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GROUP SYNCHRONIZATION OF DIFFUSIVELY COUPLED
HARMONIC OSCILLATORS

Liyun Zhao, Jun Liu, Lan Xiang and Jin Zhou

This paper considers group synchronization issue of diffusively directed coupled harmonic os-
cillators for two cases with nonidentical and identical agent dynamics. For the case of coupled
nonidentical harmonic oscillators with positive coupling, it is demonstrated that distributed
group synchronization can always be achieved under two kinds of network structures, i. e., the
strongly connected graph and the acyclic partition topology with a directed spanning tree. It
is interesting to find that the group synchronization states under acyclic partition are some
periodic orbits with the same frequency and are simply related with the initial values of cer-
tain group regardless of ones of the other groups. For the case of coupled identical harmonic
oscillators with positive and negative coupling, some generic algebraic criteria on group synchro-
nization with both local continuous and instantaneous interaction are established respectively.
In particular, an explicit expression of group synchronization states in terms of initial values of
the agents can be obtained by the property of acyclic partition topology, and so it is very con-
venient to yield the desired group synchronization in practical application. Finally, numerical
examples illustrate and visualize the effectiveness and feasibility of theoretical results.
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1. INTRODUCTION

In recent years, consensus or synchronization of networked multi-agent systems has re-
ceived increasing attention due to its broad applications in a variety of fields including
distributed computation, sensor networks, and coordination control, etc. [2, 7, 8, 11].
In particular, remarkable effort has been devoted to the synchronization and control of
coupled harmonic oscillators [1, 3, 15, 18, 19, 27, 29], in part because it plays a significant
role in various engineering applications of coupled multi-agent systems involving coop-
erative behaviors including mapping, sampling, patrol or surveillance [1, 15, 18]. As a
consequence, a large quantity of synchronization protocols (or algorithms) have recently
been proposed for coupled harmonic oscillators from various perspectives. For example,
Ren investigated the synchronization problem of n coupled harmonic oscillators in a
continuous-time setting, and showed that only if the directed graph has a spanning tree,
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all the states of coupled harmonic oscillators can synchronize to a periodic oscillatory
motion [15]. Later on, Ballard et al. developed a discrete-time distributed algorithm
for coupled harmonic oscillators [1]. Moreover, Su et al. addressed the same issue in
a dynamic proximity network without any network connectivity assumption [18]. In
addition, Cheng et al. [3] focused on the infinite-time and finite-time synchronization
of coupled harmonic oscillators with the external disturbance. More recently, Zhou et
al. also studied the impulsive or sampled-data synchronization of coupled harmonic
oscillators based on some discontinuous or hybrid control schemes [27, 29].

All the above-mentioned works focused mainly on complete synchronization of cou-
pled harmonic oscillators, i. e., all of agent dynamics finally converge to the same trajec-
tory. However, when a complex cooperative task is completely implemented, a network
of agents must be able to sense and respond to unexpected situations or any changes.
This might result in stating that a network of agents evolve into several groups, i. e., all
agents in the same group reach complete synchronization, but the motions of different
groups may not coincide. This kind of synchronization is usually known as group or
cluster synchronization, which may be viewed as an extended synchronization problem
containing complete synchronization as a special case. Accordingly, group synchroniza-
tion is more suitable to deal with cooperative control in complex multi-agent systems
in practice. For instance, in the formation flight of Unmanned Air Vehicles (UAV), the
designed cooperative scheme is effectively implemented to divide a large set of UAV into
multiple groups such that all the agents in different groups display the corresponding
synchronization patterns [14, 25]. As a result, group or cluster synchronization problem
for different kinds of multi-agent systems has recently been a rather significant topic
in both theoretical research and practical applications. It is reported that, in general,
two designed strategies have been effectively employed to realize group or cluster syn-
chronization of networked multi-agent systems modelled by first-order or second-order
integrator dynamics [12, 14, 20, 21, 22, 25]. The first strategy is to aim at nonidentical
agent dynamics in different groups with positive couplings [14, 19, 21, 25]. The other
is to focus on identical agent dynamics with positive and negative couplings among the
groups [12, 20, 22]. However, so far, there has been very little work to fully address
group synchronization of coupled harmonic oscillators with directed interaction topol-
ogy. These observations motivated the research work reported in the present article.

Given the above comments, in this paper, we investigate group synchronization prob-
lem of diffusively directed coupled harmonic oscillators for two cases. For the case of
coupled nonidentical harmonic oscillators with positive coupling, we demonstrate that
distributed group synchronization can always be guaranteed by two kinds of network
structures, i. e., a strongly connected graph and an acyclic partition topology with a
directed spanning tree. It is interesting to find that the group synchronization states
under acyclic partition are some periodic orbits with the same frequency and are simply
related with the initial values of certain group regardless of ones of the other groups.
For the case of coupled identical harmonic oscillators with positive and negative cou-
pling, we present some generic algebraic criteria on group synchronization of coupled
harmonic oscillators with local continuous and instantaneous interaction, respectively.
In particular, an explicit expression of group synchronization states in terms of initial
values of the agents can be obtained. By the property of acyclic partition topology, it
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is very convenient to yield the desired group synchronization in practical application.
Finally, numerical simulations are given to demonstrate the effectiveness of theoretical
results.

The outline of this paper is as follows. Some preliminaries and problem formulation
are presented in Section 2. Different group synchronization conditions under two control
strategies are discussed in Sections 3 and 4 in detail, respectively. Application examples
and their simulations are presented in Section 5. Finally, the concluding remarks are
drawn in Section 6.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1. Notation

Throughout this paper, the following notations are used: R, N = {1, 2, . . .}, Rn and
Rn×n stand for the set of real numbers, the set of positive integers, the set of n dimen-
sion column vectors and the set of n× n real matrices, respectively. i is imaginary unit.
The subscript “T” stands for matrix transposition. 0 and 1 are the suitable vectors with
all entries being 0 and 1, respectively. The identity matrix and zero matrix with ap-
propriate dimensions are denoted as I and O, respectively. diag(γ1, γ2, . . . , γn) ∈ Rn×n
is the diagonal matrix with diagonal entries γi (i = 1, 2, . . . , n). diag(M1,M2, . . . ,Mn)
denotes a block diagonal matrix whose diagonal blocks are given by M1,M2, . . . ,Mn.
“ ⊗ ” represents the Kronecker product of two matrices. Unless otherwise specified,
the dimension of matrixes are assumed to be compatible for algebraic operations in the
sequel.

2.2. Graph theory

Assume n harmonic oscillators with a graph denoted as G = (V, E , A), where V =
{1, 2, . . . , n}, E ⊆ V × V, A = (aij)n×n represent the set of nodes, the set of edges and
the weighted adjacency matrix, respectively. A directed edge (i, j) means the node j
receives direct information from the node i. aij 6= 0 if and only if there is a directed
edge (j, i) in G; otherwise aij = 0. Directed graph G is said to have a directed spanning
tree if there exists a node k so that the node k has a directed path to any other node
of the graph. The graph G is called as strongly connected if there exists a directed
path in any two different nodes. The elements of the Laplacian matrix L = (lij) ∈
Rn×n associated with graph G are defined as: lii =

∑n
j=1,j 6=i aij and lij = −aij , where

i 6= j [8, 13]. Obviously, this condition guarantees that the inter-agent couplings are
diffusive, and hence such networks are also called diffusively coupled networks [5, 16, 22].
We say that {P1, P2, . . . , Pq} is a partition of the set V = {1, 2, . . . , n}, if, for any
1 ≤ i, j ≤ q, Pi 6= ∅, Pi

⋂
Pj = ∅(i 6= j), and

⋃q
i=1 Pi = V. Let î denote the subscript of

the subset to which the node i belongs, i. e., i ∈ Pî, clearly, î = 1, . . . , q. Assume Pi =
{∑i−1

j=0 nj +1,
∑i−1
j=0 nj +2, . . . ,

∑i
j=0 nj} with n0 = 0,

∑q
k=1 nk = n, then the Laplacian
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matrix L can be rewritten as follows:
L11 L12 · · · L1q

L21 L22 · · · L2q

...
...

. . .
...

Lq1 Lq2 · · · Lqq

 (1)

with Lij ∈ Rni×nj (1 ≤ i, j ≤ q). The sequent discussion is always based on the assump-
tion that the row sum of Lij is a constant rij . Besides, G1, . . . ,Gq denote the underlying
graphs of node set P1, . . . , Pq in G, respectively.

2.3. Problem formulation

Now we consider a team of n agents moving in a one-dimensional Euclidean space, the
equation of motion for each agent can be represented by a harmonic oscillator of the
form {

ẋi(t) = vi(t),

v̇i(t) = −αî xi(t) + ui(t), i = 1, 2, . . . , n,
(2)

where xi(t) ∈ R is the position of the agent i at time t and vi(t) ∈ R is its corresponding
velocity, ui(t) is the corresponding control input, and

√
αî is the frequency of oscillators

in the îth group. Generally, the definition of group synchronization is presented as
follows:

Definition 2.1. n diffusively coupled harmonic oscillators (2) are said to achieve group
synchronization with the partition {P1, P2, . . . , Pq} asymptotically, if the states of agents
satisfy

lim
t→∞

|xi(t)− xj(t)| = 0, lim
t→∞

|vi(t)− vj(t)| = 0, when î = ĵ

for any initial values of all the states of (2).

Remark 2.2. Note that the condition that every row sum of the Laplacian matrix L
is zero guarantees that the inter-agent couplings are diffusive. In addition, the concept
of group synchronization in Definition 2.1 is equivalent to the one of group consensus of
multi-agent system in [26], where the motions of some agents in different groups may
coincide as time goes to infinity. Clearly, Definition 2.1 is a little weaker than the concept
of general cluster synchronization defined in [14].

In this paper, we are mainly interested in group synchronization problem for diffu-
sively coupled harmonic oscillators (2) with directed network topology in the sense of
Definition 2.1. To do so, we propose the control input for the agent i described as

ui(t) = −
n∑
j=1

lijvj(t). (3)
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Using the control protocol (3), the dynamics of diffusively coupled harmonic oscilla-
tors (2) can be written as:

ẋi(t) = vi(t),

v̇i(t) = −αî xi(t)−
n∑
j=1

lijvj(t), i = 1, 2, . . . , n.
(4)

3. GROUP SYNCHRONIZATION OF NONIDENTICAL AGENTS WITH
POSITIVE COUPLINGS

In this section, we shall give the group synchronization analysis of coupled nonidentical
harmonic oscillators with positive couplings, namely, where it is also assumed that the
frequency √αî of agents in different groups are nonidentical, and the elements aij of
adjacent matrix are nonnegative.

3.1. Strongly connected topology case

Theorem 3.1. Suppose that the directed topology graph G is strongly connected, then
the system (2) with the control input (3) can solve group synchronization problem
asymptotically.

P r o o f . Since G is strongly connected, G has a positive left eigenvector ξ = (ξ1, ξ2, . . . , ξn)T

associated with zero eigenvalue [24]. Define the average of position and velocity in the
îth group as

x̄(̂i)(t) =
1∑

k∈Pî

ξk

∑
k∈Pî

ξkxk(t) and v̄(̂i)(t) =
1∑

k∈Pî

ξk

∑
k∈Pî

ξkvk(t),

respectively. Let x̃i(t) = xi(t) − x̄(̂i)(t) and ṽi(t) = vi(t) − v̄(̂i)(t) be the position and
velocity error of agent i, respectively. It follows that∑

l∈Pî

ξlṽl(t) =
∑
l∈Pî

ξl
[
vl(t)− 1P

k∈P
l̂

ξk

∑
k∈Pl̂

ξkxk(t)
]

=
∑
l∈Pî

ξlvl(t)− (
∑
l∈Pî

ξl
1P

k∈P
l̂

ξk
)
∑
k∈Pl̂

ξkxk(t) = 0.
(5)

Note that Pî = Pl̂, it then follows that

∑
l∈Pî

ξlṽl(t)
[ 1∑
k∈Pl̂

ξk

∑
k∈Pl̂

ξk

n∑
j=1

lkjvj(t)
]

= 0. (6)

Choose Lyapunov functional candidate as

V (t) =
q∑
î=1

Vî(t) =
1
2

q∑
î=1

∑
l∈Pî

ξl(αîx̃
2
l (t) + ṽ2

l (t))



634 L. Y. ZHAO, L. XIANG, J. LIU AND J. ZHOU

where Vî(t) = 1
2

∑
l∈Pî

ξl(αîx̃
2
l (t) + ṽ2

l (t)).
Thus, in view of (6), the derivative of Vî with respect to time is

V̇î(t) = − ∑
l∈Pî

ξlṽl(t)(
n∑
j=1

lljvj(t)− 1P
k∈P

l̂

ξk

∑
k∈Pl̂

ξk
n∑
j=1

lkjvj(t))

= − ∑
l∈Pî

ξlṽl(t)(
n∑
j=1

lljvj(t)).

Let x̃(t) = (ṽ1(t), x̃2(t), . . . , x̃n(t))T, ṽ(t) = (ṽ1(t), ṽ2(t), . . . , ṽn(t))T. Then, the
derivative of V with respect to time gives

V̇ (t) = −
q∑̂
i=1

[ ∑
l∈Pî

ξlṽl(t)[
n∑
j=1

llj(vj(t)− v̄(ĵ)(t)) +
n∑
j=1

llj v̄
(ĵ)(t)]

]
= −

q∑̂
i=1

[ ∑
l∈Pî

ξlṽl(t)
[ n∑
j=1

llj(vj(t)− v̄(ĵ)(t))
]]

= −
n∑
l=1

n∑
j=1

ξlllj ṽl(t)ṽj(t)

= − 1
2 ṽ

T(t)(ΞL+ LTΞ)ṽ(t)

where Ξ = diag(ξ1, . . . , ξn).
Based on the well-known LaSalle’s invariance principle [17], we can conclude that

all of the solutions of system (4), starting from any initial value, approach the largest
invariant set M̃ = {(x̃(t)T, ṽ(t)T)T|V̇ (t) = 0}. It is obvious that V̇ (t) = 0 if and only
if ṽ1(t) = ṽ2(t) = · · · = ṽn(t) [9, 24]. As a consequence, it is straight to derive that
vi(t) = vj(t) for î = ĵ from the definition of ṽi(t), ṽj(t). So this completes the proof of
Theorem 3.1. �

3.2. Acyclic partition topology case

It can be seen from Theorem 3.1 that the structure of strong connected topology can
make diffusively coupled harmonic oscillators with the partition {P1, P2, . . . , Pq} to
achieve distributed group synchronization. The conclusion is also applicable for directed
network topology G with acyclic partition {P1, P2, . . . , Pq}. In this case, by relabeling
the indices of G, the Laplacian matrix associated with G can take the form as

L11 O · · · O
L21 L22 · · · O

...
...

. . .
...

Lq1 Lq2 · · · Lqq

 . (7)

Without loss of generality, we still assume that the ith group Pi corresponds to the
diagonal block Lii.

Theorem 3.2. Assume that the directed topology graph G with acyclic partition has
a spanning tree, then the system (2) with the control input (3) can solve group syn-
chronization problem asymptotically. Furthermore, all coupled harmonic oscillators in
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different groups always synchronize to some specific periodic motion with the same fre-
quency, which are only related with the initial values of the first group.

P r o o f . The proof procedure of Theorem 3.2 is mainly based on the structure of the
Laplacian matrix with acyclic partition {P1, P2, . . . , Pq}, which will be summarized as
follows:

As for the first group P1, it is obvious that the graph G1 associated with P1 has a
directed spanning tree. Following Theorem 3.1 in [15], we can conclude that all the
harmonic oscillators in the first group P1 will asymptotically converge to the synchro-
nization state (x̄(1)(t), v̄(1)(t))T given explicitly by(

x̄(1)(t)
v̄(1)(t)

)
=

(
cos(√α1̂t)p̄

T
1 x

(1)
0 + 1√

α1̂
sin(√α1̂t)p̄

T
1 v

(1)
0

−√α1̂ sin(√α1̂t)p̄
T
1 x

(1)
0 + cos(√α1̂t)p̄

T
1 v

(1)
0

)
, (8)

where p̄1 is left eigenvector of L11 associated with the eigenvalue zero, and (x
(1)T
0 , v

(1)T
0 )T

= (x1(0), . . . , xn1(0), v1(0), . . . , vn1(0))T is the initial value of all the states in the first
group P1.

Next, for the second group P2, it is easy to see from (7) that the dynamics of all the
states of coupled harmonic oscillators in the second group P2 can be written as{

ẋn1+1:n1+n2(t) = vn1+1:n1+n2(t),

v̇n1+1:n1+n2(t) = −α2̂ xn1+1:n1+n2(t)− L22vn1+1:n1+n2(t)− L21v1:n1(t),
(9)

where xn1+1:n1+n2(t), vn1+1:n1+n2(t) are the column stack vectors of xi(t) and
vi(t)(i = n1 + 1, . . . , n1 + n2), respectively, and v1:n1(t) is the column stack vector of
vi(t)(i = 1, . . . , n1), respectively. Accordingly, it is easy to verify that the synchronized
state (x̄(2)(t), v̄(2)(t))T in the second group P2 must satisfy{

˙̄x(2)(t) = v̄(2)(t),
˙̄v(2)(t) = −α2̂ x̄

(2)(t)− r22v̄(2)(t)− r21v̄(1)(t).
(10)

By introducing the synchronization errors ṽ1:n1(t) = v1:n1(t)− 1n1 v̄
(1)(t),

x̃n1+1:n1+n2(t) = xn1+1:n1+n2(t) − 1n2 x̄
(2)(t) and ṽn1+1:n1+n2(t) = vn1+1:n1+n2(t) −

1n2 v̄
(2)(t), we obtain the synchronization error system{

˙̃xn1+1:n1+n2(t) = ṽn1+1:n1+n2(t),
˙̃vn1+1:n1+n2(t) = −α2̂ x̃n1+1:n1+n2(t)− L22ṽn1+1:n1+n2(t)− L21ṽ1:n1(t),

(11)

which can be written in matrix form as( ˙̃xn1+1:n1+n2(t)
˙̃vn1+1:n1+n2(t)

)
=

(
O In2

−α2̂In2 −L22

)(
x̃n1+1:n1+n2(t)
ṽn1+1:n1+n2(t)

)
+
(

0
−L21ṽ1:n1(t)

)
. (12)
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Note that the eigenvalues of the matrix
(

O In2
−α2̂In2 −L22

)
are given by

µi = −λi±
√
λ2

i−4α2̂
2 with λi being the ith eigenvalue of L22. Thus, it is easy to see that

λi has the positive real part since G has a directed spanning tree, which implies that the
eigenvalues µi have the negative real part. Based on the stability theory of linear dynam-
ical systems, it is easy to know that the zero solution of the synchronization error system
(12) is asymptotically stable, which leads to (x̃n1+1:n1+n2(t)T, ṽn1+1:n1+n2(t)T)T → 0
as t → ∞. It then follows that all the states of the agents in the second group will
asymptotically converge to (x̄(2)(t), v̄(2)(t))T.

Analogously, for the qth group Pq, and by using the same arguments as above, it is not
hard to prove that all the states of agents in the qth group will asymptotically converge
to (x̄(q)(t), v̄(q)(t))T, where (x̄(q)(t), v̄(q)(t))T is just the solution of the following system{

˙̄x(q)(t) = v̄(q)(t),
˙̄v(q)(t) = −αq̂ x̄(q)(t)− rqq v̄(q)(t)− rq1v̄(1)(t)− rq2v̄(2)(t)− · · · − rq,q−1v̄

(q−1)(t).
(13)

Finally, we shall show that the synchronized oscillatory motion in different group is
actually a specific periodic orbit with the same frequency √α1̂. In fact, it follows from
the synchronized state equation (10) with respect to the second group P2 that

¨̄x(2)(t) + r22 ˙̄x(2)(t) + α2̂ x̄
(2)(t) = −r21v̄(1)(t). (14)

According to the feature of harmonically excited vibration, it is easy to observe that
the state response of (14) is actually a simple harmonic oscillation with the frequency√
α1̂, It is obvious that this frequency is just one of the forced exciting force −r21v̄(1)(t).
In what follows, we assume that the above conclusions still hold for the 3th, . . .,

(q − 1)th groups, respectively. Since the synthesis of harmonic vibration with the same
frequency is still a harmonic vibration with this frequency, the specific term −rq1v̄(1)(t)−
rq2v̄

(2)(t)−· · ·− rq,q−1v̄
(q−1)(t) in (13) is also an exciting force with the frequency √α1̂.

Therefore, by repeating the previous inductions, it is straight to conclude from (10)
that the synchronized oscillatory motion in the qth group is also a periodic orbit with
the frequency √α1̂. Actually, it is easy to see that its corresponding amplitude and
initial phase is only related to the initial values of the first group, but not the others.
Consequently, this immediately implies that the dynamics of synchronized periodic orbit
is only related to the initial values of the first group. In summary, this completes the
proof of Theorem 3.2. �

Remark 3.3. The results of Theorems 3.1 and 3.2 show that, coupled nonidentical
harmonic oscillators with positive coupling can always achieve distributed group syn-
chronization oscillatory motion over two kinks of network structures, i. e., the strongly
connected graph and the acyclic partition topology with a directed spanning tree. It is
interesting to find that coupled nonidentical harmonic oscillator under acyclic partition
can synchronize to a specific periodic motion. Furthermore, the final synchronized peri-
odic orbit is only related to the initial values of the first group, but not the others. This
point will be further elaborated in numerical simulations section.
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4. GROUP SYNCHRONIZATION OF IDENTICAL AGENTS WITH POSITIVE
AND NEGATIVE COUPLINGS

In this section, we consider the group synchronization problem of coupled identical
harmonic oscillators with positive and negative couplings. In this case, all the fre-
quencies

√
α of coupled harmonic oscillators are identical, and we further assume that

each row sum of Lij(1 ≤ i, j ≤ q) is zero. It is easy to observe from the structure
of the Laplacian matrix L that it has at least q zero eigenvalues. Furthermore, let
q1 = (1T

n1
,0T
n2
, . . . ,0T

nq
)T, q2 = (0T

n1
,1T
n2
, . . . ,0T

nq
)T, . . . , qq = (0T

n1
,0T
n2
, . . . ,1T

nq
)T be

the q linearly independent right eigenvectors of L associated with zero eigenvalue respec-
tively, and the corresponding q linearly independent left eigenvectors of L associated with
zero eigenvalue can be taken as

p1 = (θT1 , ϕ
(2)T
1 , . . . , ϕ

(q)T
1 )T,

p2 = (ϕ
(1)T
2 , θT2 , . . . , ϕ

(q)T
2 )T,

...
pq = (ϕ

(1)T
q , ϕ

(2)T
q , . . . , ϕ

(q−1)T
q , θTq )T, (15)

satisfying θTk 1nk
= 1(k = 1, . . . , q) and ϕ

(i)T
j 1ni

= 0(i 6= j) for each of j = 1, . . . , q.

4.1. Continuous coupled case

Theorem 4.1. If L has exactly q zero eigenvalues and all the other eigenvalues have
positive real parts, then the system (2) with the control input (3) can solve group
synchronization problem asymptotically, and the synchronization state of the lth group
can be explicitly expressed as(

x̄(l)(t)
v̄(l)(t)

)
=
(

cos(
√
αt)pT

l x0 + 1√
α

sin(
√
αt)pT

l v0
−√α sin(

√
αt)pT

l x0 + cos(
√
αt)pT

l v0

)
, (16)

with the initial value (xT
0 , v

T
0 )T = (x1(0), . . . , xn(0), v1(0), . . . , vn(0))T.

P r o o f . Let x(t), v(t) be the column stack vectors of xi(t), vi(t) for i = 1, . . . , n,
respectively, then the system (2) with the control input (3) can be rewritten in a compact
matrix form as (

ẋ(t)
v̇(t)

)
=
(

O In
−αIn −L

)(
x(t)
v(t)

)
. (17)

Similar to the proof of Theorem 3.1 in [15], it can be obtained that the matrix(
O In
−αIn −L

)
have the 2q eigenvalues ±√αi, whose corresponding right and left eigen-

vectors are q̌i± = (qT
i ,±
√
αiqT

i )T, p̌i± = ( 1
2pT

i ,± 1
2
√
αi

pT
i )T(i = 1, . . . , q), respectively,

and the other eigenvalues have the negative real parts.
By some elementary operations, we obtain the Jordan decomposition form below(

O In
−αIn −L

)
= Q̌JQ̌−1, (18)
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where Q̌ = (q̌1+, q̌1−, . . . , q̌q+, q̌q−, q̌2q+1, . . . , q̌2n), Q̌−1 = (p̌1+, p̌1−, . . . , p̌q+, p̌q−,
p̌2q+1, . . . , p̌2n) with q̌2q+1, . . . , p̌2n and p̌2q+1, . . . , p̌2n being the other right and left
eigenvectors or generalized eigenvectors, respectively, and the matrix

J =



√
αi O · · · O O O
O −√αi O O O
...

...
. . .

...
...

...
O O · · · √αi O O
O O · · · O −√αi O
O O · · · O O J∗


is the Jordan upper diagonal block matrix, and the diagonal entries of J∗ are the other
eigenvalues with the negative real parts of the matrix

(
O In
−αIn −L

)
.

By the use of general linear differential equation theory, it is followed that

lim
t→∞

exp
{ (

O In
−αIn −L

)
t

}
=

q∑
i=1

(
exp(
√
αit)q̌i+p̌T

i+ + exp(−√αit)q̌i−p̌T
i−

)
=

q∑
i=1

(
cos(
√
αt)qipT

i
1√
α

sin(
√
αt)qipT

i

−√α sin(
√
αt)qipT

i cos(
√
αt)qipT

i

)
, (19)

which yields that(
x(t)
v(t)

)
→

q∑
i=1

(
cos(
√
αt)qipT

i x0 + 1√
α

sin(
√
αt)qipT

i v0
−√α sin(

√
αt)qipT

i x0 + cos(
√
αt)qipT

i v0

)
.

As a consequence, it is straightforward to show that all the states (xl(t), vl(t) )T in the
lth group will converge asymptotically to the synchronization state (x(l)(t), v(l)(t) )T.
So the proof of Theorem 4.1 is completed. �

Specifically, if the network topology G has a directed acyclic partition {P1, P2, . . . , Pq},
and the corresponding subgraph Gi with respect to Pi has a directed spanning tree
(i = 1, . . . , q), it is easy to check that the conditions of Theorem 4.1 are satisfied. In this
case, the q linearly independent left eigenvectors of L associated with zero eigenvalue
can be taken as

ω1 = (θT1 ,0
T
n−n1

)T,

ω2 = (ϕ
(1)T
2 , θT2 ,0

T
n−n1−n2

)T,
...

ωq = (ϕ
(1)T
q , ϕ

(2)T
q , . . . , ϕ

(q−1)T
q , θTq )T,

with θTk 1nk
= 1(k = 1, . . . , q) and ϕ

(i)T
j 1ni = 0(j = 2, . . . , q; i < j).

By Theorem 4.1 and Lemma 2 in [10], we can obtains a simple and practical criterion
on group synchronization presented by the following corollary.
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Corollary 4.2. For the directed graph G with the acyclic partition {P1, P2, . . . , Pq}, if
each of the subgraph Gi with respect to Pi has a directed spanning tree, then the system
(2) with the control input (3) can solve group synchronization problem asymptotically,
and the synchronization state of the lth group can be explicitly given by(

x̄(l)(t)
v̄(l)(t)

)
=
(

cos(
√
αt)ωT

l x0 + 1√
α

sin(
√
αt)ωT

l v0
−√α sin(

√
αt)ωT

l x0 + cos(
√
αt)ωT

l v0

)
. (20)

4.2. Instantaneous coupled case

For the system (1), we propose the following impulsive control input

ui(t) = −µ
∞∑
k=1

n∑
j=1

lijvj(t)δ(t− tk), (21)

where i = 1, 2, . . . , n, µ > 0 stands for coupling strength, and δ(t) is the Dirac impul-
sive function depicted the effects of instantaneous interaction among oscillators only at
certain moments, and the impulsive time sequence {tk}(k ∈ N) is strictly increasing se-
quence, i. e. t1 < · · · < tk < . . . (see [6] and relevant references therein). For simplicity,
we assume t0 = 0, and tk − tk−1 ≡ h > 0 (h is a constant sampling period).

Based on the property of the Dirac function, the system (2) with the control input
(21) can be formulated as the following impulsive dynamical system

ẋi(t) = vi(t), v̇i(t) = −αxi(t), t 6= tk,

4xi(tk) = 0,

4vi(tk) = −µ
n∑
j=1

lijvj(tk), t = tk,

(22)

where 4xi(tk) = xi(t+k ) − xi(t−k ) and 4vi(tk) = vi(t+k ) − vi(t−k ), respectively. Without
loss of generality, we further assume that xi(t) and vi(t) are left continuous at time
moments t = tk. Thus, the impulsive dynamical system (22) can be rewritten as

(
ẋ(t)
v̇(t)

)
=
(

O In
−αIn O

)(
x(t)
v(t)

)
, t 6= tk,(

x(t+k )
v(t+k )

)
=
(
In O
O In − µL

)(
x(tk)
v(tk)

)
, t = tk.

(23)

Theorem 4.3. If L has exactly q zero eigenvalues, all the other eigenvalues λr(r =
q + 1, . . . , n) have positive real parts, and the following conditions are satisfied:

(i) 0 < µ <
2Re(λr)
|λr|2 ,

(ii) 0 < h <
π√
α

.

Then, the system (2) with the control input (21) can solve group synchronization problem
asymptotically, and the synchronization state of the lth group can be explicitly given
by (16).
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P r o o f . By considering the conditions in this theorem, it is easy to obtain that there
exists a nonsingular matrix P such that L = PJP−1 is the Jordan decomposition of L,
where the first q columns of P are q1, . . . , qq, the first q rows of P−1 are p1, . . . , pq,
J = diag(0, . . . , 0︸ ︷︷ ︸

q

, J∗) is a block diagonal matrix, and J∗ is the Jordan upper diagonal

block matrix corresponding to the other eigenvalues λr (r = q + 1, . . . , n).
According to extending concept of master stability function introduced in [12], and by

introducing (x̄(t), v̄(t))T = (I2⊗P−1)(x(t), v(t))T, the systems (23) can be decomposed
into the group synchronization state equation(

˙̄x(1:q)(t)
˙̄v(1:q)(t)

)
=
(

O Iq
−αIq O

)(
x̄(1:q)(t)
v̄(1:q)(t)

)
(24)

and the transverse variational equation
(

˙̄x(q+1:n)(t)
˙̄v(q+1:n)(t)

)
=
(

O In−q
−αIn−q O

)(
x̄(q+1:n)(t)
v̄(q+1:n)(t)

)
, t 6= tk,(

x̄(q+1:n)(t+k )
v̄(q+1:n)(t+k )

)
=
(
In−q O
O In−q − µJ∗

)(
x̄(q+1:n)(tk)
v̄(q+1:n)(tk)

)
, t = tk,

(25)

respectively.
It then follows that the analytical solution of (25) can be expressed as(

x̄(q+1:n)(t)
v̄(q+1:n)(t)

)
= (Φ(t− tk)⊗ In−q)Mk

(
x̄(q+1:n)(0)
v̄(q+1:n)(0)

)
, (26)

where

M =
(
In−q O
O In−q − µJ∗

)
(Φ(h))⊗ In−q)

with the fundamental solution matrix Φ(t) being given by
(

cos
√
αt 1√

α
sin
√
αt

−
√
α sin

√
αt cos

√
αt

)
.

Therefore, by employing the similar analysis procedure of [28], we can prove that all
the solutions of (25) will asymptotically converge to zero if the conditions (i) and (ii) of
Theorem 4.3 are satisfied.

Finally, by (x(t), v(t))T = (I2 ⊗ P )(x̄(t), v̄(t))T, it is easy to see that

(x(t)T, v(t)T)T →
(
x̄(1)(t), . . . , x̄(1)(t)︸ ︷︷ ︸

n1

, . . . , x̄(q)(t), . . . , x̄(q)(t)︸ ︷︷ ︸
nq

,

v̄(1)(t), . . . , v̄(1)(t)︸ ︷︷ ︸
n1

, . . . , v̄(q)(t), . . . , v̄(q)(t)︸ ︷︷ ︸
nq

)T

. (27)

Accordingly, it is naturally to conclude that the synchronization state of the lth group
can be explicitly given by(

x̄(l)(t)
v̄(l)(t)

)
=
(

cos
√
αt 1√

α
sin
√
αt

−√α sin
√
αt cos

√
αt

)(
pT
l x0

pT
l v0

)
. (28)

Consequently, it is immediately to show that the conclusion of Theorem 4.3 is true. �
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Fig. 1. Network topologies G1, G2 for seven oscillators, aij = 1 if

there is an arrow from oscillator j to i, aij = 0 otherwise. The nodes

in the same dot ellipse belong to the same group and the different dot

ellipses indicate the different groups. The nodes in the 1th, 2th and

3th groups are {1, 2}, {3, 4}, {5, 6, 7}, respectively.
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Fig. 2. Evolution of the position group synchronization error Ex
and the velocity group synchronization error Ev, respectively.

Similar to Corollary 4.2, we have the following consequence.

Corollary 4.4. For the directed graph G with the acyclic partition {P1, P2, . . . , Pq},
if each of the subgraph Gi with respect to Pi has a directed spanning tree, and the
conditions (i), (ii) of Theorem 4.3 hold, then the system (2) with the control input (3)
can solve group synchronization problem asymptotically, and the synchronization state
of the lth group can be explicitly given by (20).

Remark 4.5. Although Theorems 4.1 and 4.2 provide some generic algebraic criteria
on group synchronization of coupled harmonic oscillators with local continuous and
instantaneous interaction respectively, they are not convenient to verity in practical
application for the higher-dimensional Laplacian matrix. In addition, it should be noted
from Corollaries 4.1 and 4.2 that an explicit expression of group synchronization states in
terms of initial values of the agents can be obtained by the property of acyclic partition
topology, and so this property will be used to yield the desired group synchronization
of coupled identical oscillator systems in practice.
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Fig. 3. The nonidentical harmonic oscillators over G2 evolve into

groups with the same frequency. Besides, the group synchronization

states for position in the subgraph (a) are the same as ones in the

subgraph (b), the group synchronization states for velocity in the

subgraph (c) are the same as ones in the subgraph (d).
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Fig. 4. The network topology in the subsection 5.2.

5. ILLUSTRATIVE EXAMPLES AND NUMERICAL SIMULATION

In this section, some examples and their simulations are worked out to demonstrate
effectiveness of the theoretical results. Unless otherwise specified, in the following sim-
ulations, all initial values are randomly selected within the interval [−5, 5].

5.1. Nonidentical agents case with positive coupling

This subsection considers the network topology involving three groups shown in Figure 1,
and frequencies of the agents in the 1th, 2th and 3th groups are 1,

√
3,
√

5.
Firstly, consider the network topology G1 shown in Figure 1, it can be seen that

G1 is strongly connected. According to Theorem 3.1, group synchronization can be
realized. Define the group synchronization errors with respect to the position and
velocity respectively, i. e., Ex = |x1 − x2| + |x3 − x4| + |x5 − x6| + |x6 − x7| and
Ev = |v1 − v2| + |v3 − v4| + |v5 − v6| + |v6 − v7|. Figure 2 shows the evolution of syn-
chronization error. Obviously, the graph G2 in Figure 1 is an acyclic partition topology.
The subgraphs (a) and (c) in Figure 3 show the synchronization process of both position
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Fig. 5. Evolution of the position for three different groups.

(1), (2), (3) mean synchronization states of the 1th, 2th, 3th groups,

respectively, 1, 2, . . . , 7 mean the harmonic oscillators 1, 2, . . . , 7,

respectively.

and velocity with the initial value (6, 4, 4,−2,−5.2,−2.1,−1, 5,−3.2, 4,−3, 2, 0.1, 2.1)T,
while the subgraphs (b) and (d) describe evolution of both position and velocity with
the initial value (6, 4,−6, 4, 3, 4.1, 4.8, 5,−3.2,−1,−4, 4.2,−0.2,−3.1)T. From Figure 3,
it can be seen that the harmonic oscillators finally evolve into three groups with the same
frequency, which is obviously in consistence with the Theorem 3.2. In addition, because
the initial positions of the agents 1 and 2 of the first group in the subgraph (a) are the
same as ones in the the subgraph (b), the group synchronization states for position in
the subgraph (a) are the same as ones in the the subgraph (b), there is the same result
for the group synchronization states of velocity (see the subgraphs (c) and (d)), which
further accounts for the final group synchronization states only depend on the initial
values of the first group (the agents 1 and 2) but not others (the agents 3, 4, 5, 6, 7).

5.2. Identical agents case with positive and negative coupling

In this subsection, the frequency of all harmonic oscillators is chosen as 2. Consider the
directed network topology shown in Figure 4, the weight aij are marked beside the edge
(j, i), it is easy to verify the eigenvalues of L are 0, 0, 0, 1, 1, 1, 1, the left eigenvectors asso-
ciated with the eigenvalue 0 are p1 = (1, 0, 0, 0, 1, 0,−1)T,p2 = (0, 0, 0, 1, 0, 0, 0)T,p3 =
(0, 0, 0, 0, 1, 0, 0)T, which satisfies (15). Simulation shows that the group synchronization
can be realized (see Figure 5) and the group synchronization states can be expressed

as the form (16). As for impulsive coupled case, we can calculate min
{2Re(λr)
|λr|2

}
= 2,

where λr are the nonzero eigenvalues of L. Therefore, when we choose 0 < µ < 2,
0 < h <

π

2
, the group synchronization can be realized according to Theorem 4.3. Fig-

ure 6 shows group synchronization process with µ = 0.5, h = 0.3, which is accordance
with the result of Theorem 4.4. For the case of the acyclic partition, the conclusion also
can be verified, hence they are omitted due to the limitation of space.
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Fig. 6. Group synchronization process under the impulsive

interaction with µ = 0.5, h = 0.3. 1, 2, . . . , 7 mean the harmonic

oscillators 1, 2, . . . , 7, respectively.

6. CONCLUDING REMARK

In this paper, we have investigated the group synchronization problem of diffusively cou-
pled harmonic oscillators. Compared with the existing works reported in the literature,
the contribution of the present investigation includes:

i) Group synchronization problem of diffusively coupled harmonic oscillators with
directed network topology is firstly considered.

ii) Two control strategies are further developed to deal with the group synchronization
of coupled harmonic oscillators for two cases with nonidentical and identical agent
dynamics. Finally, simulation examples have been provided to verify effectiveness
and correctness of the theoretical results. Future work will further consider the
group synchronization problem of diffusively coupled harmonic oscillators with
discontinuous or hybrid time setting under various physical and communication
constraints, such as time delay, stochastic noise and different external disturbances.
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