Kybernetika 52 no. 3, 427-440, 2016

Quantized distributed output regulation of multi-agent systems

Xiaoli Wang and Yumin ChenDOI: 10.14736/kyb-2016-3-0427


Motivated by digital communication channel, we consider the distributed output regulation problem for linear multi-agent systems with quantized state measurements. Quantizers take finitely many values and have an adjustable "zoom" parameter. Quantized distributed output regulation concerns designing distributed feedback by employing quantized technique for multi-agent systems such that all agents can track an active leader, and/or distributed disturbance rejection. With the solvability conditions satisfied, both hybrid static and dynamic feedback with quantized strategy are developed.


multi-agent systems, distributed output regulation, active leader, quantized control


35R35, 49J40, 60G40


  1. R. W. Brockett and D. Liberzon: Quantized feedback stabilization of linear systems. IEEE Trans. Automat. Control 45 (2000), 1279-1289.   DOI:10.1109/9.867021
  2. J. Buhl, D. Stumpter, I. Couzin, J. Hale, E. Despland, E. Miller and S. Simpson: From disorder to order in marching locusts. Science 312 (2006), 1402-1406.   DOI:10.1126/science.1125142
  3. R. Carli and F. Bullo: Quantized coordination algorithms for rendezvous and deployment. SIAM J. Control Optim. 48 (2009), 1251-1274.   DOI:10.1137/070709906
  4. J. A. Fax and R. M. Murray: Information flow and cooperative control of vehicle formation. IEEE Trans. Autom. Control 49 (2004), 1465-1476.   DOI:10.1109/tac.2004.834433
  5. C. Godsil and G. Royle: Algebraic Graph Theory. Springer-Verlag, New York 2001.   DOI:10.1007/978-1-4613-0163-9
  6. Y. Hong, J. Hu and L. Gao: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 1177-1182.   DOI:10.1016/j.automatica.2006.02.013
  7. Y. Hong, X. Wang and Z. Jiang: Distributed output regulation of leader-follower multi-agent systems. Int. J. Robust Nonlinear Control 23 (2013), 48-66.   DOI:10.1002/rnc.1814
  8. J. Hu and G. Feng: Quantized tracking control for a multi-agent system with high-order leader dynamics. Asian J. Control 13 (2011), 988-997.   DOI:10.1002/asjc.311
  9. J. Huang: Nonlinear Output Regulation: Theory \& Applications. SIAM, Phildelphia 2004.   DOI:10.1137/1.9780898718683
  10. D. Liberzon: Hybrid feedback stabilization of systems with quantized signals. Automatica. 39 (2003), 1543-1554.   DOI:10.1016/s0005-1098(03)00151-1
  11. M. Lu and J. Huang: Cooperative output regulation problem for linear time-delay multi-agent systems under switching network. In: 33rd Chinese Control Conference (CCC) 2014, pp. 3515-3520.   DOI:10.1109/chicc.2014.6895523
  12. T. Kameneva and D. Nesic: Further results on robustness of linear control systems with quantized feedback. In: Proc. American Control Conference. New York 2007, pp. 1015-1020.   DOI:10.1109/acc.2007.4282150
  13. A. Kashyap, T. Basar and R. Srikant: Quantized consensus. Automatica 43 (2007), 1192-1203.   DOI:10.1016/j.automatica.2007.01.002
  14. Y. Tang, Y. Hong and X. Wang: Distributed output regulation for a class of nonlinear multi-agent systems with unknown-input leaders. Automatica 62 (2015), 154-160.   DOI:10.1016/j.automatica.2015.09.014
  15. X. Wang and F. Han: Robust coordination control of switching multi-agent systems via output regulation approach. Kybernetika 47 (2011), 755-772.   CrossRef
  16. X. Wang, Y. Hong, J. Huang and Z. Jiang: A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans. Automat. Control 55 (2010), 2891-2895.   DOI:10.1109/tac.2010.2076250
  17. X. Wang, W. Ni and X. Wang: Leader-following formation of switching multirobot systems via internal model. IEEE Trans. Syst. Man. Cyber. Part B: Cyber. 42 (2012), 817-826.   DOI:10.1109/tsmcb.2011.2178022
  18. Z. Yang and Y. Hong: Stabilization of impulsive hybrid systems using quantized input and output feedback. Asian J. Control 14 (2012), 679-692.   DOI:10.1002/asjc.385