Kybernetika 52 no. 3, 427-440, 2016

Quantized distributed output regulation of multi-agent systems

Xiaoli Wang and Yumin ChenDOI: 10.14736/kyb-2016-3-0427

Abstract:

Motivated by digital communication channel, we consider the distributed output regulation problem for linear multi-agent systems with quantized state measurements. Quantizers take finitely many values and have an adjustable ``zoom" parameter. Quantized distributed output regulation concerns designing distributed feedback by employing quantized technique for multi-agent systems such that all agents can track an active leader, and/or distributed disturbance rejection. With the solvability conditions satisfied, both hybrid static and dynamic feedback with quantized strategy are developed.

Keywords:

multi-agent systems, distributed output regulation, active leader, quantized control

Classification:

35R35, 49J40, 60G40

References:

  1. R. W. Brockett and D. Liberzon: Quantized feedback stabilization of linear systems. IEEE Trans. Automat. Control 45 (2000), 1279-1289.   DOI:10.1109/9.867021
  2. J. Buhl, D. Stumpter, I. Couzin, J. Hale, E. Despland, E. Miller and S. Simpson: From disorder to order in marching locusts. Science 312 (2006), 1402-1406.   DOI:10.1126/science.1125142
  3. R. Carli and F. Bullo: Quantized coordination algorithms for rendezvous and deployment. SIAM J. Control Optim. 48 (2009), 1251-1274.   DOI:10.1137/070709906
  4. J. A. Fax and R. M. Murray: Information flow and cooperative control of vehicle formation. IEEE Trans. Autom. Control 49 (2004), 1465-1476.   DOI:10.1109/tac.2004.834433
  5. C. Godsil and G. Royle: Algebraic Graph Theory. Springer-Verlag, New York 2001.   DOI:10.1007/978-1-4613-0163-9
  6. Y. Hong, J. Hu and L. Gao: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 1177-1182.   DOI:10.1016/j.automatica.2006.02.013
  7. Y. Hong, X. Wang and Z. Jiang: Distributed output regulation of leader-follower multi-agent systems. Int. J. Robust Nonlinear Control 23 (2013), 48-66.   DOI:10.1002/rnc.1814
  8. J. Hu and G. Feng: Quantized tracking control for a multi-agent system with high-order leader dynamics. Asian J. Control 13 (2011), 988-997.   DOI:10.1002/asjc.311
  9. J. Huang: Nonlinear Output Regulation: Theory \& Applications. SIAM, Phildelphia 2004.   DOI:10.1137/1.9780898718683
  10. D. Liberzon: Hybrid feedback stabilization of systems with quantized signals. Automatica. 39 (2003), 1543-1554.   DOI:10.1016/s0005-1098(03)00151-1
  11. M. Lu and J. Huang: Cooperative output regulation problem for linear time-delay multi-agent systems under switching network. In: 33rd Chinese Control Conference (CCC) 2014, pp. 3515-3520.   DOI:10.1109/chicc.2014.6895523
  12. T. Kameneva and D. Nesic: Further results on robustness of linear control systems with quantized feedback. In: Proc. American Control Conference. New York 2007, pp. 1015-1020.   DOI:10.1109/acc.2007.4282150
  13. A. Kashyap, T. Basar and R. Srikant: Quantized consensus. Automatica 43 (2007), 1192-1203.   DOI:10.1016/j.automatica.2007.01.002
  14. Y. Tang, Y. Hong and X. Wang: Distributed output regulation for a class of nonlinear multi-agent systems with unknown-input leaders. Automatica 62 (2015), 154-160.   DOI:10.1016/j.automatica.2015.09.014
  15. X. Wang and F. Han: Robust coordination control of switching multi-agent systems via output regulation approach. Kybernetika 47 (2011), 755-772.   CrossRef
  16. X. Wang, Y. Hong, J. Huang and Z. Jiang: A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans. Automat. Control 55 (2010), 2891-2895.   DOI:10.1109/tac.2010.2076250
  17. X. Wang, W. Ni and X. Wang: Leader-following formation of switching multirobot systems via internal model. IEEE Trans. Syst. Man. Cyber. Part B: Cyber. 42 (2012), 817-826.   DOI:10.1109/tsmcb.2011.2178022
  18. Z. Yang and Y. Hong: Stabilization of impulsive hybrid systems using quantized input and output feedback. Asian J. Control 14 (2012), 679-692.   DOI:10.1002/asjc.385