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ON ADMISSIBILITY OF LINEAR ESTIMATORS
IN MODELS WITH FINITELY GENERATED
PARAMETER SPACE

Ewa Synówka-Bejenka and Stefan Zontek

The paper refers to the research on the characterization of admissible estimators initiated
by Cohen [2]. In our paper it is proved that for linear models with finitely generated parameter
space the limit of a sequence of the unique locally best linear estimators is admissible. This
result is used to give a characterization of admissible linear estimators of fixed and random
effects in a random linear model for spatially located sensors measuring intensity of a source of
signals in discrete instants of time.
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1. INTRODUCTION

A characterization of admissible linear estimators in a general linear model is a rather
complicated problem. An explicit characterization has been obtained only for special
cases. This problem was solved by Cohen [2] for estimation of the mean vector in Gauss–
Markov model with identity covariance matrix. His characterization is based on algebraic
properties of matrices. Further generalizations have been done, among others, by Rao
[16], Stȩpniak [20], Zontek [25], Klonecki and Zontek [11], Baksalary and Markiewicz
[1], Groß and Markiewicz [6] and Stȩpniak [22]. Using other technique Olsen, Seely
and Birkes [15] have described admissible unbiased quadratic estimators in two variance
components model. Further generalizations have been done, among others, by Gnot and
Kleffe [3].

LaMotte [12], inspired by the paper of Olsen et al. [15], elaborated a method of
characterization of admissible linear estimators based on verification in a finite number
of steps whether or not a linear estimator is locally best at a point belonging to properly
extended parameter space. This method is general but its direct application is not easy.

Another way of investigations of admissibility of linear estimators used a connection
between the closure of the set of the unique locally best estimators (ULBE) and the
set of admissible linear estimators. The first set contains the second one. Using Bayes
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approach this was proved by Stȩpniak [21] but his proof was not constructive. LaMotte
[13] presented a construction of a sequence of unique locally best linear estimators that
converged to the given admissible linear estimator. Similar result under some additional
assumptions imposed on the model was obtained by Zontek [26]. These methods can
not be applied directly when we are interested in admissible estimation of random and
fixed effects.

The problem of the estimation of both effects was initiated by Henderson [8], who de-
scribed the best linear unbiased prediction (BLUP) as being ,,joint maximum likelihood
estimates”. The simultaneous linear estimation of fixed and random effects was consid-
ered by, among others, Goldberger [5], Henderson [9], Harville [7] and Rao [17]. The
long history of BLUP and its applications were been extensively described by Robinson
[18]. Futher results on the derivations of BLUP were obtained, among others, by Jiang
[10], Liu et al. [14] and Tian [24].

Synówka-Bejenka and Zontek [23] have shown that a problem of admissibility for a
linear function of fixed and random effects could be restarted as a problem of admissi-
bility for a linear function of the expected value only, in another properly defined linear
model (called the dual model). Basing on LaMotte’s results [12, 13] they have given in
an explicit form a characterization of linear admissible estimators of a linear function of
expected value in the models dual to balanced nested and crossed classification random
models (see also Shiqing et al. [19]). For these models the parameter space is finitely
generated. In this paper we shall show that for any model with finitely generated pa-
rameter space the class of all admissible linear estimators consists of all ULBE’s and
their limits. Our basic theoretical result will be used to characterize admissible simul-
taneous linear estimators of effects in a special random model frequently assumed for
measurements of an intensity of a source of signals by a number of sensors.

Throughout this paper,Mm×q denotes the space of m×q real matrices. The symbols
A′ and R(A) stand for the transpose and column space of A ∈ Mm×q, respectively.
Denote the trace of a square matrix A by tr(A). For A1 ∈ Mm1×q1 and A2 ∈ Mm2×q2
the symbols A1 ⊗ A2 and diag(A1, A2) denote the Kronecker product and the matrix
whose the diagonal consists of A1 and A2, respectively. The minimal closed convex cone
containing a set A ⊂Mm×m ×Mm×m will be denoted by [A]. Let ‖a‖ be the length of
the vector a ∈ Rm.

2. MODELS WITH FINITELY GENERATED PARAMETER SPACE

Let Y ∈ Rm be a random vector with an unknown distribution belonging to P. It is
assumed that the expected value EY and the covariance cov(Y ) exist for all distributions
in P. We are interested in an admissible estimation of K ′EY , where K ∈Mm×q, in the
class of linear estimators L′Y, where L belongs to an affine subset L of Mm×q, under
the quadratic risk function

E[(L′Y −K ′EY )′(L′Y −K ′EY )] = tr[L′cov(Y )L+ (L−K)′EY (EY )′(L−K)].

Following LaMotte [12], consider the set

T = {(cov(Y ),EY (EY )′) : P ∈ P} (1)
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as a new space of parameters and a point (W1,W2) ∈ [T ] as an argument of an extended
quadratic risk function of L′Y , i. e.,

R(L′Y ; (W1,W2)) = tr[L′W1L+ (L−K)′W2(L−K)].

An estimator L′Y with L ∈ L is called locally best among L at a point (W1,W2) ∈ [T ]
if R(L′Y ; (W1,W2)) ≤ R(N ′Y ; (W1,W2)) for all N ∈ L. If L is an affine subset ofMm×q
then exist Lo ∈ L and Π ∈Mm×m such that

L = {Lo + ΠM : M ∈Mm×q}.

It can be shown (see Theorem 3.1 in LaMotte [12]) that an estimator L′Y = (Lo+ΠM)′Y
is locally best among L at a point (W1,W2) ∈ [T ] iff

Π′(W1 +W2)L = Π′W2K

or equivalently iff

Π′(W1 +W2)ΠM = Π′W2(K − Lo)−Π′W1Lo.

The above equation has exactly one solution iff

R(Π′(W1 +W2)Π) = R(Π′).

In this section we assume that [T ] is a finitely generated closed convex cone, i. e.,

[T ] =

{
k+1∑
i=0

ti(W1i,W2i) : to ≥ 0, . . . , tk+1 ≥ 0

}
, (2)

whereW1i andW2i, i = 0, . . . , k+1, are nonnegative matrices. To avoid some trivialities
we also assume that

R

(
k+1∑
i=0

Π′(W1i +W2i)Π

)
= R(Π′) (3)

and that
Π′(W1i +W2i)Π 6= 0 for i = 0, . . . , k + 1.

Note that under condition (3) the set of unique locally best estimators is nonempty. The
proof of the main result of this paper is based on the following lemma.

Lemma 2.1. If L∗′Y is the limit of a sequence of ULBE among L, then for any

LΛ = {L∗ + ΠΛM : M ∈Mm×q} ⊆ L,

where Λ ∈Mm×m, there exists a point WΛ = (W1,W2) ∈ [T ] such that

Λ′Π′(W1 +W2)ΠΛ 6= 0 (4)

and that L∗′Y is locally best among LΛ at WΛ.
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The proof of this lemma is included in Appendix.

Theorem 2.2. If L∗′Y is the limit of a sequence of ULBE among L in a model with
finitely generated parameter space satisfying condition (3), then L∗′Y is admissible for
K ′EY among L.

P r o o f . The step-wise procedure elaborated by LaMotte [12] can be successfuly applied,
since by Lemma 2.1 a point satisfying (4) is nontrivial in each step. �

Remark 2.3. Another proof of this theorem can be given by showing that a linear
model with parameter space of the form (2) is regular in the sense defined in Zontek
[26].

Note that using Theorem 2.2 we get all admissible linear estimators of K ′EY among
L. This is due to the fact that every ULBE is admissible among L (see LaMotte [12])
and that all ULBE’s and their limits constitute a complete class (see Stȩpniak [21] and
LaMotte [13]).

3. APPLICATIONS TO RANDOM LINEAR MODELS

Let Y be a random n-vector having the following structure

Y = Zoβ + Z1u1 + . . .+ Zkuk + e,

where Zo ∈ Rn is a known vector (usually the vector of ones); β ∈ R is the un-
known parameter; Z1 ∈ Mn×m1 , . . . , Zk ∈ Mn×mk

are known nonzero matrices; u1 ∈
Rm1 , . . . , uk ∈ Rmk are unobservable random vectors and e is a random n - vector of
errors. We assume that u1, . . . , uk and e are uncorrelated vectors with zero expectations
and covariance matrices of the form cov(u1) = σ2

1Im1 , . . . , cov(uk) = σ2
kImk

, cov(e) =
σ2
k+1In, respectively.

Clearly,

E(Y ) = Zoβ and cov(Y ) =
k∑
i=1

σ2
iZiZ

′
i + σ2

k+1In.

This will be schematically written as

Y ∼ (Zoβ,
k+1∑
i=1

σ2
iZiZ

′
i), (5)

where Zk+1 = In.
We are interested in an admissible estimation of

θ = [(K ′Zoβ)′, (Q′1Z1u1)′, . . . , (Q′kZkuk)′]′ (6)

in the class of linear estimators

L′Y = (L0, L1, . . . , Lk)′Y, (7)
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where K,L0 ∈ Mn×t0 ; Q1, L1 ∈ Mn×t1 ; . . . ; Qk, Lk ∈ Mn×tk . To compare the
estimators, we use the ordinary quadratic risk function

E [(L′Y − θ)′(L′Y − θ)] .

Since random effects are also estimated, the risk function has a different structure than
the risk function of linear estimator of fixed effects only. To give a characterization of
linear admissible estimators of θ, Synówka-Bejenka and Zontek [23] reduced the problem
to linear estimation of the fixed effects only in another properly defined dual model. We
briefly recall this result.

As a model dual to (5) they have considered the model

Y = (Y ′, (Z1u1)′, . . . , (Zkuk)′)′ ∼

(
Xβ,

k+1∑
i=1

σ2
iVi

)
, (8)

where
X = (Z ′o,0, . . . ,0)′ ,

Vi = (v1 + vi+1)(v1 + vi+1)′ ⊗ ZiZ ′i, i = 1, . . . , k,

and
Vk+1 = v1v

′
1 ⊗ In,

while vi is the ith versor in Rk+1. Note that for

L′Y =


L0 L1 · · · Lk
0 −Q1 · · · 0
...

...
. . .

...
0 0 · · · −Qk


′ 

Y
Z1u1

...
Zkuk

 (9)

considered as an estimator of

K ′EY =


K 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0



Zoβ
0
...
0


we have

L′Y − θ = L′Y −K ′EY .

Hence the quadratic risk of L′Y considered as an estimator of θ in the original model is
equal to the quadratic risk function of L′Y considered as an estimator of K ′EY in the
dual model. Note that each estimator L′Y of the form (7) defines exactly one estimator
of the form (9) and therefore the class of considered linear estimators of K ′EY in model
(8) is restricted to the set

Eo = {L′Y : L ∈ Lo},

where Lo is an affine set given by

Lo = {Lo + ΠoM : M ∈M(k+1)n×(t0+...+tk)},
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while Lo = diag(0,−Q1, . . . ,−Qk) and Πo = v1v
′
1 ⊗ In. This means that a linear

estimator L′Y of θ is admissible in the model (5) if and only if the corresponding
estimator L′Y of K ′EY is admissible among Lo in model (8). Note that the parameter
space given by (1) corresponding to the dual model (8) is a finitely generated closed
convex cone defined by

(W1o,W2o) = (0,XX ′),
(W1i,W2i) = (V i,0), i = 1, . . . , k + 1.

Using the rule of duality, Synówka-Bejenka and Zontek [23] obtained a characterization
of linear admissible estimators of a linear function of fixed and random effects in the
k-way balanced nested classification random model and the k-way balanced crossed
classification random model. To prove that in the considered models each limit of
ULBE’s is admissible, they applied a step-wise procedure of LaMotte [12]. By Theorem
2.2, we do not need to describe in details all steps of LaMotte’s procedure. It is enough
to present formulas on ULBE’s in the form for which their limits can be characterized.
In the next section we illustrate this approach to a special model which was used by
Gnot et al. [4] for measurement descriptions provided by several sensors.

4. EXAMPLE

Let us consider the following model

yj = vkj + ej , j = 1, . . . , n2,

where v denotes the intesity of the source of random signal, kj denotes the influence of
the source on the jth sensor (known positive constant) and ej is the random error. We
assume that v ∼ N(β, σ2

1) and ej ∼ N(0, σ2
2) are independent random variables. Under

these assumptions the vector Yi = (yi1, . . . , yin2)′, where yij is the ith measurement
provided by the jth sensor, has the normal distribution with the expectation and the
covariance matrix having the form

E(Yi) = βk, cov(Yi) = σ2
1kk
′ + σ2

2In2 , i = 1, . . . , n1.

Therefore, to describe the n1 independent measurements provided by each of the sensors
we can use

Y = (Y ′1 , . . . , Y
′
n1

)′, (10)

which is a special case of model (5). Note that Y has an multivariate normal distribution
with the following parameters

E(Y ) = (1n1 ⊗ k)β = Zoβ,

cov(Y ) = σ2
1(In1 ⊗ kk′) + σ2

2In = σ2
1Z1Z

′
1 + σ2

2Z2Z
′
2,

where n = n1n2. For k = 1n2 model (10) reduces to so the called one-way balanced
random model.
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Following Synówka-Bejenka and Zontek [23], to obtain explicit formulas for ULBE in
model (8) corresponding to model (10), we define the following matrices

E0 =
1
p0
Z0Z

′
0,

E1 =
1
p1
Z1Z

′
1 − E0,

E2 =
1
p2
Z2Z

′
2 − (E0 + E1),

where po = n1k
′k, p1 = k′k and p2 = 1. Note that Eo, E1, E2 are idempotent and

orthogonal matrices such that

ZiZ
′
i = pi

i∑
j=0

Ej for i = 0, 1, 2. (11)

To characterize admissible estimators L′Y of K ′EY among Lo in model (8) correspond-
ing to model (10) we give the following lemma, which is proved in Appendix.

Lemma 4.1. An estimator L′Y is ULBE at a point
(
s1V1 + s2V2, s0XX ′

)
in T among

Lo in model (8) corresponding to model (10) if and only if s0 ≥ 0, s1 ≥ 0, s2 > 0 and

L =
[
L0 L1

0 −Q1

]
,

where

L0 =
s0p0

s0p0 + s1p1 + s2p2
E0K,

L1 =
s1p1

s1p1 + s2p2

(
E1 +

s1p1 + s2p2

s0p0 + s1p1 + s2p2
E0

)
Q1.

Theorem 4.2. An estimator L′Y of K ′EY is admissible among Lo in model (8) cor-
responding to model (10) if and only if L belongs to the set{[

a0E0K a1[E1+(1− a0)E0]Q1

0 −Q1

]
: a0 ∈ [0, 1] and a1 ∈ [0, 1]

}
. (12)

P r o o f . The necessary condition. Let L belong to the set (12) with ai ∈ [0, 1)
for i = 0, 1. Using Lemma 4.1 it can be checked that L′Y is ULBE at point W =(
s1V1 + s2V2, s0XX ′

)
in T given by

s0 =
a0

p0(1− a0)(1− a1)
s2,

s1 =
a1

p1(1− a1)
s2,

s2 > 0.
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Moreover, note that for any fixed values a1 ∈ [0, 1) and s2 > 0, s0 runs over [0,+∞)
when a0 ∈ [0, 1). Similary, s1 runs over [0,+∞) when a1 ∈ [0, 1). So the set (12) is the
closure of

{L : L′Y is ULBE at a point in T among Lo}.

So the first part of the proof is completed by using the result of LaMotte [13] that each
linear estimator of K ′EY admissible among Lo is the limit of a sequance of ULBE’s at
points in T among Lo .

Sufficiency follows straightforwardly from Theorem 2.2. �

Remark 4.3. For a0 = 1 an admissible estimator L′Y is unbiased for K ′EY in model
(8) corresponding to model (10). Hence, for the original model (10), the estimator of the
form (E0K, a1E1Q1)′Y is unbiased for [(K ′Zoβ)′, (Q′1Z1u1)′]′. So, under the assumption
that a1 = σ2

1k
′k

σ2
1k

′k+σ2
2
∈ [0, 1) is known, the estimator[

(K ′Z0β̂)′,
(
a1

1
k′k

Q′1Z1Z
′
1(Y − Z0β̂)

)′]′

with β̂ = 1
n1k′kZ

′
0Y = 1

n1k′k

∑n1
i=1

∑n2
j=1 kjyij is BLUP. When a1 /∈ [0, 1] this estimator

is still unbiased but inadmissible.

5. APPENDIX

P r o o f of Lemma 2.1.

Let W1(t) =
∑k+1
i=0 tiW1i and let W2(t) =

∑k+1
i=0 tiW2i for t = (t0, . . . , tk+1)′ ∈ Rk+1

≥ .
Using this notation the set [T ] can be written as

[T ] = {(W1(t),W2(t)) : t ∈ Rk+1
≥ }.

Let
F = {t ∈ Rk+1

≥ : R(Π′(W1(t) +W2(t))Π) = R(Π′)}.

For t ∈ F let L(t) be a matrix in Lo such that [L(t)]′Y is locally best at (W1(t),W2(t)).
Of course L(t) is uniquely defined.
Let t(n) = (t(n)

0 , . . . , t
(n)
k+1)′ ∈ F , n = 1, 2, . . . be a sequence such that

L∗ = lim
n→∞

L(t(n)).

Define t(n)
Λ = (t(n)

Λ0 , . . . , t
(n)
Λk+1)′ by

t
(n)
Λi =

{
0, when Λ′Π′(W1i +W2i)ΠΛ = 0,
t
(n)
i , when Λ′Π′(W1i +W2i)ΠΛ 6= 0,

and denote by

lΛ = lim
n→∞

1

||t(n)
Λ ||

t
(n)
Λ .
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Of course WΛ = (W1(lΛ),W2(lΛ)) ∈ [T ] satisfies condition (4).
Since [L(t(n))]′Y is the unique locally best estimator at (W1(t(n)),W2(t(n))), then

Π′[W1(t(n)) +W2(t(n))]L(t(n)) = Π′W2(t(n))K.

Hence we have

1

||t(n)
Λ ||

Λ′Π′[W1(t(n)
Λ ) +W2(t(n)

Λ )]L(t(n)) =
1

||t(n)
Λ ||

Λ′Π′W2(t(n)
Λ )K.

From this equality for n→∞ we get

Λ′Π′[W1(lΛ) +W2(lΛ)]L∗ = Λ′Π′W2(lΛ)K.

This means that (L∗)′Y is locally best at WΛ. This finishes the proof. �

P r o o f of Lemma 4.1.

An estimator L′Y is locally best at
(
s1V1 + s2V2, s0XX ′

)
in T among Lo iff sj ≥ 0 for

j = 0, 1, 2 and
Πo

(
s1V1 + s2V2 + s0XX ′

)
L = s0ΠoXX ′K.

In more details this equation can be written as(
2∑
i=0

siZiZ
′
i

)
L0 = s0Z0Z

′
0K,(

2∑
i=0

siZiZ
′
i

)
L1 = s1Z1Z

′
1Q1.

Of course, the above equations have only one solution, with respect to L0 and L1 iff the
matrix

∑2
i=0 siZiZ

′
i is nonsingular, that is iff s2 > 0. The assertion follows from (11).

�
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