Kybernetika 52 no. 6, 898-913, 2016

Averaging approach to distributed convex optimization for continuous-time multi-agent systems

Wei Ni and Xiaoli WangDOI: 10.14736/kyb-2016-6-0898

Abstract:

Recently, distributed convex optimization has received much attention by many researchers. Current research on this problem mainly focuses on fixed network topologies, without enough attention to switching ones. This paper specially establishes a new technique called averaging-base approach to design a continuous-time distributed algorithm for convex optimization problem under switching topology. This idea of using averaging was proposed in our earlier works for the consensus problem of multi-agent systems under switching topology, and it is further developed in this paper to gain further insight into the distributed optimization algorithm. Key techniques are used, such as two-time-scale analysis and asymptotic expansions for the solutions of the backward equation or Liouvill equation. Important results are obtained, including weak convergence of our algorithm to the optimal solution.

Keywords:

distributed convex optimization, averaging approach, two-time-scale, Markovian switching, invariant measure

Classification:

93C15, 93C35

References:

  1. D. P. Bertsekas and J. N. Tsitsiklis: Neuro-Dynamic Programming. Athena Scientific, Belmont 1996.   CrossRef
  2. S. Boyd and L. Vandenberghe: Convex Optimization. Cambridge University Press, 2004.   DOI:10.1017/cbo9780511804441
  3. L. C. Evans: Partial Differential Equations. Second edition. American Math Society, 2010.   CrossRef
  4. D. Feijer and F. Paganini: Stability of primal-dual gradient dynamics and applications to network optimization. Automatica 46 (2010), 1974-1981.   DOI:10.1016/j.automatica.2010.08.011
  5. D. Freedman: Markov Chains. Springer-Verlag, New York 1983.   DOI:10.1007/978-1-4612-5500-0
  6. B. Gharesifard and J. Cortes: Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Trans. Automat. Control 59 (2014), 781-786.   DOI:10.1109/tac.2013.2278132
  7. F. G. Golshtein and N. V. Yakov: Modified Lagrangians and Moonotone Maps in Optimization. Wiley, New York 1996.   CrossRef
  8. K. J. Kushner: Approximation and Weak Convergence Methods for Random Processes with Applications to Stochastic Systems Theory. The MIT Press, London 1984.   CrossRef
  9. S. Liu, Z. Qiu and L. Xie: Continuous-time distributed convex optimization with set constraints. In: Proc. 19th IFAC World Congress, Cape Town 2014, pp. 9762-9767.   DOI:10.3182/20140824-6-za-1003.01377
  10. Q. Liu and J. Wang: A second-order multi-agent network for bounded-constrained distributed optimization. IEEE Trans. Automat. Control 60 (2015), 3310-3315.   CrossRef
  11. Y. Lou, Y. Hong and S. Wang: Distributed continuous-time approximate projection protocols for shortest distance optimization problems. Automatica 69 (2016), 289-297.   DOI:10.1016/j.automatica.2016.02.019
  12. J. Lu and C. Y. Tang: Zero-gradient-sum algorithms for distributed convex: the continuous-time case. IEEE Trans. Automat. Control 57 (2012), 2348-2354.   DOI:10.1109/tac.2012.2184199
  13. D. Mateos-Nunez and J. Cortes: Noise-to-state exponential stable distributed convex optimization on weight-balanced digraphs. SIAM J.n Control Optim. 54 (2016), 266-290.   DOI:10.1137/140978259
  14. A. Nedic and A. Ozdaglar: Distributed subgradient methods for multi-agent optimization. IEEE Trans. Automat. Control 54 (2009), 48-61.   DOI:10.1109/tac.2008.2009515
  15. A. Nedic, A. Ozdaglar and P. A. Parrilo: Constained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55 (2010), 922-938.   DOI:10.1109/tac.2010.2041686
  16. G. V. Pavliotis and A. M. Stuart: Multiscale methods: averaging and homogenization. Springer-Verlag, New York 2008.   CrossRef
  17. W. Ni, Xiaoli Wang and Chun Xiong: Leader-following consensus of multiple linear systems under switching topologies: an averaging method. Kybernetika 48 (2012), 1194-1210.   CrossRef
  18. W. Ni, X. Wang and C. Xiong: Consensus controllability, observability and robust design for leader-following linear multi-agent systems. Automatica 49 (2013), 2199-2205.   DOI:10.1016/j.automatica.2013.03.028
  19. W. Ni, D. Zhao, Y. Ni and X. Wang: Stochastic averaging approach to leader-following consensus of linear multi-agent systems. J. Franklin Inst. 353 (2016), 2650-2669.   DOI:10.1016/j.jfranklin.2016.05.020
  20. R. D. Nowak: Distributed EM algorithms for density estimation and clustering in sensor networks. IEEE Trans. Signal Process. 51 (2003), 2245-2253.   DOI:10.1109/tsp.2003.814623
  21. K. Tanabe: A geometric method in nonlinear programming. J. Optim. Theory Appll. 30 (1980), 181-210.   DOI:10.1007/bf00934495
  22. B. Touri and B. Gharesifard: Continuous-time distributed convex optimization on time-varying directed networks. In: 54th IEEE Conference on Decision and Control, Osaka 2015, pp. 724-729.   DOI:10.1109/cdc.2015.7402315
  23. J. Wang and N. Elia: Control approach to distributed optimization. In: 48th Annual Allerton Conference on Communication, Control, and Computing 2010, pp. 557-561.   DOI:10.1109/allerton.2010.5706956
  24. J. Wang and N. Elia: A control perspective for centralized and distributed convex optimization. In: 50th IEEE Conference on Decision and Control and European Control Conference, Orlando 2011, pp. 3800-3805.   CrossRef
  25. X. Wang, P. Yi and Y. Hong: Dynamic optimization for multi-agent systems with external disturbances. Control Theory Technol. 12 (2014), 132-138.   DOI:10.1007/s11768-014-0036-y
  26. P. Yi, Y. Zhang and Y. Hong: Potential game design for a class of distributed optimisation problems. J. Control Decision 1 (2014), 166-179.   CrossRef
  27. P. Yi, Y. Hong and F. Liu: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems. Systems Control Lett. 83 (2015), 45-52.   DOI:10.1016/j.sysconle.2015.06.006
  28. P. Yi, Y. Hong and F. Liu: Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and its application to economic dispatch of power systems. Automatica 74 (2016), 259-269.   CrossRef
  29. X. Zeng, P. Yi and Y. Hong: Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach. arXiv:1510.07386v2, 2016.   CrossRef