Kybernetika 52 no. 2, 224-240, 2016

Optimal control from inoculation on a continuous microalgae culture

Jorge Antonio Torres-Muñoz, Irandi Gutierrez-Carmona and Alma Rosa Dominguez-BocanegraDOI: 10.14736/kyb-2016-2-0224


The present work is centred on the problem of biomass productivity optimization of a culture of microalgae \textit{Spirulina maxima}. The mathematical tools consisted of necessary and sufficient conditions for optimal control coming from the celebrated Pontryagin's Maximum Principle (PMP) as well as the Bellman's Principle of Optimality, respectively. It is shown that the optimal dilution rate turns to be a bang-singular-bang control. It turns out that, the experimental results are in accordance to the optimal mathematical findings.


microalgae, optimal control, singular arc, dilution rate


93C95, 90C46


  1. J. A. Asenjo: Bioreactor System Design. CRC Press, 1994.   CrossRef
  2. D. P. Bertsekas and D. P. Bertsekas: Dynamic Programming and Optimal Control. Vol. 1. No. 2. Athena Scientific, Belmont 1995.   CrossRef
  3. R. O. Cañizares and A. R. Dominguez: Growth of Spirulina maxima on swine waste. Bioresource technology 45 (1993), 1, 73-75.   DOI:10.1016/0960-8524(93)90148-5
  4. R. O. Cañizares et al.: Aerated swine-wastewater treatment with K-carrageenan-immobilized Spirulina maxima. Bioresource technology 47 (1994), 1, 89-91.   DOI:10.1016/0960-8524(94)90035-3
  5. S. Čelikovský, Al. Cervantes-Herrera and J. Ruiz-León: Singular perturbation based solution to optimal microalgal growth problem and its infinite time horizon analysis. IEEE Trans. Automat. Control 55 (2010), 3, 767-772.   DOI:10.1109/tac.2010.2040498
  6. J. A. V. Costa, L. M. Colla and P. F. Duarte Filho: Improving Spirulina platensis biomass yield using a fed-batch process. Bioresource Technol. 92 (2004), 3, 237-241.   DOI:10.1016/j.biortech.2003.09.013
  7. A. R. Domínguez-Bocanegra: Biosorption of Cadmium (II), Lead (II) and Nickel (II) by Spirulina Maxima. Int. J. Sci. 2.2013-10 (2013), 45-55.   CrossRef
  8. M. C. García-Malea et al.: Modelling of growth and accumulation of carotenoids in Haematococcus pluvialis as a function of irradiance and nutrients supply. Biochem. Engrg. J. 26 (2005), 2, 107-114.   DOI:10.1016/j.bej.2005.04.007
  9. B. J. Goh: Optimal control of a fish resource. Malayan Scientist 5.65-70 (1969), 1970.   CrossRef
  10. M. J. Griffiths et al.: Interference by pigment in the estimation of microalgal biomass concentration by optical density. J. Microbiol. Methods 85 (2011), 2, 119-123.   DOI:10.1016/j.mimet.2011.02.005
  11. C. D. Johnson and J. Gibson: Singular solutions in problems of optimal control. IEEE Trans. Automat. Control 8 (1963), 1, 4-15.   DOI:10.1109/tac.1963.1105505
  12. D. E. Kirk: Optimal Control Theory: An Introduction. Courier Corporation, 2012.   CrossRef
  13. R. E. Kopp and H. G. Moyer: Necessary conditions for singular extremals. AIAA J. 3 (1965), 8, 1439-1444.   DOI:10.2514/3.3165
  14. Y. K. Lee and Ch.-S. Low: Productivity of outdoor algal cultures in enclosed tubular photobioreactor. Biotechnol. and Bioengrg. 40 (1992), 9, 1119-1122.   DOI:10.1002/bit.260400917
  15. J. M. Lee: Biochemical Engineering. Englewood Cliffs, Prentice Hall, NJ 1992.   CrossRef
  16. D. Liberzon: Calculus of Variations and Optimal Control Theory: A Concise Introduction. Princeton University Press, 2012.   CrossRef
  17. J. Moreno: Optimal time control of bioreactors for the wastewater treatment. Optimal Control Appl. Methods 20 (1999), 3, 145-164.   DOI:10.1002/(sici)1099-1514(199905/06)20:3$<$145::aid-oca651$>$;2-j
  18. L. S. Pontryagin: Mathematical Theory of Optimal Processes. CRC Press, 1987.   CrossRef
  19. B. Rehák, S. Čelikovský and Š. Papáček: Model for photosynthesis and photoinhibition: parameter identification based on the harmonic irradiation O 2 response measurement. IEEE Trans. Automat. Control 53 Special Issue (2008), 101-108.   DOI:10.1109/tac.2007.911345
  20. X-W. Zhang, Y-M. Zhang and F. Chen: Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process Biochemistry 34 (1999), 5, 477-481.   DOI:10.1016/s0032-9592(98)00114-9