Kybernetika 52 no. 2, 241-257, 2016

Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems

Song ZhengDOI: 10.14736/kyb-2016-2-0241


In this paper the issue of impulsive stabilization and synchronization of uncertain financial hyperchaotic systems with parameters perturbation is investigated. Applying the impulsive control theory, some less conservative and easily verified criteria for the stabilization and synchronization of financial hyperchaotic systems are derived. The control gains and impulsive intervals can be variable. Moreover, the boundaries of the stable region are also estimated according to the equidistant impulse interval. Theoretical analysis and numerical simulations are shown to demonstrate the validity and feasibility of the proposed method.


synchronization, stabilization, financial hyperchaotic system, impulse


34D06, 34D35, 34C15


  1. M. Abd-Elouahab, N. Hamri and J. Wang: Chaos control of a fractional-order financial system. Math. Problems Engrg. 2010 (2010), 1-18.   DOI:10.1155/2010/270646
  2. H. N. Agiza: Chaos synchronization of Lü dynamical system. Nonlinear Anal. 58 (2004), 11-20.   DOI:10.1016/
  3. G. Cai, L. Yao, P. Hu and X. Fang: Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters. Discrete and Continuous Dynamical Systems - Ser. B 18 (2013), 2019-2028.   DOI:10.3934/dcdsb.2013.18.2019
  4. G. Cai, L. Zhang, L. Yao. and X. Fang: Modified function projective synchronization of financial hyperchaotic systems via adaptive impulsive controller with unknown parameters. Discrete Dynamics in Nature and Society 2015 (2015), 1-11.   DOI:10.1155/2015/572735
  5. T. L. Carroll and L. M. Pecora: Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. I 38 (1991), 453-456.   DOI:10.1109/31.75404
  6. Y. S. Chen, R. R. Hwang and C. C. Chang: Adaptive impulsive synchronization of uncertain chaotic systems. Phys. Lett. A 374 (2010), 2254-2258.   DOI:10.1016/j.physleta.2010.03.046
  7. C. Deissenberg: Optimal control of linear econometric models with intermittent controls. Econ. Plan. 16 (1980), 49-56.   DOI:10.1007/bf00351465
  8. J. Ding, W. Yang and H. Yao: A new modified hyperchaotic finance system and its control. Int. J. Nonlinear Sci. 8 (2009), 59-66.   CrossRef
  9. L. Fanti and P. Manfredi: Chaotic business cycles and fiscal policy: an IS-LM model with distributed tax collection lags. Chaos Solitons Fractals 32 (2007), 736-744.   DOI:10.1016/j.chaos.2005.11.024
  10. Q. L. Han: New delay-dependent synchronization criteria for Lur'e systems using time delay feedback control. Phys. Lett. A 360 (2007), 563-569.   DOI:10.1016/j.physleta.2006.08.076
  11. M. Itoh, T. Yang and L. O. Chua: Experimental study of impulsive synchronization of chaotic and hyperchaotic circuits. Int. J. Bifurc. Chaos 9 (1999), 1393-1424.   DOI:10.1142/s0218127499000961
  12. M. Itoh, T. Yang, L. and O. Chua: Conditions for impulsive synchronization of chaotic and hyperchaotic systems. Int. J. Bifurc. Chaos 11 (2001), 551-560.   DOI:10.1142/s0218127401002262
  13. V. Lakshmikantham, D. D. Bainov and P. S. Simeonov: Theory of Impulsive Differential Equations. World Scientific, Singapore 1989.   DOI:10.1142/0906
  14. J. Ma, Q. Zhang and Q. Gao: Stability of a three-species symbiosis model with delays. Nonlinear Dynam. 67 (2012), 567-572.   DOI:10.1007/s11071-011-0009-3
  15. R. Mainieri and J. Rehacek: Projective synchronization in three-dimensioned chaotic systems. Phys. Rev. Lett. 82 (1999), 3042-3045.   DOI:10.1103/physrevlett.82.3042
  16. H. S. Nik, P. He and S. T. Talebian: Optimal, adaptive and single state feedback control for a 3D chaotic system with golden proportion equilibria. Kybernetika 50 (2014), 596-615.   DOI:10.14736/kyb-2014-4-0596
  17. Ju. H. Park: Chaos synchronization of a chaotic system via nonlinear control. Chaos Solitons Fractals 25 (2005), 579-584.   DOI:10.1016/j.chaos.2004.11.038
  18. L. M. Pecora and T. L. Carroll: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824.   DOI:10.1103/physrevlett.64.821
  19. M. G. Rosenblum, A. S. Pikovsky and J. Kurths: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76 (1996), 1804-1807.   DOI:10.1103/physrevlett.76.1804
  20. K. Sasakura: On the dynamic behavior of Schinasi's business cycle model. J. Macroeconom. 16 (1994), 423-444.   DOI:10.1016/0164-0704(94)90015-9
  21. R. Strotz, J. McAnulty and J. Naines: Goodwin's nonlinear theory of the business cycle: an electro-analog solution. Econometrica 21 (1953), 390-411.   DOI:10.2307/1905446
  22. Z. L. Wang: Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters. Commun. Nonlinear Sci. Numer. Simulat. 14 (2009), 2366-2372.   DOI:10.1016/j.cnsns.2008.06.027
  23. T. Yang: Impulsive Control Theory. Springer-Verlag, Berlin 2001.   DOI:10.1007/3-540-47710-1
  24. T. Yang: Impulsive control. IEEE Trans. Automat. Control 44 (1999), 1081-1083.   DOI:10.1109/9.763234
  25. T. Yang and L. O. Chua: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans. Circuits Syst. I 44 (1997), 976-988.   DOI:10.1109/81.633887
  26. T. Yang, L. B. Yang and C. M. Yang: Impulsive control of Lorenz system. Physica D 110 (1997), 18-24.   DOI:10.1016/s0167-2789(97)00116-4
  27. T. Yang, L. B. Yang and C. M. Yang: Impulsive synchronization of Lorenz systems. Phys. Lett. A 226 (1997), 349-354.   DOI:10.1016/s0375-9601(97)00004-2
  28. H. Yu, G. Cai and Y. Li: Dynamic analysis and control of a new hyperchaotic finance system. Nonlinear Dynam. 67 (2012), 2171-2182.   DOI:10.1007/s11071-011-0137-9
  29. M. Ma, H. Zhang, J. Cai and J. Zhou: Impulsive practical synchronization of n-dimensional nonautonomous systems. Kybernetika 49 (2013), 539-553.   CrossRef
  30. M. Zhao and J. Wang: $H_\infty$ control of a chaotic finance system in the presence of external disturbance and input time-delay. Appl. Math. Comput. 233 (2014), 320-327.   DOI:10.1016/j.amc.2013.12.085
  31. S. Zheng: Parameter identification and adaptive impulsive synchronization of uncertain complex-variable chaotic systems. Nonlinear Dynam. 74 (2013), 957-967.   DOI:10.1007/s11071-013-1015-4
  32. J. Zheng and B. Du: Projective synchronization of hyperchaotic financial systems. Discrete Dynamics in Nature and Society 2015 (2015), 1-9.   DOI:10.1155/2015/782630