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COMPOSITIONAL MODELS, BAYESIAN MODELS
AND RECURSIVE FACTORIZATION MODELS

Francesco M. Malvestuto

Compositional models are used to construct probability distributions from lower-order prob-
ability distributions. On the other hand, Bayesian models are used to represent probability dis-
tributions that factorize according to acyclic digraphs. We introduce a class of models, called
recursive factorization models, to represent probability distributions that recursively factorize
according to sequences of sets of variables, and prove that they have the same representation
power as both compositional models generated by sequential expressions and Bayesian models.
Moreover, we present a linear (graphical) algorithm for deciding if a conditional independence
is valid in a given recursive factorization model.
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1. INTRODUCTION

Compositional models of sequential type [2, 4, 5, 6, 8, 9] were originally introduced
to construct probability distributions from lower-order probability distributions as an
operational alternative to Bayesian models [3] (also called “directed Markov models”
[16]). Compositional models were also applied to belief functions [7, 11, 12], possibility
functions [11] and Shenoy valuations [10]. A more general type of compositional model,
namely, the model generated by a compositional expression, was introduced to compose
two or more metric distribution functions [19, 20], and such models find applications
also to multidimensional databases [18, 23].

In the framework of probability distributions, with a compositional expression we
associate a composition scheme (see Section 5.1), which is a symbolic formula for the
result of the composition. In some cases, the composition scheme has a closed form and
a typical case is the composition scheme associated with a sequential expression (see
“formal ratios” introduced by Kratochv́ıl [13, 14]).

In this paper we first prove that the following question has an affirmative question:
Does the formalism of compositional models of sequential type have the same represen-
tation power as the formalism of Bayesian models?
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Our result is stronger than the result proven by Jirous̆ek and Kratochv́ıl (see Section
5 in [9]) which states that, for every Bayesian model, there exists a sequential expression
that generates the same probability distributions represented by the Bayesian model.
In order to prove this sort of equivalence between compositional models generated by
sequential expressions and Bayesian models, we introduce recursive factorization models
and prove that they are equivalent to both compositional models generated by sequential
expressions and Bayesian models. Finally, we provide a linear graphical algorithm for
recognizing conditional independences holding in a recursive factorization model which
can be applied to both compositional models generated by sequential expressions and
Bayesian models.

The paper is organized as follows. Section 2 contains basic definitions on probability
distributions and their composition. In Section 3 the definitions of a compositional
expression and of its value under a valid interpretation are recalled and some further
properties are provided. In Section 4 we revise the evaluation procedure given in [20]
and introduce the notion of the composition scheme for a compositional expression. In
Section 5 we recall the definitions of compositional models and of Bayesian models as
well as their Markov properties. In Section 6 we introduce recursive factorization models
and prove that they have the representation power as both sequential compositional
models and Bayesian models. In Section 7 we provide a linear algorithm for recognizing
conditional independences valid in a recursive factorization model. Finally, in Section 8
we suggest a possible direction for future research.

2. PRELIMINARIES

Throughout we only consider discrete variables which take their values from finite sets
and whose values are mutually exclusive and exhaustive. We use the initial capital-case
letters of the alphabet (e. g., A,B,C) to denote variables, and the other capital-case
letters to denote sets of variables (e. g., X,Y, Z); moreover, sets of variables are written
as strings of variables; thus, ABC stands for {A,B,C}.
Let X be a non-empty set of variables. A configuration of X is an assignment of values
to the variables in X. We use the lower-case letter x to denote a configuration of X;
for example, the configuration of ABC with A = a, B = b and C = c is written abc.
By X we denote the set of all configurations of X. Let Y be a non-empty subset of X;
given a configuration x of X, by xY we denote the configuration of Y obtained from x
by ignoring the values of the variables in X\Y .

2.1. Probability distributions

Let X be a non-empty set of variables. A probability distribution on X is a mapping
f(X) : X→ [0, 1] such that ∑

x∈X

f(x) = 1 .

The support of f(X), denoted by ‖f‖, is the set of all configurations x of X with
f(x) 6= 0.
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Let f(X) and g(X) be probability distributions; f(X) is dominated by g(X) if ‖f‖ ⊆
‖g‖.

By definition, the support of a probability distribution on X may be any non-empty
subset of the configuration space X of X and can be viewed as a relation on scheme X in
the sense of relational algebra [17]; therefore, we can apply the following two operators
of relational algebra to supports of probability distributions:

(projection) Let r be a relation on scheme X, and let Y be a non-empty subset of
X. The projection of r onto Y is the relation

πY (r) = {xY : x ∈ r} .

Note that if X = Y then πY (r) = r.

(natural join) Let r and s be relations on schemes X and Y respectively. The
(natural) join of r and s is the relation on scheme V = X ∪ Y defined as follows:

r on s = {v ∈ V : vX ∈ r and vY ∈ s} .

Note that if X = Y then r on s = r ∩ s. The join of relations is both associative
and commutative [17].

Remark 2.1. Let r and s be relations on schemes X and Y respectively. A configura-
tion x of X belonging to r contributes to r on s only if x matches some configuration
y ∈ s in the sense that xX∩Y = yX∩Y . As a consequence, one has that

(i) if Y ⊆ X then r on s ⊆ r where the equality holds if and only if πY (r) ⊆ s;

(ii) if X ∩ Y = ∅ then πX(r on s) = r; otherwise, πX(r on s) = r on πX∩Y (s) so that,
by (i), πX(r on s) ⊆ r where the equality holds if and only if πX∩Y (r) ⊆ πX∩Y (s).

Remark 2.2. Let r be a relation on scheme V , and let X and Y be subsets of V . For
every v ∈ r, we have vX ∈ πX(r) and vY ∈ πY (r) so that v ∈ πX(r) on πY (r); it follows
that r ⊆ πX(r) on πY (r). More in general, if r is a relation on scheme V = X1∪ . . .∪Xn,
then

r ⊆ πX1(r) on · · · on πXn
(r) .

2.2. Marginals

Let f(X) be a probability distribution, and let Y be a non-empty subset of X. The
marginal of f(X) on Y , written f↓Y , is the probability distribution on Y defined as
follows: for every configuration y of Y

f↓Y (y) =
∑

x∈X : xY =y

f(x) .
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Lemma 2.3. (see Remark 4.6 in Malvestuto [19]) The support of the marginal of a
probability distribution f(X) on a non-empty subset Y of X is given by the projection
of the support of f(X) onto Y , that is,

‖f↓Y ‖ = πY (‖f‖) .

By Lemma 2.3, for every configuration y of Y one has

f↓Y (y) =
{ ∑

x∈‖f‖ : xY =y f(x) if y ∈ πY (‖f‖)
0 otherwise.

Finally, we make use of the notation f↓∅ for
∑

x∈X f(x) so that f↓∅ = 1.

2.3. Conditional independence

Given a probability distribution f(V ), let X,Y, Z be disjoint subsets of V and let U =
X ∪ Y ∪ Z. The sets X and Y are independent given Z under f↓U if

f↓U × f↓Z = f↓X∪Z × f↓Y ∪Z . (1)

Note that if X = ∅ or Y = ∅, then the equality in eq. (1) trivially holds.
Assume that neither X nor Y is the empty set. If Z = ∅, eq. (1) requires that, for

every configuration u of U , one has

f↓U (u) = f↓X(uX)× f↓Y (uY ) .

If Z 6= ∅, eq. (1) requires that, for every configuration u of U , one has

f↓U (u)× f↓Z(uZ) = f↓X∪Z(uX∪Z)× f↓Y ∪Z(uY ∪Z)

or, equivalently,

f↓U (u) =

 f↓X∪Z(uX∪Z)× f↓Y ∪Z(uY ∪Z)
f↓Z(uZ)

if u ∈ ‖f↓U‖

0 otherwise.

If X and Y are independent given Z under f↓U , we also say that the conditional
independence

X |= Y | Z

holds under f(V ). We call this conditional independence trivial if X = ∅ or Y = ∅,
and nontrivial otherwise. It can be proved that conditional independence satisfies the
so-called semigraphoid axioms [15].
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2.4. Composition of probability distributions

A probability distribution g(X) is composable [19] with a probability distribution h(Y )
if

(a) either X ∩ Y = ∅, or

(b) g↓X∩Y is dominated by h↓X∩Y .

By Lemma 2.3, condition (b) is equivalent to

(b′) πX∩Y (‖g‖) ⊆ πX∩Y (‖h‖).

Note that if there exists a probability distribution f(X ∪ Y ) such that f↓X = g(X)
and f↓Y = h(Y ) then g(X) is composable with h(Y ).

Assume that g(X) is composable with h(Y ). Let V = X ∪ Y and Z = X ∩ Y . The
composition of g(X) with h(Y ) [19] is the distribution f(V ) with support ‖f‖ = ‖g‖ on
‖h‖ which, for every V -tuple v ∈ ‖f‖, takes on the value

f(v) =

 g(vX)× h(vY ) if Z = ∅
g(vX)× h(vY )

h↓Z(vZ)
otherwise.

If g(X) is not composable with h(Y ), then the composition of g(X) with h(Y ) is
undefined.

The next two results [19] provide key properties of the composition of distributions.

Theorem 2.4. Let g(X) and h(Y ) be probability distributions such that g(X) is com-
posable with h(Y ), and let f(X ∪ Y ) be the composition of g(X) with h(Y ).

(i) f↓X = g(X);

(ii) f(X ∪ Y ) equals the composition of f↓X with f↓Y .

Theorem 2.5. Let g(X) and h(Y ) be probability distributions such that g(X) is com-
posable with h(Y ). The (possibly trivial) conditional independence

X \ Y |= Y \X | X ∩ Y

holds under the composition of g(X) with h(Y ).

After Jiroušek [4], we make use of the notation “g(X) . h(Y )” for the composition of
g(X) with h(Y ). Of course, in general the composition operator “.” is neither commu-
tative nor associative.
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3. COMPOSITIONAL EXPRESSIONS

A compositional expression [20] is a parenthesized expression formed out by (not neces-
sarily distinct) non-empty sets of variables, and the symbol “.”. Explicitly, the following
provides a formal definition of a compositional expression:

(i) a set of variables is a compositional expression;

(ii) if θ and η are compositional expressions, then (θ).(η) is a compositional expression;

(iii) there are no other compositional expressions than those defined by (i) and (ii).

The base sequence of a compositional expression θ is the sequence of all the sets of
variables featured in θ arranged in order of appearance. Let (X1, . . . , Xn), n ≥ 1, be the
base sequence of θ. We call Xi the ith term of θ, 1 ≤ i ≤ n, and the set X1 ∪ . . . ∪Xn

the frame of θ. Note that a set featured in θ may have more than one occurrence, that
is, it may happen that for two distinct terms Xi and Xj of θ we have that Xi = Xj .

Henceforth, a compositional expression of either form (X).(θ) or (θ).(X) or (X).(Y )
will be written simply as X . (θ) or (θ) . X or X . Y , respectively.

A compositional expression θ with base sequence (X1, . . . , Xn) can be naturally
viewed as a string of symbols taken from the set S = {(, ), .,X1, . . . , Xn}. Let θ =
a1 . . . al, where ah ∈ S for all h; a subexpression of θ is a compositional expression of
the form ah. . . ak for some h and k, 1 ≤ h ≤ k ≤ l. A subexpression θ′ of θ is atomic if
it is of the form θ′ = Xi for some i. As was proved in [19], there exist exactly n atomic
subexpressions of θ and n− 1 non-atomic subexpressions of θ.

Example 3.1. Consider the compositional expression

θ = ABC . ((AB . AC) . (BDE . CDF )) .

The base sequence and the frame of θ are (ABC,AB,AC,BDE,CDF ) and ABCDEF
respectively. The atomic subexpressions of θ are the five terms of θ, and the non-atomic
subexpressions of θ are the following four compositional expressions

ABC . ((AB . AC) . (BDE . CDF ))

(AB . AC) . (BDE . CDF ) AB . AC BDE . CDF .

3.1. Syntax tree

The syntactic structure of a compositional expression θ with base sequence (X1, . . . , Xn)
can be represented by an (ordered) binary tree T , to be called the syntax tree for θ [19,
20], whose leaves correspond one-to-one to the n atomic subexpressions X1, . . . , Xn of θ,
and whose internal nodes correspond one-to-one to the n− 1 non-atomic subexpressions
of θ. Note that each internal node v of T has two children and, if (θ′) . (θ′′) is the
subexpression corresponding to v, then the child of v corresponding to θ′ is called the
left child of v and the child of v corresponding to θ′′ is called the right child of v. We
choose to direct the arcs of T away from the root of T ; thus, v → u means that u is a
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child of v or, equivalently, v is the parent of u. In what follows, for each node v of T ,
by θv we denote the subexpression of θ corresponding to v. Accordingly, the root of T
is the node corresponding to θ; moreover, if v is an internal node with left child u and
right child w, then θv = (θu) . (θw). It should be noted that the node set of T can be
linearly ordered as follows. Let u and w be two distinct nodes of T , and let v be the
deepest common ancestor of u and w. Then u precedes w if either u = v (that is, u is
an ancestor of w) or the left child of v is an ancestor of u (and the right child of v is an
ancestor of w). Accordingly, the leaves of T are ordered in such a way that the ith leaf
of T corresponds precisely to the atomic subexpression given by the ith term (Xi) of θ.
Finally, we label each node v of T with the frame of θv, which will be denoted by Lv.
Thus, if (Xk, . . . , Xm) is the base sequence of θv, then Xk, . . . , Xm are the labels of the
leaves of the subtree Tv of T rooted at v and Lv = Xk ∪ . . . ∪Xm.

8 9 

1 

 3 

 7 

2 

L1 = ABCDEF 

 5 6 

 4 

L2 = ABC L3 = ABCDEF 

L4 = ABC L7 = BCDEF 

L5 = AB L6 = AC L8 = BDE L9 = CDF 

Fig. 1. The syntax tree for the compositional expression

ABC . ((AB . AC)) . (BDE . CDF ).

Figure 1 shows the syntax tree T for the compositional expression of Example 3.1
and Table 1 reports the nodes of T with the corresponding subexpressions.

In what follows, we will need to go through a syntax tree T . To achieve this, we will
perform the postorder traversal [1] of T during which, for each internal node v, we visit
first the nodes of the subtree of T rooted at the left child of v, next the nodes of the
subtree of T rooted at the right child of v and then v. For example, during the postorder
traversal of the syntax tree of Fig. 1 the nodes are visited in the following order:

2 5 6 4 8 9 7 3 1 .
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node v subexpression θv

1 ABC . ((AB . AC) . (BDE . CDF ))
2 ABC
3 (AB . AC) . (BDE . CDF )
4 AB . AC
5 AB
6 AC
7 BDE . CDF
8 BDE
9 CDF

Tab. 1. The subexpressions of the compositional expression

ABC . ((AB . AC)) . (BDE . CDF ) corresponding to the nodes of its

syntax tree.

Finally, the leftmost branch of a syntax tree T is the subtree of T induced by the
node set that is recursively defined as follows:

– the root of T is a node of the leftmost branch of T ;

– if v is an internal node of the leftmost branch of T , then the left child of v is a
node of the leftmost branch of T .

Of course, the leftmost branch of T has exactly one leaf, which is the leaf of T labeled
with the first term (X1) of θ; moreover, each internal node of the leftmost branch of T
has exactly one child. For example, the leftmost branch of the syntax tree shown in Fig.
1 has node set {1, 2}.

3.2. Interpretations

Let θ be a compositional expression with base sequence (X1, . . . , Xn) and syntax tree
T . An interpretation of θ is a sequence I = (f1(X1), . . . , fn(Xn)) of probability distri-
butions.

Given an interpretation I = (f1(X1), . . . , fn(Xn)) of θ, for each node v of T the value
of the subexpression θv under I is recursively defined as follows:

– if v is a leaf of T and θv = Xi for some i, 1 ≤ i ≤ n, then the value of θv under I
is fi(Xi);

– if v is an internal node of T with left child u and right child w, then the value of
θv under I is the composition of the value of θu with the value of θw under I.

Of course, if v is a leaf of T , the value of θv under I is defined. Consider now an
internal node v of T with left child u and right child w. Then, the value of θv under I
is defined if

– the values of θu and θw under I are both defined, and
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– either Lu ∩ Lw = ∅ or the marginal on Lu ∩ Lw of the value of θu under I is
dominated by the marginal on Lu ∩ Lw of the value of θw under I.

If this is the case, we denote the value of θv under I by I[θv].
An interpretation I of θ is valid if for the root v of T the value of θv under I is

defined. If this is the case, I[θv] provides the value of θ under I, and we write simply
I[θ] instead of I[θv].

3.3. A validity test

Let I = (f1(X1), . . . , fn(Xn)) be an interpretation of a compositional expression θ, and
let T be the syntax tree for θ. A procedure for testing I for validity was given in [20]
and is now recalled for the sake of completeness. That procedure takes as input the
supports of the probability distributions in I and performs a postorder traversal of T
during which, for every vertex v, the value of θv under I is checked to be defined, and
if this is not the case then we stop the traversal of T and conclude that I is not a valid
interpretation of θ. Of course, if v is a leaf of T , then θv = Xi for some i and the value
of θv under I is defined so that the support of I[θv] is ‖fi‖. Consider the case that v is
an internal node of T , and let u and w be the left child and right child of v respectively.
Assume that the values of both θu and θw under I are defined. Then the value of θv

under I is defined if and only if either Lu ∩ Lw = ∅ or I[θu]↓Lu∩Lw is dominated by
I[θw]↓Lu∩Lw , which by Lemma 2.3 can be checked by testing the inclusion

πLu∩Lw (‖I[θu]‖) ⊆ πLu∩Lw (‖I[θw]‖) .

If this is the case, the support of I[θv] is given by the join of the supports of I[θu] and
I[θw]:

‖I[θv]‖ = ‖I[θu]‖ on ‖I[θw]‖ . (2)

3.4. Properties of I[θ]

Let I be a valid interpretation of a compositional expression θ with syntax tree T . We
begin by providing a join expression for the support of I[θ]. By repeated application of
eq. (2) we have that, for each node v of T , if (Xk, . . . , Xm), k ≤ m, is the base sequence
of θv, then the support of I[θv] is given by

‖I[θv]‖ = ‖fk‖ on · · · on ‖fm‖ (3)

so that the support of I[θ] is given by the join expression

‖f1‖ on · · · on ‖fn‖ . (4)

We now show that it may happen that, for some i, the support ‖fi‖ is redundant in
the join expression (4) and can be omitted. For example, consider the compositional ex-
pression θ of Example 3.1, and let I = (f1(ABC), f2(AB), f3(AC), f4(BDE), f5(CDF ))
be a valid interpretation of θ. By (4), for the support of I[θ] we have the join expression

‖f1‖ on ‖f2‖ on ‖f3‖ on ‖f4‖ on ‖f5‖ . (5)
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We now show that the validity of I also entails that the supports of f2(AB) and f3(AC)
are redundant in the join expression (5). Bearing in mind that the left child and the
right child of the root 1 of the syntax tree (see Fig. 1) are 2 and 3 respectively, for the
support of I[θ] we have

‖I[θ]‖ = ‖I[θ2]‖ on ‖I[θ3]‖

and, by eq. (3), the supports of I[θ2] and I[θ3] are given by

‖I[θ2]‖ = ‖f1‖ ‖I[θ3]‖ = ‖f2‖ on ‖f3‖ on ‖f4‖ on ‖f5‖ .

Since the value of θ under I is defined, I[θ2] is composable with I[θ3], which implies
that I[θ2] is is dominated by I[θ3]↓ABC so that by Lemma 2.3 we have

‖f1‖ ⊆ πABC(‖f2‖ on ‖f3‖ on ‖f4‖ on ‖f5‖) .

By part (ii) of Remark 2.1 we have

πABC(‖f2‖ on ‖f3‖ on ‖f4‖ on ‖f5‖) = ‖f2‖ on ‖f3‖ on πBC(‖f4‖ on ‖f5‖)

and by part (i) of Remark 2.1 we have

‖f2‖ on ‖f3‖ on πBC(‖f4‖ on ‖f5‖) ⊆ ‖f2‖ on ‖f3‖ .

Therefore, we have
‖f1‖ ⊆ ‖f2‖ on ‖f3‖

so that by part (i) of Remark 2.1 we have

‖f1‖ on ‖f2‖ on ‖f3‖ = ‖f1‖

which allows to reduce the join expression (5) to

‖f1‖ on ‖f4‖ on ‖f5‖ .

The next result is a consequence of Theorem 2.4 and states a useful property of the
marginals of I[θ] on the labels of nodes of the leftmost branch of T .

Lemma 3.2. Let θ be a compositional expression with frame V and syntax tree T , and
let I be a valid interpretation of θ. For each internal node v of the leftmost branch of
T , if u and w are the left child and right child of v in T , then

(i) I[θv]↓Lu = I[θu];

(ii) I[θv] = I[θv]↓Lu . I[θv]↓Lw .

By Lemma 3.2, the following holds.

Theorem 3.3. Let θ be a compositional expression with frame V and syntax tree T ,
and let I be a valid interpretation of θ. For each node v of the leftmost branch of T , we
have that
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(i) I[θ]↓Lv = I[θv];

(ii) if v is an internal node and u and w are its left child and right child in T , then

I[θ]↓Lv = I[θ]↓Lu . I[θ]↓Lw .

3.5. Evaluation

Let θ be a compositional expression with syntax tree T , and let I be a valid interpretation
of θ. A brute-force approach to the evaluation of I[θ] consists in performing the postorder
traversal of T during which, for each node v, the value of θv under I is computed when
v is visited. Ultimately, we obtain I[θ].

A more efficient evaluation method [20] consists in constructing a (symbolic) algebraic
expression for I[θ], which allows to compute I[θ] without passing through the probability
distributions I[θv] for the non-root nodes of T . For example, given a valid interpretation

I = (f1(ABC), f2(AB), f3(AC), f4(BDE), f5(CDF ))

of the compositional expression θ of Example 3.1, the algebraic expression for I[θ] is
given by (see Example 4.1 below)

f1(ABC)× f4(BDE)× f5(CDF )

f↓D5 ×
∑
D

f↓BD
4 × f↓CD

5

f↓D5

(6)

and the numeric value of I[θ](abcdef), for every configuration abcdef ∈ ‖I[θ]‖, is
calculated as follows:

I[θ](abcdef) =
f1(abc)× f4(bde)× f5(cdf)

f↓D5 (d)×
∑
d′

f↓BD
4 (bd′)× f↓CD

5 (cd′)

f↓D5 (d′)

.

In the next section, we recall the procedure given in [20] for constructing the algebraic
expression for I[θ] and add some refinements.

4. THE COMPOSITION SCHEME

Let θ be a compositional expression with base sequence (X1, . . . , Xn) and syntax tree T ,
and let I = (f1(X1), . . . , fn(Xn)) be a valid interpretation of θ. The algebraic expression
for I[θ] is obtained by performing the postorder traversal of T during which, for each
node v of T , we construct a product expression P(v) for I[θv]. Ultimately, the algebraic
expression for I[θ] will be derived from P(v), where v is the root of T .

It should be noted that, if J = (g1(X1), . . . , gn(Xn)) is another valid interpretation of
θ, then the algebraic expression for J [θ] can be obtained from the algebraic expression
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for I[θ] simply by replacing each occurrence of fi with gi. In other words, for every
(valid interpretation) I of θ, the formal structure of the algebraic expression for I[θ]
is a property of θ only, which we call the composition scheme for θ. For example, the
composition scheme for the compositional expression of Example 3.1 is given by the
formal ratio of the algebraic expression (6).

4.1. The procedure

During the postorder traversal of the syntax tree T for θ, for each node v of T we
construct a product expression P(v) for I[θv], which is always in reduced form thanks to
three reduction rules: delete, cancel and factor out [20], and looks like as a product of
factors each of which is of one of the following four types:

fi(Xi) f↓Yi

1
fi(Xi)

1

f↓Yi

.

Here, fi(Xi) stands either for a probability distribution from I (in which case i ≤ n),
or for an “extra distribution” (in which case i > n) which is introduced in order to
facilitate the application of above-mentioned reduction rules. In detail, P(v) is obtained
as follows.

Case 1: v is a leaf of T . In this case there exists a unique value of i, 1 ≤ i ≤ n, such
that v corresponds to the ith term of θ and, then, P(v) is set to fi(Xi).

Case 2: v is an internal node of T . Let u and w be the left child and the right child of
v, respectively. Then P(v) is obtained by simplifying the product

P(u)× P(w)× 1∑
A∈Lw\Lu

P(w)
.

Explicitly, the construction of P(v) takes the following three steps.

Step 1. We first find the deepest node x of the leftmost branch of Tw for which Lu ∩
Lw ⊆ Lx. At this point, if Lu ∩ Lw = Lx, then we set S = P(x) and go to
Step 2; otherwise, we reduce the sum

∑
A∈Lx\Lu P(x) using the above-mentioned

reduction rules (see [20] for details). After doing that, it may happen that one
or more factors in the reduction of the sum

∑
A∈Lx\Lu P(x) is neither of the type

fi(Xi) nor of the type f↓Yi , where fi(Xi) is either a distribution from I or an
extra distribution that has been previously introduced; in this case, it is of the
type

∑
Z(·) and, then, we introduce one more extra distribution fj(Xj), for some

j > n, which represents the argument of the sum
∑

Z , and express that factor as
f
↓Xj\Z
j . Finally, we set S to the result of the reduction of the sum

∑
A∈Lx\Lu P(x).

Step 2. We reduce the product P(w)× 1
S by canceling factors common to P(w) and S.

Let R denote the result of the reduction of P(w)× 1
S .
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Step 3. We set P(v) = P(u)× R.

Finally, the composition scheme for θ is obtained from P(v), where v is the root of T ,
by expressing the extra distributions present in P(v) (if any) in terms of the probability
distributions in I. If no extra distribution is present in P(v), then P(v) itself provides
the composition scheme for θ.

Example 4.1. Consider again the compositional expression

θ = ABC . ((AB . AC) . (BDE . CDF ))

of Example 3.1, and let I = (f1(ABC), f2(AB), f3(AC), f4(BDE), f5(CDF )) be any
valid interpretation of θ. In order to obtain the composition scheme for θ, we first
perform the postorder traversal of the syntax tree T for θ (shown in Fig. 1), during
which the product expression P(v) is constructed for each node v of T . The result is
reported in Table 3. Note that P(1) contains the marginal on BC of the extra distribution

f6(BCD) = f↓BD
4 × f↓CD

5

f↓D5

introduced when P(3) was constructed (see Step 1).

node v P(v)
2 f1(ABC)
5 f2(AB)
6 f3(AC)

4
f2(AB)× f3(AC)

f↓A3
8 f4(BDE)
9 f5(CDF )

7
f4(BDE)× f5(CDF )

f↓D5

3
f2(AB)× f3(AC)× f4(BDE)× f5(CDF )

f↓A3 × f↓D5 × f↓BC
6

1
f1(ABC)× f4(BDE)× f5(CDF )

f↓D5 × f↓BC
6

Tab. 2. The product expressions constructed during the postorder

traversal of the syntax tree.

After visiting the root 1 of T , we obtain the composition scheme (6) from P(1) by

expressing f↓BC
6 as

∑
D

f↓BD
4 × f↓CD

5

f↓D5

.

4.2. Reduction of a compositional expression

Let θ be a compositional expression with base sequence (X1, . . . , Xn), and let I =
(f1(X1), . . . , fn(Xn)) be any (valid) interpretation of θ. We say that a term Xi of θ, for
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some i, is redundant if the composition scheme for θ does not contain any occurrence of
fi, that is, it contains neither fi(Xi) nor any marginal of fi(Xi). Note that the first term
X1 of θ is never redundant. Thus, for the compositional expression θ of Example 4.1,
since the composition scheme (6) contains no occurrences of f2 and no occurrences of
f3, the second term (X2 = AB) and the third term (X3 = AC) of θ are redundant. The
following is more instructive example.

Example 4.2. Consider the compositional expression

θ = ABC . (BD . (AC . CD)) I = (f1(ABC), f2(BD), f3(AC), f4(CD))

and let I = (f1(ABC), f2(BD), f3(AC), f4(CD)) be any valid interpretation of θ. For
the composition scheme of θ we find

f1(ABC)× f2(BD)× f4(CD)∑
C

f↓C3 × f4(CD)

f↓C4

×
∑
D

f2(BD)× f4(CD)∑
C

f↓C3 × f4(CD)

f↓C4

and, since each fi has at least one occurrence, no term of θ is redundant.

The reduction of a compositional expression θ is the compositional expression ob-
tained from θ by deleting all redundant terms. A compositional expression θ is reduced if
θ contains no redundant terms and, in this case, the reduction of θ is itself. For example,
the reduction of the compositional expression of Example 4.1 is ABC . (BDE . CDF ).

4.3. Closed-form composition schemes

We say that the composition scheme for a compositional expression θ has a closed form if
it is a product expression, which happens if and only if the product expression associated
with the root of the syntax tree for θ contains no extra distributions (see the procedure
of Section 4.1). We now give two classes of compositional expressions having closed-
form composition schemes. To this end, for a given sequence (X1, . . . , Xn), n > 1, of
non-empty sets we make use of the following notation:

∂Xi =
{
∅ if i = 1(
∪1≤j≤i−1 Xj

)
∩Xi if i > 1 .

A compositional expression θ with base sequence (X1, . . . , Xn) is

• a sequential expression [19] if θ = ((. . . (X1 . X2) . . . . ) . Xn−1) . Xn;

• a canonical expression [19] if the sequence (X1, . . . , Xn) enjoys the running inter-
section property which requires that for each i > 1 there exists ji < i such that
∂Xi ⊆ Xji .
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It is routine to check that the composition scheme for the sequential expression with
base sequence (X1, . . . , Xn) has the following closed form [13, 14]:

n∏
i=1

∂Xi 6=Xi

fi(Xi)

f↓∂Xi

i

. (7)

(Recall that f↓∅i = 1.) Moreover, from a result proven in [19] we have that the compo-
sition scheme for a canonical expression with base sequence (X1, . . . , Xn) is again given
by (7).

Note that by (7) a sequential expression or a canonical expression with base sequence
(X1, . . . , Xn) is reduced if and only if, for each i > 1, one has ∂Xi 6= Xi (in which case
we also have that Xi = Xj if and only if i = j). Of course, if θ is a reduced, sequential
or canonical expression with base sequence (X1, . . . , Xn), then the composition scheme
(7) reads

n∏
i=1

fi(Xi)

f↓∂Xi

i

. (8)

We can take the composition scheme (8) to define a class of reduced compositional
expressions which we may call regular expressions. Thus, both reduced sequential ex-
pressions and reduced canonical expressions are examples of regular expressions. The
following is an example of a regular expression which is neither sequential nor canonical

(AB . AC) . (BCD . CE) .

5. COMPOSITIONAL AND BAYESIAN MODELS

5.1. Compositional models

Let θ be a compositional expression with frame V . We say that a probability distribution
f(V ) is conformal to (or is represented by) the (compositional) model generated by θ
if there exists a valid interpretation I of θ such that I[θ] = f(V ). We say that a
conditional independence is valid in the model generated by a compositional expression
θ if it holds under every probability distribution conformal to the model generated by
θ. As a consequence of Theorem 2.5 and part (i) of Theorem 3.3 we have the following.

Theorem 5.1. Let θ be a compositional expression with syntax tree T . For each inter-
nal node v of the leftmost branch of T , if u and w are the left child and the right child
of v in T , then the conditional independence

Lu \ Lw |= Lw \ Lu | Lu ∩ Lw

is valid in the model generated by θ.

Starting from the conditional independences mentioned in Theorem 5.1, we can de-
rive many other conditional independences valid in the model generated by θ using
semigraphoid axioms.
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In what follows, we limit our considerations to models generated by reduced compo-
sitional expressions. Moreover, compositional models generated by regular expressions
and by reduced sequential expressions will be referred to as regular compositional models
and sequential compositional models, respectively.

5.2. Bayesian models

Let D be an acyclic digraph (a dag, for short) whose vertices represent variables. Let
V be the vertex set of D. For each vertex A of D, by pa(A) we denote the (possibly
empty) set of parents of A in D. A probability distribution f(V ) is conformal to the
Bayesian model generated by the dag D if

f(V ) =
∏

A∈V

f↓{A}∪pa(A)

f↓pa(A)
. (9)

From a dual perspective, the Bayesian model generated by D can be viewed as a
representation of conditional independences.

Theorem 5.2. (Lauritzen et al. [16], Pearl [22], Verma and Pearl [25]) Let X,Y and
Z be three mutually disjoint sets of vertices of a dag D. The following three statements
are pairwise equivalent:

(i) the conditional independence X |= Y | Z is valid in the Bayesian model generated
by D;

(ii) X and Y are d-separated by Z in D;

(iii) X and Y are separated by Z in the moral graph of the subgraph of D induced by
the smallest ancestral set containing X ∪ Y ∪ Z.

Recall that

– X and Y are d-separated [22] by Z in a dag “if and only if there is no trail between
a vertex in X and a vertex in Y along which (1) every node with converging arrows
either is in Z or has a descendant in Z and (2) every node that delivers an arrow
along the trail is outside Z” [3];

– an ancestral set [16] in a dag is a set U of vertices such that pa(A) ⊆ U for all
A ∈ U ;

– the moral graph [16] of a dag D is the minimal (with respect to the number of
edges) graph obtained from the undirected graph underlying D by adding edges
in such a way that, for every vertex A of D, the set {A} ∪ pa(A) is a clique;

– X and Y are separated by Z in an undirected graph if, for every A ∈ X and B ∈ Y ,
every path (if any) joining A and B passes through Z.
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Lauritzen et al. [16] exploited the equivalence between parts (i) and (iii) of Theo-
rem 5.2 to devise an algorithm (henceforth referred to as the LDLL algorithm) which
decides the validity of X |= Y | Z in O(|V |2) time, where V is the vertex set of D.

Geiger et al. [3] exploited the equivalence between parts (i) and (ii) of Theorem 5.2
to devise an algorithm (henceforth referred to as the GVP algorithm) which finds the
maximal set U for which X |= U | Z is valid in O(|E|) time, where E is the set of directed
edges of D. Therefore, a conditional independence X |= Y | Z is valid in the Bayesian
model on D if and only if Y ⊆ U .

It should be noted that, since |E| ≤ |V |2, the GVP algorithm is a bit more efficient
than the LDLL algorithm; moreover, as was observed in [3], the LDLL algorithm can
be used to solve the GVP problem in O(|V |3) time.

6. RECURSIVE FACTORIZATION MODELS

In this section we introduce a class of factorization models that in some sense are equiv-
alent to both sequential compositional models and Bayesian models.

Let (X1, . . . , Xn) be a set sequence such that ∂Xi 6= Xi for all i, and let V =
X1∪. . .∪Xn. We say that a probability distribution f(V ) recursively factorizes according
to (X1, . . . , Xn) or, equivalently, f(V ) is conformal to the recursive (factorization) model
generated by (X1, . . . , Xn) if

• for every configuration v of V , f(v) 6= 0 if and only if f↓Xi(vXi
) 6= 0 for each i,

which by Lemma 2.3 is equivalent to saying that

‖f‖ = πX1(‖f‖) on · · · on πXn
(‖f‖) ;

• for every configuration v ∈ ‖f‖, the value of f(v) is given by

f(v) =
n∏

i=1

f↓Xi(vXi
)

f↓∂Xi(vXi)
.

We also say that a probability distribution f(V ) conformal to the recursive model gen-
erated by (X1, . . . , Xn) has factorization scheme

n∏
i=1

f↓Xi

f↓∂Xi
. (10)

Example 6.1. Consider the recursive model generated by the set sequence

(ABC,ADE,CEFG) .

A probability distribution f(ABCDEFG) conformal to the model has the factorization
scheme

f↓ABC × f↓ADE × f↓CEFG

f↓A × f↓CE
.



Compositional models, Bayesian models and recursive models 713

6.1. Recursive models vs. sequential compositional models

We prove that recursive models have the same representation power as sequential com-
positional models. To achieve this, we need the following lemma.

Lemma 6.2. Every probability distribution conformal to a compositional model gen-
erated by a regular expression is conformal to the recursive model generated by its base
sequence.

P r o o f . Let θ be a regular expression with frame V and base sequence (X1, . . . , Xn).
Consider any probability distribution f(V ) conformal to the compositional model gen-
erated by θ. Then there exists a valid interpretation I = (f1(X1), . . . , fn(Xn)) of θ such
that I[θ] = f(V ). We need to prove that

(i) ‖f‖ = πX1(‖f‖) on · · · on πXn
(‖f‖), and

(ii) f(V ) has the factorization scheme (10).

P r o o f o f (i). Let Vi = X1 ∪ . . .∪Xi−1 ∪Xi+1 ∪ . . .∪Xn, 1 ≤ i ≤ n. By (4), for each
i we have that

πXi(‖f‖) = πXi(‖f1‖ on · · · on ‖fn‖)

=
{
‖fi‖ if Xi ∩ Vi = ∅
‖fi‖ on πXi∩Vi

(‖f1‖ on · · · on ‖fi−1‖ on ‖fi+1‖ on · · · on ‖fn‖) otherwise

so that we always have that πXi
(‖f‖) ⊆ ‖fi‖ and, hence,

πX1(‖f‖) on · · · on πXn
(‖f‖) ⊆ ‖f1‖ on · · · on ‖fn‖ = ‖f‖ .

On the other hand, by Remark 2.2 one has

‖f‖ ⊆ πX1(‖f‖) on · · · on πXn(‖f‖) .

So, we have that
‖f‖ = πX1(‖f‖) on · · · on πXn

(‖f‖)

which proves (i).

P r o o f o f (ii). By the composition scheme (8) of f(V ), we have

f(V ) = f1(X1)×
n∏

i=2

fi(Xi)

f↓∂Xi

i

(11)

so that

f↓X1∪...∪Xi =

 f1(X1) if i = 1

f↓X1∪...∪Xi−1 × fi(Xi)
f↓∂Xi

i

if i > 1. (12)
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It follows that, for i = 2, . . . , n

f↓Xi =
∑

A/∈Xi

f↓X1∪...∪Xi =
∑

A/∈Xi

(
f↓X1∪...∪Xi−1 × fi(Xi)

f↓∂Xi

i

)
=
( ∑

A/∈∂Xi

f↓X1∪...∪Xi−1

)
× fi(Xi)

f↓∂Xi

i

= f↓∂Xi × fi(Xi)

f↓∂Xi

i

so that
f↓Xi

f↓∂Xi
=
fi(Xi)

f↓∂Xi

i

(i = 2, . . . , n) .

By replacing f1(X1) and fi(Xi)
f↓∂Xi

i

in eq. (11) with f↓X1 and f↓Xi

f↓∂Xi
respectively, we obtain

the factorization scheme (10), which proves (ii). �

It should be noted that, if a compositional expression θ is not regular, then it is
not true that every probability distribution f(V ) conformal to the compositional model
generated by θ is equal to the value of θ under the interpretation If = (f↓X1 , . . . , f↓Xn),
where (X1, . . . , Xn) is the base sequence of θ.

Theorem 6.3. Recursive models have the same representation power as sequential com-
positional models.

P r o o f . Let (X1, . . . , Xn) be a set sequence such that ∂Xi 6= Xi for all i > 1. We shall
prove that a probability distribution is conformal to the recursive model generated by
(X1, . . . , Xn) if and only if it is conformal to the compositional model generated by the
sequential expression with base sequence (X1, . . . , Xn).

(If ) Since reduced sequential expressions are regular expressions, the statement follows
from Lemma 6.2.

(Only if ) Let f(V ) be any probability distribution conformal to the recursive model
generated by (X1, . . . , Xn), and let θ be the sequential expression with base sequence
(X1, . . . , Xn). Consider the interpretation

If = (f↓X1 , . . . , f↓Xn)

of θ. Let T be the syntax tree for θ. We now prove by induction that, for each node v
of the leftmost branch of T , the value of θv under I is defined and If [θv] = f↓Lv .

BASIS: v is the leaf of the leftmost branch of T . Then the value of θv under I is trivially
defined and If [θv] = f1(X1).

INDUCTION: v is an internal node of the leftmost branch of T . Let u and w be the left
child and the right child of v in T , respectively, and let Lu = X1∪. . .∪Xi for some i < n.
By hypothesis, the value of θu under If is defined and If [θu] = f↓Lu . Then, the value
of θw under If is trivially defined and If [θw] = f↓Xi+1 . Since both If [θu] and If [θw] are
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marginals of f(V ), If [θu] is composable with If [θw] and If [θv] = f↓Lu . f↓Xi+1 . By eq.
(12) we have If [θv] = f↓Lu∪Xi+1 .

Finally, for the root of T , we have that the value of θ under If is defined and
If [θ] = f(V ), which proves that f(V ) is conformal to the compositional model generated
by the sequential expression with base sequence (X1, . . . , Xn). �

6.2. Recursive models vs. Bayesian models

We prove that recursive models have the same representation power as Bayesian models.
To achieve this, we need the following notions.

Given a set sequence (X1, . . . , Xn), let V = X1 ∪ . . . ∪Xn and, for each i, 1 ≤ i ≤ n,
let

ki = |Xi \ ∂Xi| .
Consider an ordering π = (A1, . . . , Ak) of the variables in V , where k = k1+k2+. . .+kn,
obtained by choosing in order

the variables in X1 \ ∂X1 ( = X1) (in any order),

the variables in X2 \ ∂X2 (in any order),

. . .

the variables in Xn \ ∂Xn (in any order).

Explicitly, π is of the form

π = (A1, . . . , Ak1 , Ak1+1, . . . , Ak1+k2 , . . . , Ak−kn . . . , Ak).

Given π, letD be the dag with vertex set V in which, for each h and j with 1 ≤ h < j ≤ k,
Ah → Aj is a directed edge if and only if either Ah, Aj ∈ X1 or there exists i > 1 such
that Ah ∈ Xi and Aj ∈ Xi \ ∂Xi. We call D a dag associated with (X1, . . . , Xn). For
example, Figure 2 shows a dag associated with the set sequence (ABC,ADE,CEFG).

Remark 6.4. The number of directed edges of any dag associated with (X1, . . . , Xn) is

1
2

n∑
i=1

(ki + 2|∂Xi| − 1) ki

which is O(|X1|2 + · · ·+ |Xn|2).

Theorem 6.5. Recursive models have the same representation power as Bayesian mod-
els.

P r o o f . We shall prove that

(i) Given a dag D with vertex set V , there exists a set sequence (X1, . . . , Xn), n =
|V |, such that a probability distribution f(V ) is conformal to the Bayesian model
generated by D if and only if f(V ) is conformal to the recursive model generated
by (X1, . . . , Xn).
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A 

C  E 

G  F 

B D 

Fig. 2. A dag associated with (ABC, ADE, CEFG).

(ii) Given a set sequence (X1, . . . , Xn), there exists a dag D with vertex set V =
X1∪. . .∪Xn such that a probability distribution f(V ) is conformal to the recursive
model generated by (X1, . . . , Xn) if and only if f(V ) is conformal to the Bayesian
model generated by D.

P r o o f o f (i). Let (A1, . . . , An) be a topological ordering [1] of vertices of D, that is,
pa(A1) = ∅ and, for each i and j, if Ai ∈ pa(Aj) then i < j. Let Xi = {Ai} ∪ pa(Ai),
1 ≤ i ≤ n. At this point, it is easily seen that ∂Xi = pa(Ai), 1 ≤ i ≤ n, so that eq. (9)
can be re-written as

f(V ) =
∏

1≤i≤n

f↓{Ai}∪pa(Ai)

f↓pa(Ai)
,

which entails that f(V ) has the factorization scheme (10). So, a probability distribution
f(V ) is conformal to the Bayesian model generated by D if and only if f(V ) is conformal
to the recursive model generated by (X1, . . . , Xk).

P r o o f o f (ii). Let D be a dag associated with (X1, . . . , Xn). Then, we have that

f↓X1 =
k1∏

h=1

f↓{Ah}∪pa(Ah)

f↓pa(Ah)

and, for each i > 1,

f↓Xi

f↓∂Xi
=

k1+...+ki∏
h=k1+...+ki−1+1

f↓{Ah}∪pa(Ah)

f↓pa(Ah)

so that the factorization scheme (10) can be re-written as

∏
1≤h≤k

f↓{Ah}∪pa(Ah)

f↓pa(Ah)
.
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So, a probability distribution f(V ) is conformal to the recursive model generated by
(X1, . . . , Xn) if and only if f(V ) is conformal to the Bayesian model generated by D. �

Corollary 6.6. Sequential compositional models have the same representation power
as Bayesian models.

P r o o f . By Theorems 6.3 and 6.5. �

7. MARKOV PROPERTIES OF RECURSIVE MODELS

We want to answer the following question:

Given a (reduced) set sequence (X1, . . . , Xn) and three mutually disjoint
subsets X,Y and Z of X1∪. . .∪Xn, is the conditional independence X |= Y |
Z valid in the recursive model generated by the set sequence (X1, . . . , Xn)?

By Theorem 6.5, an algorithm for recognizing a valid conditional independence can be
obtained applying either the LDLL algorithm or the GVP algorithm to the acyclic dag
constructed in the part (ii) of the proof of Theorem 6.5. Thus, using the GVP algorithm
we obtain a quadratic recognition algorithm by Remark 6.4.

We now present a graphical procedure which runs in linear time. The input of our
procedure is the graph of the sequence (X1, . . . , Xn) which is the (undirected) bipartite
graph with n+ |V | nodes defined as follows:

• The nodes on one side represent the terms X1, . . . , Xn of the sequence and are
called term-nodes, and the nodes on the other side represent all the variables in V
and are called variable-nodes;

• each variable-node is labeled with the corresponding variable in V ;

• each term-node is both labeled with the corresponding term, say Xi, and tagged
with ∂Xi;

• an (unordered) couple (v, t), where v is a variable-node and t is a term-node, is an
edge if and only if the label of v belongs to the label of t.

Let G denote the graph of the sequence (X1, . . . , Xn). By an end-point of G we mean
a node with exactly one incident edge.

Selective Reduction Algorithm

Input: The graph G of the sequence (X1, . . . , Xn), and a set U of variables.

Output: A subgraph H of G.

Step 1. Set H := G
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Step 2. Repeat the following two operations until they cannot longer modify H.

(2.1) If a variable-node v is an end-point of H and the label of v does not
belong to U , then

– delete the label of v from the label of its adjacent term-node, and
– delete v from H.

(2.2) If a term-node t has its label equal to its tag, then delete t from H.

The graph H will be referred to as the reduction of G with sacred U .

Example 7.1. Consider the set sequence (ABC,ADE,CEFG) generating the recur-
sive model of Example 6.1. The graph G of (ABC,ADE,CEFG) and its reduction H
with sacred CE are shown in Figure 3.

ABC : Ø ADE : A CEFG : CE 

A B C D E F G 

AC : Ø AE : A 

A C E 

(a) 

(b) 

Fig. 3. (a) The graph G of the sequence (ABC, ADE, CEFG), and

(b) the graph H resulting from the reduction of G with sacred CE.

Remark 7.2. Let H be the reduction of G with sacred X. A variable-node of H is an
end-point if its label belongs to X. Moreover, for each term-node t of H, if t is labeled
with L and tagged with ∂Xi for some i > 1, then ∂Xi is a proper (possibly empty) subset
of L and each variable in L \ ∂Xi either belongs to X or is the label of a variable-node
u that is joined to an end-point (labeled with a variable belonging to X) of H by a path
that does not pass through t.
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In the following lemma, by the “adjacency graph” of a set system {Y1, . . . , Ym} we
mean the undirected graph with vertex set Y1 ∪ . . . ∪ Ym and edges of the type (A,B)
where A 6= B and {A,B} ⊆ Yi for some i.

Lemma 7.3. Let G be the graph of the sequence (X1, . . . , Xn), let U be a subset of
V = X1 ∪ . . . ∪ Xn, and let H be the reduction of G with sacred U . Let D be a dag
associated with (X1, . . . , Xn), and let AnD(U) be the smallest ancestral set containing
U in D.

(i) The set of labels of variable-nodes of H is equal to AnD(U), and

(ii) the moral graph of the subdigraph of D induced by AnD(U) is the adjacency graph
of the set of labels of term-nodes of H.

P r o o f . Let W be the set of labels of variable-nodes of H.

P r o o f o f (i). If W = U then the statement is trivially true. Assume that W \U 6= ∅.
We need to prove that in D every variable in W \ U is the ancestor of some variable in
U . Let A ∈ W \ U and let v be the variable-node of H labeled with A. By Remark
7.2, v is adjacent to (at least) two term-nodes of H and, hence, A belongs to the tag of
some term-node t of H. Assume that the label of t, denoted by Y , is the residual part
of the ith term Xi for some i. Then, the tag of t is given by ∂Xi and Y \ ∂Xi 6= ∅. Let
B ∈ Y \∂Xi. By construction of D, A is a parent of B since A ∈ ∂Xi and B ∈ Xi \∂Xi.
If B ∈ U then we are done. Otherwise, let u be the variable-node of H labeled with
B, and let w be a variable-node that is an end-point of H and is joined to u by a path
that does not pass through t (see Figure 4). (A variable-node such as w always exists
by Remark 7.2.) Let C be the label of w. Then, in D the vertex B is an ancestor of C
and, since A is a parent of B, A is an ancestor of C. By Remark 7.2, C belongs to U ,
which proves that A is an ancestor of some variable in U . So, every variable in W \ U
is the ancestor of some variable in U .
P r o o f o f (ii). Let D′ be the subdigraph of D induced by AnD(U)(= W ), and let
(A,B) be an edge of the moral graph of D′. By construction of D, the set {A,B} is
contained in the label of some term-node of H. On the other hand, if Y is the label
some term-node of H and Y is the residual part of the ith term Xi for some i then, for
every two distinct variables A,B ∈ Y , we can have one of the following four cases:

(a) A,B ∈ ∂Xi. By construction of D, for every C ∈ Y \ ∂Xi, A→ C and B → C are
directed edges of D′ so that (A,B) is an edge of the moral graph of D′.

(b) A ∈ ∂Xi and B ∈ Y \ ∂Xi. By construction of D, A→ B is a directed edge of D′
so that (A,B) is an edge of the moral graph of D′.

(c) B ∈ ∂Xi and A ∈ Y \ ∂Xi. By construction of D, B → A is a directed edge of D′
so that (A,B) is an edge of the moral graph of D′.

(d) A,B ∈ Y \ ∂Xi. By construction of D, either A→ B or B → A is a directed edge
of D′ so that (A,B) is an edge of the moral graph of D′.
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A ∈ ∂ Xi 
 

B ∈ Y \ ∂ Xi 
 

w 

C ∈ U 
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u D	
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Y : ∂ Xi 
A 

B 

C 

Fig. 4. Illustration of the proof of (i) in Theorem 7.3.

So, in each of the four cases, (A,B) is an edge of the moral graph of D′.

To sum up, (A,B) is an edge of the moral graph of D′ if and only if the set {A,B}
is contained in the label of some term-node of H or, equivalently, if and only if (A,B)
is an edge of the adjacency graph of the set of labels of term-nodes of H. �

Theorem 7.4. Let H be the reduction of the graph of (X1, . . . , Xn) with sacred X ∪
Y ∪Z. A conditional independence X |= Y | Z is valid in the recursive model generated
by (X1, . . . , Xn) if and only if X and Y are separated by Z in H.

P r o o f . By the equivalence between parts (i) and (iii) of Theorem 5.2 and by Lemma
7.3. �

What remains to do is to check that X and Y are separated by Z in the reduction H
of the graph of (X1, . . . , Xn) with sacred X∪Y ∪Z. To achieve this, we ignore labels and
tags of term-nodes of H, add a new node s to H and, for each variable-node v labeled
with a variable belonging to X, we add the edge (s, v). Next, we color s and all the
variable-nodes as follows: the node s “white”, the variable-nodes labeled by variables
belonging to Z “black”, and the remaining variable-nodes “grey”. At this point, we
start a breadth-first search traversal [1] of H at s during which we avoid visiting black
variable-nodes and change to “white” the color of each variable-node when (and if) it is
visited. Eventually, we conclude that X |= Y | Z holds in the recursive model generated
by (X1, . . . , Xn) if and only if each variable in Y is “grey”. The following is an illustra-
tive example.
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Example 7.5. We want to decide whether the conditional independence

AH |= CD | BG

is valid in the recursive model generated by the sequence

(AB,BC,DEF,EG,GHI,HL) .

Given the graph G of (AB,BC,DEF,EG,GHI,HL), we first construct the reduction
H of G with sacred ABCDGH. Next, we add a node s to H, make s adjacent to the
two variable-nodes labeled with A and H, and color the seven variable-nodes: B and G
“black”, and the remaining variable-nodes “grey”. At this point, we start the breadth-
first search traversal of H at s. Ultimately, the variable-nodes of H are colored as shown
in Figure 5. Since the variable-nodes C and D are both “grey”, we conclude that the
conditional independence AH |= CD | BG is valid in the recursive model generated by
(AB,BC,DEF,EG,GHI,HL).

white!

A 

white! grey!  grey!  grey! black!black!

white!

s 

B C D E G H 

Fig. 5. The output of the validity test with input

(AB, BC, DEF, EG, GHI, HL), X = AH and Z = BG.

From a computational point of view, our algorithm is linear in the size of the graph
of (X1, . . . , Xn) since its selective reduction can be performed in linear time [24] and the
breadth-first search traversal of H can be performed in linear time too.

8. FUTURE RESEARCH

We have shown that certain compositional models (explicitly, models generated by re-
duced sequential expressions) have the same representation power as Bayesian models on
acyclic digraphs. In order to make the formalism of compositional models as powerful as
other graphical models (e. g, as chain-graph models [15]) we might introduce one more
type of compositional (sub)expression such as

θ = X1 . (· · · . (Xn−1 . Xn) . . . )∗ (for some n > 1)



722 F.M. MALVESTUTO

with the following meaning inspired by the Iterative Proportional Fitting Procedure.
Given an interpretation I = (f1(X1), . . . , fn(Xn)) of θ, the value of θ under I is the
limit f (∞)(V ), where V = X1 ∪ . . . ∪Xn, of the sequence of probability distributions

f (0)(V ), f (1)(V ), f (2)(V ), . . .

where
f (0)(V ) = f1(X1) . (· · · . (fn−1(Xn−1) . fn(Xn)) . . .)

and
f (r)(V ) = f1(X1) . (· · · . (fn−1(Xn−1) . (fn(Xn) . f (r−1)(V ))) . . .)

for r > 0. Since it is well-known that the Iterative Proportional Fitting Procedure
converges if and only if the probability distributions f1(X1), . . . , fn(Xn) are marginals
of some probability distribution on V , we need to add such a consistency constraint to
make I a valid interpretation of θ.

Finally, in a forthcoming paper [21] we shall introduce a generalized version of the
composition operator which dispenses with the composability requirement.
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