Kybernetika 53 no. 1, 129-136, 2017

A note on the super-additive and sub-additive transformations of aggregation functions: The multi-dimensional case

Fateme Kouchakinejad and Alexandra ŠipošováDOI: 10.14736/kyb-2017-1-0129

Abstract:

For an aggregation function $A$ we know that it is bounded by $A^*$ and $A_*$ which are its super-additive and sub-additive transformations, respectively. Also, it is known that if $A^*$ is directionally convex, then $A=A^*$ and $A_*$ is linear; similarly, if $A_*$ is directionally concave, then $A=A_*$ and $A^*$ is linear. We generalize these results replacing the directional convexity and concavity conditions by the weaker assumptions of overrunning a super-additive function and underrunning a sub-additive function, respectively.

Keywords:

aggregation function, overrunning and underrunning property, sub-additive and super-additive transformation

Classification:

47H04, 47S40

References:

  1. A. Arlotto and M. Scarsini: Hessian orders and multinormal distributions. J. Multivariate Anal. 100 (2009), 2324-2330.   DOI:10.1016/j.jmva.2009.03.009
  2. G. Beliakov, A. Pradera and T. Calvo: Aggregation Functions: A Guide for Practitioners. Springer-Verlag, Berlin 2007.   DOI:10.1007/978-3-540-73721-6_5
  3. F. Bernstein and G. Doetsch: Zur Theorie der konvexen Functionen. Math. Annalen 76 (1915), 514-526.   DOI:10.1007/bf01458222
  4. M. Grabisch, J.-L. Marichal, R. Mesiar and E. Pap: Aggregation Functions (Encyklopedia of Mathematics and its Applications). Cambridge University Press, 2009.   DOI:10.1017/cbo9781139644150
  5. S. Greco, R. Mesiar, F. Rindone and L. Šipeky: The superadditive and the subadditive transformations of integrals and aggregation functions. Fuzzy Sets and Systems 291 (2016), 40-53.   DOI:10.1016/j.fss.2015.08.006
  6. F. Kouchakinejad and A. Šipošová: A note on the super-additive and sub-additive transformations of aggregation functions: The one-dimensional case. In: Mathematics, Geometry and their Applications, STU Bratislava 2016, pp. 15-19.   CrossRef
  7. M. Kuczma: An Introduction to the Theory of Functional Equations and Inequalities. Second edition. Birkhäuser, 2009.   DOI:10.1007/978-3-7643-8749-5
  8. M. Marinacci and L. Montrucchio: Ultramodular functions. Math. Oper. Res. 30 (2005), 311-332.   DOI:10.1287/moor.1040.0143
  9. A. Murenko: A generalization of Bernstein-Doetsch theorem. Demonstration Math. XLV 1 (2012), 35-38.   CrossRef
  10. A. Šipošová: A note on the superadditive and the subadditive transformations of aggregation functions. Fuzzy Sets and Systems 299 (2016), 98-104.   DOI:10.1016/j.fss.2015.10.008
  11. A. Šipošová and L. Šipeky: On aggregation functions with given superadditive and subadditive transformations. In: Congress on Information Technology, Computational and Experimental Physics, Krakow (Poland) 2015, pp. 199-202.   CrossRef
  12. A. Šipošová, L. Šipeky and J. Širáň: On the existence of aggregation functions with given super-additive and sub-additive transformations. Fuzzy Sets and Systems (in press).   DOI:10.1016/j.fss.2016.11.009