3
4
(A(2− s+ 1))

3
4 )C1]∗ds,

on further calculation, we get

W =
(

0.0003× 104 0
0 5.7995× 104

)
> 0

is positive definite. Then, by the Theorem 3.3, the system is controllable on [0, 2].
Next we give the numerical simulation of the state and control variables for the system
(29) and the control

u(t) = [(2− t) 1
2 (E 1

2 ,
1
2
(A(2− t) 1

2 )C0)∗ + (1− t) 1
2 (E 1

2 ,
1
2
(A(1− t) 1

2 )C1)∗]

×W−1(x(2)− E 1
2
(2)x(0)− E 1

2 ,
3
2
(2)x(0)),

which steers x(0) =
(

4
12

)
to x(2) =

(
15
5

)
.
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Figure 6.

Figure 4 represents the trajectory of the equation (29) without control starting from the

initial vector x(0) =
(

4
12

)
and not reaching the final point x(2) =

(
15
5

)
in [0, 2],

Figure 5 represents the trajectory of the equation (29) with control starting from the

initial point x(0) =
(

4
12

)
and reaching the final point x(2) =

(
15
5

)
in [0, 2] and

Figure 6 represents the steering control.

Example 5.4. Consider the nonlinear fractional delay dynamical system with delay in
control of the form

CD
3
4x(t) = Ax(t) +Bx(t− 2) + C0u(t) + C1u(t− 1)

+f(t, x(t), x(t− 2),
∫ t

0

g(t, s, x(s))ds, u(t)), (30)

where α, h, σ, φ(t), A,B,C0 and C1 are defined as in (5.3). Consider the controllability
on the [0, 2]. The nonlinear function f is defined by

f(t, x(t), x(t− 2), u(t)) =

(
0

x1(t) sin t
x2
1(t)+x2

2(t)
+ +

R t
0 x1(s)e− sin sds

x2
1(t−2)+u(t)

)
. (31)

Since the linear delay system (29) is controllable and nonlinear function (31) satisfies
the hypotheses in the Theorem 4.1 similarly as in example 5.2, we say that the nonlinear
delay system (30) is controllable on interval [0, 2]. Let us take the nonlinear function as

f(t, x(t), x(t− 2), u(t)) =

(
1

x1(t)
x1(t)+x2(t) +

R t
0 x1(s)e−sds

1+x1(t)+u(t)

)
. (32)

It does not satisfy the hypotheses in the Theorem 4.1, because it does not tend to zero
as p→∞ but satisfies the hypotheses in the Theorem 4.2. Hence the nonlinear system
(30) is controllable on [0, 2].

6. CONCLUSION

This paper deals with the controllability of linear and nonlinear fractional delay in-
tegrodifferential systems with multiple delays in control. It should be noted that the
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solution representation has been established by using Laplace transform technique and
Mittag–Leffler function. Necessary and sufficient conditions for the controllability of
linear delay systems are derived. Consequently sufficient conditions for nonlinear delay
integrodifferential systems are established by using Schauder’s fixed point theorem. To
show the effectiveness of the theory, examples are provided to illustrate the results.
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