
KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 2 , P AGES 1 6 9 – 2 0 8

AN SQP METHOD FOR MATHEMATICAL PROGRAMS
WITH COMPLEMENTARITY CONSTRAINTS
WITH STRONG CONVERGENCE PROPERTIES

Matus Benko and Helmut Gfrerer

We propose an SQP algorithm for mathematical programs with complementarity constraints
which solves at each iteration a quadratic program with linear complementarity constraints. We
demonstrate how strongly M-stationary solutions of this quadratic program can be obtained by
an active set method without using enumeration techniques. We show that all limit points of
the sequence of iterates generated by our SQP method are at least M-stationary.
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1. INTRODUCTION

Consider the following mathematical program with complementarity constraints (MPCC)

min
x∈Rn

f(x)

subject to hi(x) = 0 i ∈ E,
gi(x) ≤ 0 i ∈ I,
0 ≤ Gi(x) ⊥ Hi(x) ≥ 0 i ∈ C,

(1)

with continuously differentiable functions f , hi, i ∈ E, gi, i ∈ I, Gi, Hi, i ∈ C and finite
index sets E, I and C. The notation 0 ≤ u ⊥ v ≥ 0 for two vectors u, v ∈ Rn is a shortcut
for u ≥ 0, v ≥ 0, uT v = 0. MPCCs are more specialized class of mathematical programs
with equilibrium constraints (MPECs). For more background and several applications
we refer the reader to the textbooks [22, 25].

Theoretically, MPCCs can be viewed as standard nonlinear optimization problems,
but due to the complementarity constraints, many of the standard constraint quali-
fications of nonlinear programming are violated at any feasible point. This makes it
necessary, both from a theoretical and numerical point of view, to consider special tai-
lored algorithms for solving MPCCs. Recent numerical methods follow different direc-
tions. In [7, 8] the direct application of an SQP solver was investigated whereas the
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application of interior point methods was considered in [3, 4, 20]. Penalization tech-
niques are suggested in [12, 24, 30]. Another class of methods deals with piece-wise
decomposition [9, 11, 14, 15, 22, 23, 33, 34]. Also smoothing, lifting and relaxation
methods have been suggested in order to deal with the inherent difficulties of MPCCs
in [1, 2, 5, 13, 16, 17, 21, 27, 29, 31, 32].

All these approaches have in common that one can prove only convergence to weakly
stationary or C-stationary points unless some strong assumptions are made. For the
two methods from [16, 17] the stronger and interesting property can be shown that
they converge to M-stationary points. However, the subproblems which are to be solved
in these methods, do not satisfy a constraint qualification resulting in the effect that
approximate solutions of the subproblems only converge to weakly stationary points.
For a more detailed analysis of convergence properties of relaxation methods we refer to
the recent paper [18].

In this paper, we carry over a well known SQP-method from nonlinear programming
to MPCCs. The main task of our method is to solve in each iteration step a quadratic
program with linear complementarity constraints. We present an active set method, very
similar to the active set method for quadratic programming [6], which computes at least a
strongly M-stationary solution of the subproblems. The concept of strong M-stationarity
was introduced in the recent paper by Gfrerer [10]. This active set method is based on
an active set method used to show the existence of strongly M-stationary solutions for
MPCCs [10, Theorem 4.3]. Surprisingly, the inherent combinatorial structure of M-
stationarity can be resolved by this active set method and one does not depend on
enumeration techniques.

Then we compute the next iterate by reducing a certain merit function along some
polygonal line which is given by the solution procedure for the subproblem. Then we
show that every limit point of the generated sequence is at least M-stationary, provided
that the solutions of the subproblems remain bounded. Numerical tests indicate that
our method behaves very reliable.

A short outline of this paper is as follows. In section 2 we recall the basic station-
arity concepts for MPCCs as well as the concept of strong M-stationarity. In section 3
we recall an outline of an SQP method for nonlinear programming and we provide an
outline of our SQP method for MPCCs. In section 4 we describe an active set method
for solving the auxiliary problem occurring in every iteration of our SQP method. This
auxiliary problem is a quadratic program with linear complementarity constraints. We
prove the finiteness of this algorithm and we summarize some of the properties of quan-
tities computed during the algorithm. In section 5 we describe how the next iterate is
computed by means of the solution of the auxiliary problem. Further, we consider the
convergence of the overall algorithm. Section 6 is a summary of numerical results we
obtained by implementing our algorithm in MATLAB and testing it on the MacMPEC
collection of MPECs maintained by Leyffer [19].

In what follows we use the following notation. Given a set M we denote by P(M) :=
{(M1,M2) |M1 ∪M2 = M, M1 ∩M2 = ∅} the set of all partitions of M . Further, for a
real number a we use the notation (a)+ := max(0, a), (a)− := min(0, a).
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2. STATIONARY POINTS FOR MPCCS

Given a point x̄ feasible for (1) we define the following index sets

Ig(x̄) := {i ∈ I | gi(x̄) = 0},
I0+(x̄) := {i ∈ C |Gi(x̄) = 0 < Hi(x̄)},
I+0(x̄) := {i ∈ C |Gi(x̄) > 0 = Hi(x̄)},
I00(x̄) := {i ∈ C |Gi(x̄) = 0 = Hi(x̄)}.

Further we call a triple of index sets J = (Jg, JG, JH) with Jg ⊂ Ig(x̄), JG ⊂ I0+(x̄) ∪
I00(x̄), JH ⊂ I+0(x̄) ∪ I00(x̄) an MPEC working set with respect to x̄, if JG ∪ JH = C,
|E|+ |Jg|+ |JG|+ |JH | is equal to the rank of the family of vectors

{∇hi(x̄) | i ∈ E} ∪ {∇gi(x̄) | i ∈ Ig(x̄)} ∪ {∇Gi(x̄) | i ∈ I0+(x̄) ∪ I00(x̄)}
∪ {∇Hi(x̄) | i ∈ I+0(x̄) ∪ I00(x̄)}

and the family of vectors

{∇hi(x̄) | i ∈ E} ∪ {∇gi(x̄) | i ∈ Jg} ∪ {∇Gi(x̄) | i ∈ JG} ∪ {∇Hi(x̄) | i ∈ JH}

is linearly independent.
In contrast to nonlinear programming there exist a lot stationarity concepts for

MPCCs.

Definition 2.1. Let x̄ be feasible for (1). Then x̄ is called

1. weakly stationary, if there are multipliers λgi , i ∈ I, λhi , i ∈ E, λGi , λ
H
i , i ∈ C such

that

∇f(x̄) +
∑
i∈E

λhi∇hi(x̄) +
∑
i∈I

λgi∇gi(x̄)−
∑
i∈C

(
λGi ∇Gi(x̄) + λHi ∇Hi(x̄)

)
= 0

and

λgi ≥ 0, λgi gi(x̄) = 0, i ∈ I, λGi = 0, i ∈ I+0(x̄), λHi = 0, i ∈ I0+(x̄).

2. C-stationary, if it is weakly stationary and

λGi λ
H
i ≥ 0, i ∈ I00(x̄).

3. M-stationary, if it is C-stationary and

either λGi , λ
H
i > 0 or λGi λ

H
i = 0, i ∈ I00(x̄).

4. strongly M-stationary, if it is M-stationary and there exists a MPEC working set
Jg, JG, JH such that

λGi , λ
H
i ≥ 0, i ∈ JG ∩ JH .
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5. S-stationary, if it is M-stationary and

λGi , λ
H
i ≥ 0, i ∈ I00(x̄).

Strong M-stationarity was introduced in the recent paper by Gfrerer [10], whereas the
other stationarity concepts are very common in the literature, see e. g. Scheel and
Scholtes [28]. Obviously, the following implications hold:

S-stationarity⇒ M-stationarity⇒ C-stationarity⇒ weak stationarity,

strong M-stationarity⇒ M-stationarity

Further, S-stationarity implies strong M-stationarity provided at least one MPEC work-
ing set exists.

Note that the S-stationarity conditions are nothing else than the Karush–Kuhn–
Tucker conditions for the problem (1). Unfortunately, a local minimizer is S-stationary
only under some comparatively strong constraint qualification, e. g. that the gradients
of the active constraints are linearly independent. On the other hand, a local minimizer
is strongly M-stationary under very weak constraint qualifications. Recall that the
contingent (also Bouligand or tangent) cone to a closed set Ω ⊂ Rn at u ∈ Ω is defined
by

TΩ(u) := {d ∈ Rn | ∃(dk)→ d,∃(τk) ↓ 0 : u+ τkdk ∈ Ω∀k}.

Definition 2.2. Let x̄ be feasible for (1). We say that the MPEC Guignard constraint
qualification (MPEC-GCQ) holds at x̄ if the polar cone of the contingent cone to the
feasible set of (1) at x̄ equals the polar cone of the cone

{d ∈ Rn | (∇hi)T (x̄)d = 0, i ∈ E,
(∇gi)T (x̄)d ≤ 0, i ∈ Ig(x̄),
(∇Gi)T (x̄)d = 0, i ∈ I0+(x̄),
(∇Hi)T (x̄)d = 0, i ∈ I+0(x̄),
0 ≤ (∇Gi)T (x̄)d ⊥ (∇Hi)T (x̄)d ≥ 0, i ∈ I00(x̄)}.

Theorem 2.3. (c.f. Gfrerer [10, Theorem 4.3, Theorem 3.9]) Let x̄ be a local minimizer
of the MPCC (1) at which MPEC-GCQ holds and assume that an MPEC working set
exists. Then x̄ is strongly M-stationary.

The assumption, that one MPEC working set exists, is fulfilled, if there are index
sets (J̃G, J̃H) ∈ P(I00(x̄)) such that the family of gradients

{∇hi(x̄), i ∈ E} ∪ {∇Gi(x̄), i ∈ I0+(x̄) ∪ J̃G} ∪ {∇Hi(x̄), i ∈ I+0(x̄) ∪ J̃H}

is linearly independent and this seems to be a rather weak assumption.
Note that [10, Theorem 4.3] was constructively proved by some active set method

and our algorithm is based on this procedure.
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3. ON SQP METHODS IN MATHEMATICAL PROGRAMMING

We recall the structure of well-known SQP method for solving nonlinear optimization
problems

min
x∈Rn

f(x)

subject to hi(x) = 0 i ∈ E,
gi(x) ≤ 0 i ∈ I.

(2)

If xk denotes the kth estimate for the optimal solution and Bk a symmetric positive
definite matrix the following quadratic programming subproblem is solved

min
(s,δ)∈Rn+1

1
2s
TBks+ (∇f(xk))T s+ 1

2ρδ
2

subject to (1− δ)hi(xk) + (∇hi(xk))T s = 0 i ∈ E,
(1− βgi δ)gi(xk) + (∇gi(xk))T s ≤ 0 i ∈ I,
−δ ≤ 0,

(3)

where

βgi =

{
1 if gi(xk) > 0
0 else.

The additional variable δ is introduced to avoid inconsistent constraints and to have
a feasible point (s, δ) = (0, 1) at hand. The penalty parameter ρ has to be chosen
sufficiently large such that δ is close to 0 at a solution of the problem.

Let us denote the unique solution of (3) by (sk, δk). If δk > ζ for some ζ ∈ (0, 1) we
increase ρ and solve problem (3) again. If this loop fails within some given upper bound
for ρ the calculation finishes because it is assumed that the constraints of (2) have no
feasible point. Otherwise the new iterate xk+1 is given by xk+1 = xk + αksk where αk
is a positive step length that is chosen by a line search procedure to give a reduction
Φ(xk+1) < Φ(xk) where Φ is a suitable merit function, e. g. the `1 penalty function

Φ(x) = f(x) +
∑
i∈E

σhi |hi(x)|+
∑
i∈I

σgi (gi(x))+

with appropriately chosen penalty parameters σ = (σh, σg).
The structure of our SQP method is very similar to the above procedure. The

quadratic auxiliary problem which we have to solve at each iterate is given by

min
(s,δ)∈Rn+1

1
2s
TBks+ (∇f(xk))T s+ ρ( 1

2δ
2 + δ)

subject to (1− δ)hi(xk) + (∇hi(xk))T s = 0 i ∈ E,
(1− βgi δ)gi(xk) + (∇gi(xk))T s ≤ 0 i ∈ I,
0 ≤ (1− βGi δ)Gi(xk) + (∇Gi(xk))T s
⊥ (1− βHi δ)Hi(xk) + (∇Hi(xk))T s ≥ 0 i ∈ C,
−δ ≤ 0,

(4)

where the vector β = (βg, βG, βH) is chosen such that the point (s, δ) = (0, 1) is feasible.
Note that we add to the quadratic penalty term 1

2ρδ
2, as normally used in SQP methods,
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the term ρδ, which acts like an exact penalty term and forces δ to be zero at the solution
also for moderate values of ρ. For the convergence proof we use the property of the new
iterate that we have a decrease Φ(xk+1) < Φ(xk) with respect to the merit function

Φ(x) := f(x) +
∑
i∈E

σhi |hi(x)|+
∑
i∈I

σgi (gi(x))+

+
∑
i∈C

σCi (|min{Gi(x), Hi(x)}| − (max{Gi(x), Hi(x)})−).

The main difference to the SQP method for nonlinear programs is that we perform the
line search not along some single direction, but along some polygonal line s0

k, s
1
k, . . . , s

Nk
k

connecting the solutions of convex subproblems of (4).

4. SOLVING THE AUXILIARY PROBLEM

In this section, we describe an algorithm for solving quadratic problems with comple-
mentarity constraints of the type

min
(s,δ)∈Rn+1

1
2s
TBs+ (∇f)T s+ ρ( 1

2δ
2 + δ) QPCC(β, ρ)

subject to (1− δ)hi + (∇hi)T s = 0 i ∈ E,
(1− βgi δ)gi + (∇gi)T s ≤ 0 i ∈ I,
0 ≤ (1− βGi δ)Gi + (∇Gi)T s ⊥ (1− βHi δ)Hi + (∇Hi)T s ≥ 0 i ∈ C,
−δ ≤ 0.

(5)
Here the vector β = (βg, βG, βH) ∈ {0, 1}|I|+2|C| =: B is chosen at the beginning of the
algorithm such that some feasible point is known in advance, e. g. (s, δ) = (0, 1). During
the course of the solution procedure components βHi , β

G
i with Gi, Hi > 0 can change

but only in such a way that the current iterate (s, δ) remains feasible. The parameter
ρ has to be chosen sufficiently large and acts like a penalty parameter forcing δ to be
near zero at the solution. B is a symmetric positive definite n × n matrix, ∇f , ∇hi,
∇gi, ∇Gi, ∇Hi denote vectors in Rn and hi, gi, Gi, Hi are real numbers. We use this
notation to point out to the reader that the problem (5) is auxiliary problem (4) which
we have to solve at each iterate.

Given a feasible point (s, δ) for the problem QPCC(β, ρ) we define the active in-
equality constraints and the active complementarity constraints, respectively, by

Ig(s, δ, β) := {i ∈ I | (1− βgi δ)gi + (∇gi)T s = 0} ∪ {0 | if δ = 0},
I0+(s, δ, β) := {i ∈ C | (1− βGi δ)Gi + (∇Gi)T s = 0 < (1− βHi δ)Hi + (∇Hi)T s},
I+0(s, δ, β) := {i ∈ C | (1− βGi δ)Gi + (∇Gi)T s > 0 = (1− βHi δ)Hi + (∇Hi)T s},
I00(s, δ, β) := {i ∈ C | (1− βGi δ)Gi + (∇Gi)T s = 0 = (1− βHi δ)Hi + (∇Hi)T s}.

Due to the disjunctive structure of the auxiliary problem we can subdivide it in
a several QP-pieces. For every partition (CG, CH) ∈ P(C) we define
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min
(s,δ)∈Rn+1

1
2s
TBs+ (∇f)T s+ ρ( 1

2δ
2 + δ) QP (β, ρ, CG, CH)

subject to (1− δ)hi + (∇hi)T s = 0 i ∈ E,
(1− βgi δ)gi + (∇gi)T s ≤ 0 i ∈ I,
(1− βGi δ)Gi + (∇Gi)T s = 0 i ∈ CG,
(1− βHi δ)Hi + (∇Hi)T s ≥ 0 i ∈ CG,
(1− βGi δ)Gi + (∇Gi)T s ≥ 0 i ∈ CH ,
(1− βHi δ)Hi + (∇Hi)T s = 0 i ∈ CH ,
−δ ≤ 0.

(6)

The method we use is an active set method very similar to those known for quadratic
programming. Given a vector β = (βg, βG, βH) and a pair (s, δ) feasible forQPCC(β, ρ),
a triple of index sets J = (Jg, JG, JH) with Jg ⊂ Ig(s, δ, β), JG ⊂ I0+(s, δ, β) ∪
I00(s, δ, β), JH ⊂ I+0(s, δ, β) ∪ I00(s, δ, β) and JG ∪ JH = C is called a working set
with respect to (β, s, δ), if the family of vectors

{(∇hi,−hi) | i ∈ E} ∪ {(∇gi,−βgi gi) | i ∈ Jg \ {0}} ∪ {(0,−1) | if 0 ∈ Jg}
∪{(∇Gi,−βGi Gi) | i ∈ JG} ∪ {(∇Hi,−βHi Hi) | i ∈ JH}

is linearly independent. Note that in case 0 ∈ Jg this linear independence requirement
is fulfilled if and only if the family of vectors

{∇hi | i ∈ E} ∪ {∇gi | i ∈ Jg \ {0}} ∪ {∇Gi | i ∈ JG} ∪ {∇Hi | i ∈ JH} (7)

is linearly independent. We now define for every vector β, every scalar ρ and each
working set J the equality constrained quadratic program

min
(s,δ)∈Rn+1

1
2s
TBs+ (∇f)T s+ ρ( 1

2δ
2 + δ) EQP (β, ρ, J)

subject to (1− δ)hi + (∇hi)T s = 0 i ∈ E,
(1− βgi δ)gi + (∇gi)T s = 0 i ∈ Jg \ {0},
(1− βGi δ)Gi + (∇Gi)T s = 0 i ∈ JG,
(1− βHi δ)Hi + (∇Hi)T s = 0 i ∈ JH ,
δ = 0 if 0 ∈ Jg.

(8)

At a solution (s, δ) we can define corresponding multipliers λ(β, ρ, J) = (λh, λg, λG, λH) ∈
R|E|+|I|+2|C| fulfilling the first order necessary conditions

Bs+∇f +
∑
i∈E

λhi∇hi +
∑

i∈Jg\{0}

λgi∇gi −
∑
i∈JG

λGi ∇Gi −
∑
i∈JH

λHi ∇Hi = 0, (9)

ρ(δ + 1)−
∑
i∈E

λhi hi −
∑

i∈Jg\{0}

λgi β
g
i gi +

∑
i∈JG

λGi β
G
i Gi +

∑
i∈JH

λHi β
H
i Hi = 0 if 0 /∈ Jg, (10)

λgi = 0, i ∈ I \ Jg, λGi = 0, i ∈ C \ JG, λHi = 0, i ∈ C \ JH . (11)

Due to the definition of a working set those multipliers are uniquely determined.
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Fix a constants ζ ∈ (0, 1), ρ̄ > 1 and take some ρ > 0. An outline of the algorithm is
as follows.

Algorithm 4.1. (Solving the QPCC)
1: Initialization:

Set the starting point (s, δ) := (0, 1), set the vector β and take some working set
J with respect to β, set t := 0 and β0 := β, (s0, δ0) := (s, δ), J̃0 := J .

If we could not find a working set, stop the algorithm.
2: Improvement step:

If (s, δ) is not a solution of EQP (β, ρ, J) then
either

we find a new working set J with respect to β and a solution (s, δ) of EQP (β, ρ, J)
which is feasible for QPCC(β, ρ)

or
we must perform a restart: set ρ = ρρ̄ and go to step 1.

3: Test for optimality:
We try to find a new working set J and a descent direction (d, τ) for problem
QPCC(β, ρ) at the point (s, δ). If we have to switch to a new QP-piece, we
increase the counter t of pieces by 1 and set (st, δt) := (s, δ), J t := J ,
λt := λ(β, ρ, J). J and eventually β are updated and we set βt := β, J̃ t := J .

This step can be terminated by one of the following possibilities:
Either

we proved that (s, δ) is strongly M-stationary for QPCC(β, ρ).
If δ < ζ set N := t+ 1 and save (sN , δN ) := (s, δ), JN := J, λN := λ(β, ρ, J).

Stop the algorithm and return.
Else

if the degeneracy condition (14) is fulfilled, stop the algorithm
else set ρ = ρρ̄ and go to step 1.

Or
we found a new working set J and a descent direction (d, τ) for problem
QPCC(β, ρ) at the point (s, δ).

If τ > 0 set ρ = ρρ̄ and go to step 1.
Otherwise set (s, δ) := (s, δ) +α(d, τ) for some appropriate positive step size α

(e. g. by formula in line 4 in Procedure 4.1 below), update J and go to
step 2.

Or
β was changed, go to step 2.

The test for degeneracy looks as follows. Consider a solution η = (ηh, ηg, ηG, ηH) of
the system ∑

i∈E
ηhi ∇hi +

∑
i∈Jg\{0}

ηgi∇gi −
∑
i∈JG

ηGi ∇Gi −
∑
i∈JH

ηHi ∇Hi = 0, (12)

−
∑
i∈E

ηhi hi −
∑

i∈Jg\{0}

ηgi β
g
i gi +

∑
i∈JG

ηGi β
G
i Gi +

∑
i∈JH

ηHi β
H
i Hi = 1, (13)
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which is unique by the definition of a working set, provided this system is solvable. We
say that the degeneracy condition is fulfilled, if the system (12), (13) is solvable and the
unique solution η fulfills

ηgi ≥ 0, i ∈ Jg\{0}, ηGi , ηHi ≥ 0, i ∈ JG∩JH or ηgi ≤ 0, i ∈ Jg\{0}, ηGi , ηHi ≤ 0, i ∈ JG∩JH .
(14)

At each step the current iterate (s, δ) together with the parameters β, ρ are such that
(s, δ) is feasible for QPCC(β, ρ). Moreover, (s, δ) is also feasible for EQP (β, ρ, J) for
the actual working set J and the actual β.

In the following subsections we describe the individual steps in detail.

4.1. Initialization

At the beginning we set

βgi :=
{

1 if gi > 0
0 if gi ≤ 0, (βGi , β

H
i ) :=

 (1, 1) if Gi < 0 and Hi < 0
(1, 0) if Gi ≤ Hi and Hi ≥ 0
(0, 1) if Hi < Gi and Gi ≥ 0.

Note that in case Gi = Hi ≥ 0 we do not set (βGi , β
H
i ) = (1, 1), because we want to

hold the set I00(s0, δ0, β) of bi-active indices as small as possible. From the remaining
two alternatives we fix (βGi , β

H
i ) = (1, 0). Further, by definition of β it follows that

I0+(s0, δ0, β) ⊂ {i ∈ C |Gi ≤ Hi ∧Hi ≥ 0} and I+0(s0, δ0, β) ⊂ {i ∈ C |Hi < Gi ∧Gi ≥
0} and hence we can proceed as follows to construct the initial working set J . First we
set Jg := ∅, JG := {i ∈ C | (Gi < 0∧Hi < 0)∨ (Gi ≤ Hi ∧Hi ≥ 0)}, JH := {i ∈ C |Hi <
Gi ∧Gi ≥ 0}, where it is to note that any other splitting of the set I00(s0, δ0, β) to JG
and JH would work as well.

Then, as long as J is not a working set we try to move indices belonging to I00(s0, δ0, β)
from JG to JH and vice-versa. E.g., if i ∈ JG∩I00(s0, δ0, β) and (∇Gi,−βGi Gi) depends
linearly on the other gradients belonging to J∪E, we can move i to JH if (∇Hi,−βHi Hi)
does not depend on those gradients. Otherwise, if (∇Hi,−βHi Hi) also depends linearly
on those gradients we stop and say we cannot find a working set.

Note that β is chosen in such a way that

βgi ((1− βgi δ0)gi + (∇gi)T s0) = βgi (1− βgi )gi = 0, ∀i ∈ I,
βGi ((1− βGi δ0)Gi + (∇Gi)T s0) = βGi (1− βGi )Gi = 0, ∀i ∈ C,
βHi ((1− βHi δ0)Hi + (∇Hi)T s0) = βHi (1− βHi )Hi = 0, ∀i ∈ C.

(15)

4.2. Improvement step

If the current point (s, δ) is not a solution of the problem EQP (β, ρ, J) then we can
easily compute a direction (d, τ) pointing from (s, δ) to the solution of EQP (β, ρ, J) by
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solving the quadratic program

min
(d,τ)∈Rn+1

1
2d
TBd+ (Bs+∇f)T d+ ρ( 1

2τ
2 + (1 + δ)τ) RQP (β, ρ, J, (s, δ))

subject to −τhi + (∇hi)T d = 0 i ∈ E,
−βgi τgi + (∇gi)T d = 0 i ∈ Jg \ {0},
−βGi τGi + (∇Gi)T d = 0 i ∈ JG,
−βHi τHi + (∇Hi)T d = 0 i ∈ JH ,
τ = 0 if 0 ∈ Jg.

(16)

Consider now the following procedure.

Procedure 4.1. (Improvement step)
1: while ((s, δ) is not solution of problem EQP (β, ρ, J))
2: { compute search direction (d, τ) as solution of problem RQP (β, ρ, J, (s, δ))
3: if τ > 0 return (parameter ρ is not large enough and we must perform a restart)
4: compute step length α by

α̂ := min

 min
i∈I\Jg

−βg
i
τgi+(∇gi)T d>0

−(1−βgi δ)gi−(∇gi)T s
−βgi τgi+(∇gi)T d , min

i∈C\JG
−βG

i
τGi+(∇Gi)T d<0

−(1−βGi δ)Gi−(∇Gi)T s
−βGi τGi+(∇Gi)T d

,

min
i∈C\JH

−βH
i
τHi+(∇Hi)T d<0

−(1−βHi δ)Hi−(∇Hi)T s
−βHi τHi+(∇Hi)T d

, 1

 ,

α :=

{
α̂ if 0 ∈ Jg or τ = 0,
min{α̂, −δτ } otherwise.

5: (s, δ) := (s, δ) + α(d, τ)
6: if α < 1 set either Jg := Jg ∪{i} or JG := JG ∪{i} or JH := JH ∪{i}, depending

in which part the minimum is attained, where adding 0 to Jg has to be done
with priority.

7: }

Note that during the course of the procedure J remains a working set. For in-
stance if we add the ith inequality constraint we have −βgi τgi + (∇gi)T d 6= 0 and hence
((∇gi)T ,−βgi gi) is linearly independent of

{(∇hi,−hi) | i ∈ E} ∪ {(∇gi,−βgi gi) | i ∈ Jg \ {0}} ∪ {(0,−1) | if 0 ∈ Jg}
∪{(∇Gi,−βGi Gi) | i ∈ JG} ∪ {(∇Hi,−βHi Hi) | i ∈ JH}

because (d, τ) fulfills the constraints of RQP (β, ρ, J, (s, δ)).

Lemma 4.1. Procedure 4.1 is finite.

P r o o f . Since we terminate the procedure if the condition at line 3 is fulfilled we may
assume that always τ ≤ 0. Whenever α < 1 we add some index to our working set and
hence this can occur only finitely many times. Hence after finitely many steps we have
α = 1 and then (s, δ) is a solution of EQP (β, ρ, J). �
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4.3. Test for optimality

This part of the algorithm is very similar to the algorithm in [10, p. 926]. At the
beginning we have available a feasible point (s, δ) and an MPEC working set J for the
problem QPCC(β, ρ). It is now crucial to find a vector b = (bg, bG, bH) ∈ Rl+1

+ ×Rq−×Rq−
with bgi = 0, i ∈ Jg, bGi = 0, i ∈ JG, bHi = 0, i ∈ JH such that for every (u, µ) ∈ Rn × R
the family of gradients

{(∇hi,−hi) | i ∈ E, (∇hi)Tu− hiµ = 0}
∪{(∇gi,−βgi gi) | i ∈ Ig(s, δ, β) \ {0}, (∇gi)Tu− βgi giµ = bgi }

∪{(0,−1) | if 0 ∈ Ig(s, δ, β), µ = bg0}
∪{(∇Gi,−βGi Gi) | i ∈ I0+(s, δ, β) ∪ I00(s, δ, β), (∇Gi)Tu− βGi Giµ = bGi }
∪{(∇Hi,−βHi Hi) | i ∈ I+0(s, δ, β) ∪ I00(s, δ, β), (∇Hi)Tu− βHi Hiµ = bHi }

(17)

is linearly independent. It was pointed out in [10] that a random choice of b with

bgi > 0, i ∈ Ig(s, δ, β) \ Jg, bGi < 0, i ∈ I00(s, δ, β) \ JG, bHi < 0, i ∈ I00(s, δ, β) \ JH

and fixing the other components to zero will yield a suitable vector b with probability
1, see also Remark 4.3.

Procedure 4.2. (Test for optimality)
1: if J is not an MPEC working set for QPCC(β, ρ), add some active constraints to get

an MPEC working set
2: set (u, µ) := 0, set the vector b and compute multipliers λ(J)
3: while ((∃i ∈ Jg : λgi < 0) ∨ (∃i ∈ JG ∩ JH : λGi < 0 ∨ λHi < 0))
4: { remove an index corresponding to some negative multiplier from J as described

in Procedure 4.3 (storing of the objects and redefinition of the vector β might
occur)

5: if (β was changed)
6: return
7: compute search direction (d, τ) as a solution of problem RQP (β, ρ, J, (s, δ))
8: if (((∇gi)T d− βgi giτ ≤ 0, i ∈ Ig(s, δ, β) \ Jg)

∧ ((∇Gi)T d− βGi Giτ ≥ 0, i ∈ I00(s, δ, β) \ JG)
∧ ((∇Hi)T d− βHi Hiτ ≥ 0, i ∈ I00(s, δ, β) \ JH))

9: return ((d, τ) is a feasible descent direction for QPCC(β, ρ) at (s, δ))
10: compute step length

α := min

 min
i∈(Ig(s,δ,β)∩I)\Jg
−βg

i
τgi+(∇gi)T d>0

bgi−(−βgi giµ+(∇gi)Tu)

−βgi τgi+(∇gi)T d , min
i∈I00(s,δ,β)\JG

−βG
i
τGi+(∇Gi)T d<0

bGi −(−βGi Giµ+(∇Gi)Tu)

−βGi τGi+(∇Gi)T d
,

min
i∈I00(s,δ,β)\JH

−βH
i
τHi+(∇Hi)T d<0

bHi −(−βHi Hiµ+(∇Hi)Tu)

−βHi τHi+(∇Hi)T d


11: either set Jg := Jg ∪ {i} or JG := JG ∪ {i} or JH := JH ∪ {i}, depending
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in which part the minimum is attained when computing α.
12: (u, µ) := (u, µ) + α(d, τ), compute multipliers λ(J)
13: }
14: return ((s, δ) is strongly M-stationary for QPCC(β, ρ))

We see that in case when we return a descent direction (d, τ) for the problem
QPCC(β, ρ) at (s, δ) this direction is solution of RQP (β, ρ, J, (s, δ)). Hence, for choosing
α in step 3 of Algorithm 4.1 we can use the formula from line 4 of Procedure 4.1.

Lemma 4.2. Procedure 4.2 is finite.

P r o o f . If either the condition at line 5 or the condition at line 8 is fulfilled, we
terminate the procedure. Thus we assume that this never occurs. Then, by taking into
account that the direction (d, τ) computed in line 7 always is a descent direction, we can
use similar argument as in the proof of [10, Theorem 4.3] to show that the procedure is
finite. �

Remark 4.3. We can easily detect whether the vector b has been chosen properly or
not. We test whether the minimum when computing the step length α in line 10 of
Procedure 4.2 is uniquely attained. If this is not the case, enlarge the corresponding
components of b randomly such that the minimum becomes unique.

The way how we remove an index from J is described in the following procedure.

Procedure 4.3. (Remove index)
1: if (∃i ∈ Jg : λgi < 0)
2: Jg := Jg \ {i}
3: else if (∃i ∈ JG ∩ JH ∩ J̃ tH : λGi < 0)
4: JG := JG \ {i}
5: else if (∃i ∈ JG ∩ JH ∩ J̃ tG : λHi < 0)
6: JH := JH \ {i}
7: else (we switch to a new piece so we need to save the objects)
8: { save the objects corresponding to the old piece:

(st+1, δt+1) := (s, δ), J t+1 := J, λt+1 := λ
9: remove i ∈ JG ∩ JH corresponding to the negative multiplier:

either set JG := JG \ {i} or JH := JH \ {i}
10: eventually redefine some of components of the vector β as follows:

(βGi , β
H
i ) := (0, 0) if Gi, Hi > 0 ∧ i ∈ JG ∩ JH (18)

this can violate the condition (JG ∩ JH) ⊂ I00(s, δ, β)
11: secure the condition (JG ∩ JH) ⊂ I00(s, δ, β):

∀i ∈ JG ∩ JH \ I00(s, δ, β) either set JG := JG \ {i} or JH := JH \ {i}
12: save the objects corresponding to the new piece:

J̃ t+1 := J, βt+1 := β, (t := t+ 1)
13:}
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Note that we call the Procedure 4.3 only in case that there exists a negative multiplier
either to an inequality constraint or to the ith complementarity constraint with i ∈
JG ∩ JH . Hence, at line 9 at least one index i ∈ JG ∩ JH corresponding to a negative
multiplier exists. Moreover, for those i exactly one of the multipliers λGi , λ

H
i is negative

because the case when i ∈ JG ∩ JH and λGi , λ
H
i < 0 is handled by either the branch in

line 3 or the branch in line 5.
Between lines 8 and 12 in Procedure 4.3 we only remove indices from J and so we

always have
J̃ t ⊂ J t (19)

in the sense J̃ tg ⊂ J tg, J̃
t
G ⊂ J tG, J̃

t
H ⊂ J tH . Moreover, we remove indices either from JG

or from JH , but not from both and removed indices all belong to JG ∩ JH . This results
in J tG ∩ J tH ⊂ J̃ tG ∪ J̃ tH , J tG \ J tH ⊂ J̃ tG, J tH \ J tG ⊂ J̃ tH and hence

J tG∪J tH = (J tG \J tH)∪(J tH \J tG)∪(J tG∩J tH) ⊂ J̃ tG∪ J̃ tH ∪(J̃ tG∪ J̃ tH) = J̃ tG∪ J̃ tH ⊂ J tG∪J tH

yielding
J tG ∪ J tH = J̃ tG ∪ J̃ tH .

Remark 4.4. Note that (18) yields following trivial properties of βt for all t = 1, . . .
. . . , N − 1:

βt ∈ B; βt ≤ βt−1; βti = β0
i , i ∈ I or i ∈ C : Gi ≤ 0 ∨Hi ≤ 0. (20)

Lemma 4.5. At every stage of the algorithm the point (s, δ) is feasible for QPCC(β, ρ)
and J is a working set with respect to (β, s, δ).

P r o o f . We prove the assertion by induction with respect to t. At the initialization
step the chosen starting point (s0, δ0) is feasible for QPCC(β0, ρ) and J is a working set
with respect to (β0, s0, δ0). It is easy to see, that in the improvement step the step size α
guarantees that (s, δ) remains feasible and we only add a constraint to J which becomes
active and is linearly independent from the others contained in J . Since removing an
index i ∈ JG ∩ JH does not affect the property of J being a working set, the same
holds obviously true in Procedure 4.2 as long as we do not switch to a new piece in the
Procedure 4.3. Hence the assertion holds true until line 10 of Procedure 4.3 is entered
the first time.

As an induction hypothesis we now assume that at every stage of the algorithm
before we reach line 10 of Procedure 4.3 the tth time the iterate (s, δ) is feasible for
QPCC(β, ρ) and J is a working set with respect to (β, s, δ). Note that the current value
of β is β = βt−1. It is clear that the assertion holds true if we do not actually change β
and hence lets consider the case that

∃(i ∈ C) with Gi, Hi > 0, i ∈ JG ∩ JH and (βGi , β
H
i ) 6= (0, 0). (21)

Consider i as in (21), implying (βG,ti , βH,ti ) = (0, 0) by (18). Note that in the initial-
ization step we set one component of βi, without loss of generality βH,0i , to zero and so
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obviously βHi = 0. Together with Gi > 0 and i ∈ JG ∩ JH we obtain

0 = (1− βGi δ)Gi + (∇Gi)T s ≤ (1− βG,ti δ)Gi + (∇Gi)T s = Gi + (∇Gi)T s
⊥ Hi + (∇Hi)T s = (1− βH,ti δ)Hi + (∇Hi)T s = (1− βHi δ)Hi + (∇Hi)T s = 0

showing feasibility and complementarity of the ith complementarity constraint. But
now it could happen that i ∈ I+0(s, δ, βt) and therefore i /∈ I00(s, δ, βt). This situation
is repaired in line 11 of Procedure 4.3 so that JG ⊂ I0+(s, δ, βt) ∪ I00(s, δ, βt) holds.

Now let us argue that J is a working set after line 11 of Procedure 4.3. Again, take
i as in (21) and assume without loss of generality βHi = 0 and βGi > 0. Since Gi > 0 it
follows that i is removed from JG in line 11 of Procedure 4.3 and we see that the linear
independence requirement of a working set is certainly fulfilled.

Again it is easy to see, that at every stage of the improvement step Procedure 4.1 and
of Procedure 4.2 the point (s, δ) remains feasible for QPCC(β, ρ) and J is a working
set with respect to (β, s, δ), until we reach the next time line 10 in Procedure 4.3. This
completes the induction step and the lemma is proved. �

The following theorem summarizes basic properties of the quantities computed in the
test for optimality stage. Let us yet define the index sets CtG and CtH for t = 1, . . . , N
which will be important for definition of merit functions in the next section by

CtG := J̃ t−1
G ∩ J tG, CtH := C \ CtG for t = 1, . . . , N. (22)

Note that obviously (CtG, C
t
H) ∈ P(C).

Theorem 4.6.

1. Partitioning property of J and its consequences: For all t = 1, . . . , N it holds that(
J̃ t−1
G ∩ J tG

)
∪
(
J̃ t−1
H ∩ J tH

)
= C (23)

and so

CtH ⊂ J̃ t−1
H ∩ J tH , (CtG ∩ Ct+1

H ) ∪ (CtH ∩ Ct+1
G ) ⊂ J tG ∩ J tH . (24)

2. Efficiency property of β: If GiHi > 0, then for all t = 0, . . . , N − 1 we have

βG,ti 6= 0⇒ i /∈ JτH ,∀τ ≤ t, βH,ti 6= 0⇒ i /∈ JτG,∀τ ≤ t. (25)

3. Non-negativity property of multipliers λ: For all t = 1, . . . , N it holds that

λg,ti ≥ 0, ∀i ∈ J tg, λG,ti ≥ 0, ∀i ∈ J tG∩CtH , λH,ti ≥ 0, ∀i ∈ J tH ∩CtG. (26)

4. Feasibility and working set properties of (s, δ) and J : For all t = 0, . . . , N −1
it holds that (st, δt) and (st+1, δt+1) are feasible points for QPCC(βt, ρ) and
QP (βt, ρ, Ct+1

G , Ct+1
H ), that (st+1, δt+1) is also a solution for QP (βt, ρ, Ct+1

G , Ct+1
H )

and that J̃ t is a working set and J t+1 is even an MPEC working set with respect
to (βt, st+1, δt+1).
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P r o o f . 1. First, we show by contraposition that

J̃ t−1
G ∪ J tH = C. (27)

We assume on the contrary that there exists some i ∈ C such that i /∈ J̃ t−1
G ∧ i /∈ J tH .

Since J̃ t−1 is a working set with respect to (βt−1, st−1, δt−1) by Lemma 4.5, we know
J̃ t−1
G ∪ J̃ t−1

H = C and so we have i ∈ J̃ t−1
H . Since we assume i /∈ J tH , the index i was

removed from JH in line 6 of procedure 4.3 in some intermediate stage implying i ∈ J̃ t−1
G ,

a contradiction, and our claim is proved. In a similar way one can show the relation

J̃ t−1
H ∪ J tG = C. (28)

Now, for arbitrary sets A1, A2, A3, A4 it holds that

(A1 ∪A2) ∩ (A3 ∪A4) = (A1 ∩A3) ∪ (A1 ∩A4) ∪ (A2 ∩A3) ∪ (A2 ∩A4). (29)

Assuming A1 ∩A4 ⊂ A2 ∪A3 we obtain

A1∩A4 = (A1∩A4)∩(A2∪A3) = (A1∩A4∩A2)∪(A1∩A4∩A3) ⊂ (A2∩A4)∪(A1∩A3)

and, similarly, by assuming A2∩A3 ⊂ A1∪A4 we conclude A2∩A3 ⊂ (A2∩A4)∪(A1∩A3).
Hence we obtain from (29)

(A1∪A2)∩(A3∪A4) = (A1∩A3)∪(A1∩A4)∪(A2∩A3)∪(A2∩A4) = (A1∩A3)∪(A2∩A4).
(30)

Setting A1 := J̃ t−1
G , A2 := J tH , A3 := J tG, A4 := J̃ t−1

H , and taking into account that
J̃ t−1 and J t are working sets with respect to (βt−1, st−1, δt−1) and with respect to
(βt−1, st, δt) by Lemma 4.5, we have

J tG ∩ J tH ⊂ C = J̃ t−1
G ∪ J̃ t−1

H and J̃ t−1
G ∩ J̃ t−1

H ⊂ C = J tG ∪ J tH

and so we obtain from (27), (28) and (30)

C = C ∩ C = (J̃ t−1
G ∪ J tH) ∩ (J tG ∪ J̃ t−1

H ) = (J̃ t−1
G ∩ J tG) ∪ (J tH ∩ J̃ t−1

H ).

First of two formulas in (24) follows immediately from definition of CtH and (23).
To show the second one we use the first one that gives us CtG ⊂ J̃ t−1

G ∩ J tG ⊂ J tG
and Ct+1

H ⊂ J̃ tH ∩ J
t+1
H ⊂ J̃ tH ⊂ J tH and so CtG ∩ C

t+1
H ⊂ J tG ∩ J tH . Analogously,

CtH ∩ C
t+1
G ⊂ J tG ∩ J tH .

2. Fix any i ∈ C with Gi, Hi > 0 and assume first that βG,ti > 0. From Initialization
step and the monotonicity of β we conclude that βH,τi = 0,∀τ . Now assume that there
is some τ ≤ t with i ∈ JτH and let denote by τ̄ the smallest index with this property. It
follows that τ̄ > 0 and, by using 1.,

i /∈ J τ̄−1
H ⇒ i /∈ J̃ τ̄−1

H ⇒ i /∈ C τ̄H ⇒ i ∈ C τ̄G ⇒ i ∈ J τ̄G.

From this we conclude i ∈ J τ̄G ∩ J τ̄H therefore βG,τ̄i = 0 and consequently βG,ti = 0, a
contradiction. Hence, i /∈ JτH ,∀τ ≤ t. The case βH,ti > 0 can be treated in a similar
manner.
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3. This follows easily from Procedure 4.3. If we switch to a new piece then the sets
{i ∈ Jg |λgi < 0}, {i ∈ JG ∩ JH ∩ J̃ t−1

H |λGi < 0}, {i ∈ JG ∩ JH ∩ J̃ t−1
G |λHi < 0} are

empty and therefore the assertion follows by using the relations CtH ⊂ J̃ t−1
H ∩ J tH and

CtG = J̃ t−1
G ∩ J tG.

4. Feasibility of (st, δt) and (st+1, δt+1) for QPCC(βt, ρ) is an immediate consequence
of Lemma 4.5. Since Ct+1

G ⊂ J̃ tG ∩ J
t+1
G and Ct+1

H ⊂ J̃ tH ∩ J
t+1
H , feasibility of the pair

(st+1, δt+1) for EQP (βt, ρ, J t+1) and feasibility of (st, δt) for EQP (βt, ρ, J̃ t), together
with feasibility of both pairs for QPCC(βt, ρ), imply their feasibility for QP (βt, ρ, Ct+1

G ,
Ct+1
H ). Since

Bst+1 +∇f +
∑
i∈E λ

h,t+1
i ∇hi +

∑
i∈Jt+1

g \{0} λ
g,t+1
i ∇gi

−
∑
i∈Jt+1

G
λG,t+1
i ∇Gi −

∑
i∈Jt+1

H
λH,t+1
i ∇Hi = 0 (31)

ρ(δt+1 + 1)−
∑
i∈E λ

h,t+1
i hi −

∑
i∈Jt+1

g \{0} λ
g,t+1
i βg,ti gi

+
∑
i∈Jt+1

G
λG,t+1
i βG,ti Gi +

∑
i∈Jt+1

H
λH,t+1
i βH,ti Hi = 0 if 0 /∈ J t+1

g , (32)

J t+1
G = Ct+1

G ∪ (J t+1
G \ Ct+1

G ) = Ct+1
G ∪ (J t+1

G ∩ Ct+1
H ), J t+1

H = Ct+1
H ∪ (J t+1

H \ Ct+1
H ) =

Ct+1
H ∪ (J t+1

H ∩Ct+1
G ), and the previous property holds, the point (st+1, δt+1) fulfills the

KKT conditions for QP (βt, ρ, Ct+1
G , Ct+1

H ) with multipliers λt+1 and is therefore also a
solution by convexity of the problem.

The statement that J t+1 is an MPEC working set with respect to (βt, st+1, δt+1)
follows from the same arguments as used in the proof of [10, Theorem 4.3]. �

4.4. Finiteness of Algorithm 4.1

For a given working set J let us denote by AJ the matrix with rows

(∇hi)T , i ∈ E; (∇gi)T , i ∈ Jg \ {0}; (∇Gi)T , i ∈ JG; (∇Hi)T , i ∈ JH .

Further, for every working set J we denote by bJ the vector

(hi, i ∈ E; gi, i ∈ Jg \ {0};Gi, i ∈ JG;Hi, i ∈ JH)T

and for every β ∈ B we denote by bβJ the vector(
hi, i ∈ E;βgi gi, i ∈ Jg \ {0};β

G
i Gi, i ∈ JG;βHi Hi, i ∈ JH

)T
.

Note that ‖bJ‖, ‖bβJ‖ ≤ Cb :=
(∑

i∈E h
2
i +

∑
i∈I g

2
i +

∑
i∈C(G2

i +H2
i )
)1/2. Let us de-

note by κ the number κ := max ‖A+
J ‖, where maximum is taken over all working sets

J occurring in Algorithm 4.1 and A+
J denotes the pseudo-inverse of AJ . Finally, we

define the constants C̄d := 2κCb and C̄s := max{4‖∇f‖/λ(B), 2(f̄/λ(B))1/2}, where
f̄ := max‖s‖≤C̄d

1
2s
TBs+ (∇f)T s and λ(B) denotes the smallest eigenvalue of B.

Lemma 4.7. 1. At every stage of the Algorithm 4.1 we have ‖s‖ ≤ C̄s and δ ≤ 1.
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2. If

ρ ≥ C̄ρ :=
2

(1 + δ)2

((
1
2
‖B‖C̄d + ‖B‖C̄s + ‖∇f‖

)
C̄d +

1
2λ(B)

(‖B‖C̄s + ‖∇f‖)2

)
then at every subsequent stage the solution (d, τ) of RQP (β, ρ, J, (s, δ)) fulfills
τ ≤ 0 and the case τ = 0 is possible only if every feasible point (d̂, τ̂) for
RQP (β, ρ, J, (s, δ)) fulfills τ̂ = 0.

P r o o f . 1. We first show the following claim: Whenever (ŝ, δ̂) is a solution of EQP (β, ρ, J)
with δ̂ ≤ 1 then ‖ŝ‖ ≤ C̄s. This is done by contraposition. Assume on the contrary
that (ŝ, δ̂) is a solution of some problem EQP (β, ρ, J) with δ̂ ≤ 1 and ‖ŝ‖ > C̄s. Then
ŝ fulfills AJ ŝ = −bJ + δ̂bβJ and hence there exists a point (s̃, δ̂) feasible for EQP (β, ρ, J)
with ‖s̃‖ ≤ κ‖ − bJ + δ̂bβJ‖ ≤ 2κCb = C̄d. By the definitions of C̄s and f̄ together with
‖ŝ‖ > C̄s we obtain

1
2
ŝTBŝ+ (∇f)T ŝ ≥ 1

2
λ(B)‖ŝ‖2 − ‖∇f‖‖ŝ‖ ≥ 1

4
λ(B)‖ŝ‖2 ≥ f̄ ≥ 1

2
s̃TBs̃+ (∇f)T s̃

and by adding ρ(1/2δ̂2 + δ̂) to both sides we conclude that (s̃, δ̂) is also a solution of
EQP (β, ρ, J), which is not possible due to the strict convexity of the objective. Hence
our claim is proved. Now the first assertion follows by induction. At the initialization
step we have ‖s‖ = 0 ≤ C̄s and δ = 1. Now assume as the induction hypothesis that
we are at a point (s, δ) with ‖s‖ ≤ C̄s and δ ≤ 1. We shall show that the next iterate
(s+, δ+) also fulfills ‖s+‖ ≤ C̄s and δ+ ≤ 1. We move away from (s, δ) in some direction
(d, τ) pointing to the solution (ŝ, δ̂) of some problem EQP (β, ρ, J), but only if τ ≤ 0
because if τ > 0 then we make a restart. Hence δ̂ ≤ δ ≤ 1 and from the claim just proved
we conclude ‖ŝ‖ ≤ C̄s. Now the induction argument follows from the observation that
the next iterate (s+, δ+) is on the line segment connecting (s, δ) and (ŝ, δ̂).

2. We first show the following claim by contraposition: If ρ ≥ C̄ρ then at every stage
of Algorithm 4.1 the solution (d, τ) of the problem RQP (β, ρ, J, (s, δ)) satisfies τ < 0
whenever there is a point (d̂, τ̂) feasible for RQP (β, ρ, J, (s, δ)) with τ̂ 6= 0. Assume on
the contrary that a solution (d̄, τ̄) of some problem RQP (β, ρ, J, (s, δ)) fulfills τ̄ ≥ 0.
Note that by the first part of the lemma we have ‖s‖ ≤ C̄s and δ ≤ 1. The point (d̂, τ̂)
fulfills AJ d̂ = bβJ τ̂ , showing AJ(− d̂

τ̂ (δ + 1)) = −(δ + 1)bβJ . Hence there exists a point
(d̃,−(δ+1)) feasible for RQP (β, ρ, J, (s, δ)) satisfying ‖d̃‖ ≤ κ‖(δ+1)bβJ‖ ≤ 2κCb = C̄d.
Denoting q(d) := 1

2d
TBd+ (Bs+∇f)T d then

min
d∈Rn

q(d) = −1
2

(Bs+∇f)TB−1(Bs+∇f) ≥ − 1
2λ(B)

(
‖B‖C̄s + ‖∇f‖

)2
.

On the other hand, we have q(d̃) ≤ ( 1
2‖B‖C̄d + ‖B‖C̄s + ‖∇f‖)C̄d and therefore

ρ ≥ C̄ρ ≥
2

(1 + δ)2
((q(d̃)− min

d∈Rn
q(d))).
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Hence q(d̃) − ρ (1+δ)2

2 ≤ mind∈Rn q(d) ≤ q(d̄) + ρ
(
τ̄2

2 + (1 + δ)τ̄
)

, where we have taken

also in account τ̄ ≥ 0. On the other hand, since (d̄, τ̄) is the unique global solution of
RQP (β, ρ, J, (s, δ)) and (d̄, τ̄) 6= (d̃,−(δ + 1)) we obtain the contradiction

q(d̄) + ρ

(
τ̄2

2
+ (1 + δ)τ̄

)
< q(d̃)− ρ (1 + δ)2

2
.

Hence our claim is proved and the assertion of the lemma follows easily from this claim.
�

Theorem 4.8. Algorithm 4.1 is finite.

P r o o f . By contraposition, let us assume that algorithm 4.1 is not finite. We already
showed that the procedures 4.1 and 4.2 are finite.

First we show that ρ must tend to infinity. If ρ remains finite it is changed only
finitely many times and hence it is constant from a certain stage. But for constant
ρ, β can obviously change only finitely many times. Hence β also becomes constant
from a certain stage. But then we can enter the Test for optimality step only once for
each working set J , because objective function of QPCC(β, ρ) is strictly decreasing.
And since there are only finitely many working sets J we must stop the algorithm in
contradiction to our assumption. Hence ρ must tend to infinity.

Because of Lemma 4.7 we know that for ρ ≥ C̄ρ the computed search directions
(d, τ) fulfill τ ≤ 0. Hence the case that we increase ρ because of τ > 0 can occur
only finitely many often and we increase ρ infinitely many times because we found a
sequence (sj , δj) of strongly M-stationary solutions (s, δ) for QPCC(βj , ρj) with δj ≥ ζ
and the non-degeneracy condition (14) is not fulfilled. Without lost of generality we
can assume that ρj ≥ C̄ρ. By passing to a subsequence we can assume that the MPEC
working set Jj corresponding to the strongly M-stationary solution (sj , δj) is the same
for every j, Jj = J . At the strongly M-stationary solution (sj , δj) we know that (0, 0)
is the solution of RQP (βj , ρj , J, (sj , δj)) and by Lemma 4.7 we know that all feasible
points (d, τ) of RQP (βj , ρj , J, (sj , δj)) fulfill τ = 0. But from this we can conclude from
the fundamental theorem of linear algebra that (12), (13) has a solution ηj which must
be unique. Now, let us consider the multipliers λj fulfilling the first order optimality
conditions (9), (10). Since ρj(δj + 1) → ∞ and βj ∈ B we conclude ‖λj‖ → ∞ and by
passing to a subsequence once more we can assume λj/‖λj‖ → λ. Then we conclude
from (9) that∑

i∈E
λhi∇hi +

∑
i∈Jg\{0}

λgi∇gi −
∑
i∈JG

λGi ∇Gi −
∑
i∈JH

λHi ∇Hi = 0

and, since λj was the multiplier to a strongly M-stationary solution, we have λgi ≥ 0, i ∈
Jg\{0}, λGi , λHi ≥ 0, i ∈ JG∩JH . Now consider σj := −

∑
i∈E λ

h
i hi−

∑
i∈Jg\{0} λ

g
i β

g
i,jgi+∑

i∈JG λ
G
i β

G
i,jGi +

∑
i∈JH λ

H
i β

H
i,jHi. Since J is a working set with respect to (βj , sj , δj)

it follows that σj 6= 0 and hence λ/σj = ηj . Hence we see that ηj fulfills the degeneracy
condition (14), a contradiction. �

The following theorem summarizes basic properties of the quantities computed in the
Algorithm 4.1.
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Theorem 4.9. If the Algorithm 4.1 terminates with a strongly M-stationary solution
(s, δ) with δ < ζ, then the following properties hold:

1. Monotonicity property of δ: For all t = 1, . . . , N it holds that

1 ≥ δt−1 ≥ δt ≥ 0. (33)

2. Boundedness of the counter of the pieces t: There exists a constant Ct, dependent
only on number of constraints such that

N ≤ Ct. (34)

3. Signs of the final multipliers λ:

λg,Ni ≥ 0, ∀i ∈ JNg , λG,Ni , λH,Ni ≥ 0, ∀i ∈ JNG ∩ JNH . (35)

P r o o f . 1. This follows easily from the fact that it is prevented for the algorithm to
reach the line where setting (s, δ) := (s, δ) + α(d, τ) occurs with τ > 0.

2. Since whenever the parameter ρ is increased the algorithm goes to the step 1
and thus the counter t of the pieces is reset to 0, it follows that after the last time the
algorithm enters step 1 we keep ρ constant. With a fixed vector β, it is obvious that the
algorithm never returns to the same piece implying that the maximum of switches to a
new piece is 2|C|. Since we only redefine β when there is i with Gi, Hi > 0 and we set
(βGi , β

H
i ) := (0, 0), it follows that β changes at most |{i ∈ C |Gi, Hi > 0}| times. Thus,

the total number of switches to a new piece is certainly bounded by |C|2|C|.
Property 3. follows from the fact that we assume that we stop at a strongly M-

stationary solution. �

5. AN SQP ALGORITHM FOR MPCC

An outline of the algorithm is as follows.

Algorithm 5.1. (Solving the MPCC)
1: Initialization:

Select a starting point x0 ∈ Rn together with a positive definite n× n matrix B0

and a parameter ρ0 > 0 and choose constants ζ ∈ (0, 1) and ρ̄ > 1.
Select positive penalty parameters σ−1 = (σh−1, σ

g
−1, σ

C
−1).

Set the iteration counter k := 0.
2: Solve the Auxiliary problem:

Run Algorithm 4.1 with data ζ, ρ̄, ρ := ρk, B := Bk,∇f := ∇f(xk), hi := hi(xk),
∇hi := ∇hi(xk), i ∈ E, etc.

If the Algorithm 4.1 stops because the degeneracy condition is fulfilled or because
no working set was found, stop the Algorithm 5.1 with an error message.

If the final iterate sN is zero, stop the Algorithm 5.1 and return xk as a solution.
3: Next iterate:

Compute new penalty parameters σk.
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Set xk+1 := xk+sk where sk is a point on the polygonal line connecting the points
s0, s1, . . . , sN such that an appropriate merit function depending on σk
is decreased.

Set ρk+1 := ρ, the final value of ρ in Algorithm 4.1.
Update Bk to get positive definite matrix Bk+1.
Set k := k + 1 and go to step 2.

Remark 5.1. We terminate the Algorithm 5.1 only in the following two cases. In
the first case no sufficient reduction of the violation of the constraints can be achieved
or no working set can be found. The second case will be satisfied only by chance
when the current iterate is a strongly M-stationary solution. Normally, this algorithm
produces an infinite sequence of iterates and we must include a stopping criterion for
convergence. Such a criterion could be that the violation of the constraints at some
iterate is sufficiently small,

max
{

max
i∈I

(gi(xk))+,max
i∈E
|hi(xk)|,max

i∈C
|min{Gi(xk), Hi(xk)}|

}
≤ εC ,

and the expected decrease in our merit function is sufficiently small,

(sNkk )TBksNkk ≤ ε1,∑
i∈E

λh,Nki,k |hi(xk)|+
∑
i∈I

λg,Nki,k |gi(xk)|+
∑
i∈C

(
λG,Nki,k |Gi(xk)|+ λH,Nki,k |Hi(xk)|

)
≤ ε2,

see Proposition 5.3 below.

5.1. The next iterate

Let the outcome of Algorithm 4.1 at the kth iterate be denoted by

(stk, δ
t
k), λtk, J

t
k, J̃

t
k, β

t
k for t = 0, . . . , Nk

and recall that the sets CtG,k and CtH,k are given by

CtG,k := J̃ t−1
G,k ∩ J

t
G,k, CtH,k := C \ CtG,k for t = 1, . . . , Nk.

The new penalty parameters are computed by

σhi,k =

{
ξ2λ̃

h
i,k if σhi,k−1 < ξ1λ̃

h
i,k,

σhi,k−1 else,
σgi,k =

{
ξ2λ̃

g
i,k if σgi,k−1 < ξ1λ̃

g
i,k,

σgi,k−1 else,
(36)

σCi,k =

{
ξ2 max{λ̃Gi,k, λ̃Hi,k} if σCi,k−1 < ξ1 max{λ̃Gi,k, λ̃Hi,k},
σCi,k−1 else,

where

λ̃hi,k = max |λh,ti,k |, λ̃gi,k = max |λg,ti,k|, λ̃Gi,k = max |λG,ti,k |, λ̃Hi,k = max |λH,ti,k | (37)

with maximum being taken over t ∈ {1, . . . , Nk} and 1 < ξ1 < ξ2. Note that this choice
of σk ensures

σhk ≥ λ̃hk , σ
g
k ≥ λ̃

g
k, σ

C
k ≥ max{λ̃Gk , λ̃Hk }. (38)



An SQP method for mathematical programs with complementarity constraints 189

5.1.1. The merit function

We are looking for the next iterate at the polygonal line connecting the points s0
k, s

1
k, . . .

. . . , sNkk . For each line segment [st−1
k , stk], t = 1, . . . , Nk we consider the functions

φtk(α) := f(xk + s) +
∑
i∈E

σhi,k|hi(xk + s)|+
∑
i∈I

σgi,k(gi(xk + s))+

+
∑

i∈CtG,k

σCi,k(|Gi(xk + s)| − (Hi(xk + s))−)

+
∑

i∈CtH,k

σCi,k(|Hi(xk + s)| − (Gi(xk + s))−),

φ̂tk(α) := f +∇fT s+
1
2
sTBks+

∑
i∈E

σhi,k|hi +∇hTi s|+
∑
i∈I

σgi,k(gi +∇gTi s)+

+
∑

i∈CtG,k

σCi,k(|Gi +∇GTi s| − (Hi +∇HT
i s)
−)

+
∑

i∈CtH,k

σCi,k(|Hi +∇HT
i s| − (Gi +∇GTi s)−),

where s = (1 − α)st−1
k + αstk and f = f(xk), ∇f = ∇f(xk), hi = hi(xk),∇hi =

∇hi(xk), i ∈ E, etc. Obviously the functions φ̂tk are first order approximations of φtk,
that is |φtk(α)− φ̂tk(α)| = o(‖(1− α)st−1

k + αstk‖).

Lemma 5.2. For every t ∈ {1, . . . , Nk} the function φ̂tk is convex.

P r o o f . Obviously φ̂tk is convex because it is sum of convex functions. �

We state now the main result of this subsection. For the sake of simplicity we omit
the iteration index k in this part.

Proposition 5.3. For every t ∈ {1, . . . , N}

φ̂t(1)− φ̂1(0) ≤ −
t∑

τ=1

1
2

(sτ − sτ−1)TB(sτ − sτ−1) (39)

+(δt − 1)

(∑
i∈E

(σhi − λ̃hi )|hi|+
∑
i∈I

(σgi − λ̃
g
i )β

g,0
i (gi)+

−
∑
i∈C

(σCi −max{λ̃Gi , λ̃Hi })
(
βG,0i (Gi)− + βH,0i (Hi)−

))

≤ −
t∑

τ=1

1
2

(sτ − sτ−1)TB(sτ − sτ−1) ≤ 0. (40)

In order to prove this proposition we need the following lemma.
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Lemma 5.4. For every t ∈ {1, . . . , N − 1}

φ̂t+1(0)− φ̂t(1) = −
∑
i∈C̃tH

σCi (Hi + (∇Hi)T st)+ −
∑
i∈C̃tG

σCi (Gi + (∇Gi)T st)+ ≤ 0, (41)

where
C̃tH := CtH ∩ Ct+1

G and C̃tG = CtG ∩ Ct+1
H . (42)

P r o o f . By the definition of φ̂ we have

φ̂t+1(0)− φ̂t(1) =
∑
i∈C̃tH

σCi
(
(Gi + (∇Gi)T st)+ − (Hi + (∇Hi)T st)+

)
+
∑
i∈C̃tG

σCi
(
(Hi + (∇Hi)T st)+ − (Gi + (∇Gi)T st)+

)
and thus the result follows if we show

(Gi + (∇Gi)T st)+ = 0 for i ∈ C̃tH , (43)
(Hi + (∇Hi)T st)+ = 0 for i ∈ C̃tG. (44)

Fix any i ∈ C̃tH . From the second part of (24) we obtain i ∈ J tG ∩ J tH and consequently
Gi + (∇Gi)T st = βG,t−1

i δtGi. Hence (43) follows if we show

βG,t−1
i δtGi ≤ 0 for i ∈ C̃tH . (45)

This holds obviously true if Gi ≤ 0 or if βG,t−1
i = 0. If Gi > 0 and Hi ≤ 0 then

βG,0i = 0 and consequently βG,t−1
i = 0 showing the validity of (45). In the remaining

case Gi, Hi > 0, βG,t−1
i > 0 we conclude from the first part of (25) that i ∈ JτG,∀τ ≤

t − 1 implying i ∈ CtG, contradicting i ∈ CtH . Thus (45) and consequently (43) hold.
Equation (44) can be shown by using similar arguments with G and H interchanged.
This completes the proof. �

P r o o f . [Proof of Proposition 5.3] Consider any t ∈ {1, . . . , N}. Then we have

φ̂t(1)− φ̂t(0) = 1/2(st)TBst − 1/2(st−1)TBst−1 + (∇f)T (st − st−1) (46)

+
∑
i∈E

(
σhi (|hi + (∇hi)T st| − |hi + (∇hi)T st−1|)

)
+
∑
i∈I

(
σgi ((gi + (∇gi)T st)+ − (gi + (∇gi)T st−1)+)

)
+
∑
i∈CtG

σCi
(
(|Gi + (∇Gi)T st| − |Gi + (∇Gi)T st−1|)

+(−(Hi + (∇Hi)T st)− + (Hi + (∇Hi)T st−1)−)
)

+
∑
i∈CtH

σCi
(
(|Hi + (∇Hi)T st| − |Hi + (∇Hi)T st−1|)

+(−(Gi + (∇Gi)T st)− + (Gi + (∇Gi)T st−1)−)
)
.
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Using that st is the solution of EQP (βt−1, ρ, J t) and multiplying the first order
optimality condition (9) by (st − st−1)T yields

(st − st−1)T
(
Bst +∇f +

∑
i∈E

λh,ti ∇hi +
∑
i∈I

λg,ti ∇gi −
∑
i∈C

(λG,ti ∇Gi + λH,ti ∇Hi)

)
= 0.

(47)
Subtracting the expression on the left hand side from the right hand side of (46) and
taking into account the identity

1/2(st)TBst − 1/2(st−1)TBst−1 − (st − st−1)TBst = −1/2(st − st−1)TB(st − st−1)

we obtain

φ̂t(1)− φ̂t(0) =−1
2

(st − st−1)TB(st − st−1) (48)

+
∑
i∈E

(
σhi (|hi+(∇hi)T st|−|hi+(∇hi)T st−1|)−λh,ti (∇hi)T (st−st−1)

)
+
∑
i∈I

(
σgi ((gi+(∇gi)T st)+−(gi+(∇gi)T st−1)+)−λg,ti (∇gi)T (st−st−1)

)
+
∑
i∈CtG

Di(t, t) +
∑
i∈CtH

Ei(t, t),

where for all 1 ≤ t1 ≤ t2 ≤ N and every i ∈ C we denote

Di(t1, t2):=σCi
(
|Gi + (∇Gi)T st2 | − |Gi + (∇Gi)T st1−1|

)
+

t2∑
t=t1

λG,ti (∇Gi)T (st − st−1)

+ σCi
(
−(Hi+(∇Hi)T st2)−+(Hi + (∇Hi)T st1−1)−

)
+

t2∑
t=t1

λH,ti (∇Hi)T (st−st−1),

Ei(t1, t2):=σCi
(
|Hi + (∇Hi)T st2 | − |Hi + (∇Hi)T st1−1|

)
+

t2∑
t=t1

λH,ti (∇Hi)T (st − st−1)

+ σCi
(
−(Gi+(∇Gi)T st2)−+(Gi + (∇Gi)T st1−1)−

)
+

t2∑
t=t1

λG,ti (∇Gi)T (st−st−1).
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Summing up (48) from 1 to t and taking into account Lemma 5.4 we obtain

φ̂t(1)− φ̂1(0) =
t∑

τ=1

(
φ̂τ (1)− φ̂τ (0)

)
+

t−1∑
τ=1

(
φ̂τ+1(0)− φ̂τ (1)

)
(49)

=−
t∑

τ=1

1
2

(sτ − sτ−1)TB(sτ − sτ−1)

+
∑
i∈E

(
σhi (|hi+(∇hi)T st|−|hi+(∇hi)T s0|)−

t∑
τ=1

λh,τi (∇hi)T (sτ−sτ−1)

)

+
∑
i∈I

(
σgi ((gi+(∇gi)T st)+−(gi+(∇gi)T s0)+)−

t∑
τ=1

λg,τi (∇gi)T (sτ−sτ−1)

)

+
t∑

τ=1

∑
i∈CτG

Di(τ, τ) +
∑
i∈CτH

Ei(τ, τ)


−
t−1∑
τ=1

∑
i∈C̃τH

σCi (Hi + (∇Hi)T sτ )+ +
∑
i∈C̃τG

σCi (Gi + (∇Gi)T sτ )+

 .

We claim that for every i ∈ C we have∑
τ∈{1,...,t}:i∈CτG

Di(τ, τ)−
∑

τ∈{1,...,t−1}:i∈C̃τG

σCi (Gi + (∇Gi)T sτ )+

+
∑

τ∈{1,...,t}:i∈CτH

Ei(τ, τ)−
∑

τ∈{1,...,t−1}:i∈C̃τH

σCi (Hi + (∇Hi)T sτ )+

≤ −(σCi −max{λ̃Gi , λ̃Hi })(δt − 1)
(
βG,0i (Gi)− + βH,0i (Hi)−

)
, (50)

with λ̃ given by (37). In order to prove this claim, fix i ∈ C and consider τ ≤ τ̄ such
that i ∈ CτG,∀τ : τ ≤ τ ≤ τ̄ and either τ = 1 or i ∈ Cτ−1

H . We will first show that

Di(τ , τ̄)− σCi (Gi + (∇Gi)T sτ̄ )+ ≤ D̂i(τ , τ̄) (51)

and
Di(τ , τ̄) ≤ D̃i(τ , τ̄), (52)

where for all 1 ≤ t1 ≤ t2 ≤ N and every i ∈ C we define

D̂i(t1, t2)

:= (σCi − λ̃Gi )(βG,t2i δt2−βG,t1−1
i δt1−1)|Gi|−(σCi − λ̃Hi )(βH,t2i δt2−βH,t1−1

i δt1−1)(Hi)−,
D̃i(t1, t2)

:= (σCi −λ̃Gi )(βG,t2−1
i δt2−βG,t1−1

i δt1−1)|Gi| − (σCi −λ̃Hi )(βH,t2i δt2−βH,t1−1
i δt1−1)(Hi)−.
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Indeed, since the point (sτ̄ , δτ̄ ) is feasible for the problem QPCC(βτ̄ , ρ) and (sτ−1, δτ−1)
is feasible for QPCC(βτ−1, ρ) by Theorem 4.6(4.), we obtain

− (Hi + (∇Hi)T sτ̄ )−≤−βH,τ̄i δτ̄ (Hi)−, −(Hi + (∇Hi)T sτ−1)−≤−βH,τ−1
i δτ−1(Hi)−

(53)
and we claim that in fact one has

(Hi + (∇Hi)T sτ−1)− = β
H,τ−1
i δτ−1(Hi)−. (54)

This follows easily from (15) when τ = 1 and in case when i ∈ Cτ−1
H we have i ∈ Jτ−1

H

by virtue of (24) and the claimed equality (54) follows since either βH,τ−1
i = β

H,τ−2
i or

β
H,τ−1
i = 0.

Now, using that (sτ , δτ ) is a solution for the problem QP (βτ−1, ρ, CτG, C
τ
H) and

(sτ−1, δτ−1) is feasible for the problem QPCC(βτ−1, ρ) for τ = τ , . . . , τ̄ by Theorem
4.6(4.), together with λH,τi ≥ 0 if i ∈ JτH by (26) and λH,τi = 0 if i 6∈ JτH , we obtain

λH,τi

(
(1−βH,τ−1

i δτ )Hi+(∇Hi)T sτ
)

=0, λH,τi

(
(1βH,τ−1

i δτ−1)Hi+(∇Hi)T sτ−1
)
≥0.

Rearranging and summing up from τ to τ̄ yields

τ̄∑
τ=τ

λH,τi (∇Hi)T (sτ − sτ−1) ≤
τ̄∑

τ=τ

λH,τi (βH,τ−1
i δτ − βH,τ−1

i δτ−1)Hi

≤
τ̄∑

τ=τ

λH,τi (βH,τ−1
i δτ − βH,τ−1

i δτ−1)(Hi)−

≤ λ̃Hi (Hi)−
τ̄∑

τ=τ

(βH,τi δτ − βH,τ−1
i δτ−1)

= λ̃Hi (βH,τ̄i δτ̄ − βH,τ−1
i δτ−1)(Hi)−,

where we have used δτ−1 − δτ ≥ 0 and βH,τ−1 ≥ βH,τ , and together with (53) and (54)
we obtain

σCi (−(Hi + (∇Hi)T sτ̄ )− + (Hi + (∇Hi)T sτ−1)−) +
τ̄∑

τ=τ

λH,τi (∇Hi)T (sτ − sτ−1)

≤ −(σCi − λ̃Hi )(βH,τ̄i δτ̄ − βH,τ−1
i δτ−1)(Hi)−. (55)

By feasibility of the point (sτ̄ , δτ̄ ) for the problem QPCC(βτ̄ , ρ) we have

− (Gi + (∇Gi)T sτ̄ )− ≤ −βG,τ̄i δτ̄ (Gi)− ≤ βG,τ̄i δτ̄ |Gi|. (56)

Further, feasibility of the points (sτ−1, δτ−1) and (sτ , δτ ) for the problem QP (βτ−1, ρ,
CτG, C

τ
H) by Theorem 4.6(4.), together with i ∈ CτG yields

Gi + (∇Gi)T sτ−1 = βG,τ−1
i δτ−1Gi, Gi + (∇Gi)T sτ = βG,τ−1

i δτGi (57)
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for all τ satisfying τ ≤ τ ≤ τ̄ . By multiplying with λG,τi and summing up we obtain

τ̄∑
τ=τ

λG,τi (∇Gi)T (sτ − sτ−1)

=
τ̄∑

τ=τ

λG,τi (βG,τ−1
i δτ − βG,τ−1

i δτ−1)Gi

≤ −
τ̄∑

τ=τ

|λG,τi |(β
G,τ−1
i δτ − βG,τ−1

i δτ−1)|Gi|

≤ −
τ̄∑

τ=τ

λ̃Gi (βG,τ−1
i δτ − βG,τ−1

i δτ−1)|Gi|

≤


−

τ̄∑
τ=τ

λ̃Gi (βG,τi δτ − βG,τ−1
i δτ−1)|Gi| = −λ̃Gi |Gi|(β

G,τ̄
i δτ̄ − βG,τ−1

i δτ−1)

−λ̃Gi |Gi|
( τ̄−1∑
τ=τ

(βG,τi δτ − βG,τ−1
i δτ−1) + (βG,τ̄−1

i δτ̄ − βG,τ̄−1
i δτ̄−1)

)
= −λ̃Gi |Gi|(β

G,τ̄−1
i δτ̄ − βG,τ−1

i δτ−1).

Together with the bound (56) and the bounds (57) with τ = τ and τ = τ̄ , respectively,
we deduce that

σCi (−(Gi + (∇Gi)T sτ̄ )− − |Gi + (∇Gi)T sτ−1|) +
τ̄∑

τ=τ

λG,τi (∇Gi)T (sτ − sτ−1)

≤ (σCi − λ̃Gi )(βG,τ̄i δτ̄ − βG,τ−1
i δτ−1)|Gi|.

and

σCi (|Gi + (∇Gi)T sτ̄ | − |Gi + (∇Gi)T sτ−1|) +
τ̄∑

τ=τ

λG,τi (∇Gi)T (sτ − sτ−1)

≤ (σCi − λ̃Gi )(βG,τ̄−1
i δτ̄ − βG,τ−1

i δτ−1)|Gi|.

By combining these inequalities with (55) and taking into account the identity |Gi +
(∇Gi)T sτ̄ | = (Gi + (∇Gi)T sτ̄ )+ − (Gi + (∇Gi)T sτ̄ )−, the claimed estimates (51) and
(52) follow.

It is easy to see that the set {1, . . . , t} ∩ {τ | i ∈ CτG} can be subdivided into disjoint
sets Tj,i = {τ j,i, . . . , τ̄j,i}, j = 1, . . . , Ni where for the starting index τ j,i of each of

these sets holds either τ j,i = 1 or i ∈ C
τj,i−1

H and for the final index τ̄j,i of each of
these sets holds either τ̄j,i = t or i ∈ C

τ̄j,i+1
H . Obviously we have i ∈ CτG ∀τ ∈ Tj,i

and from the definitions it follows that Di(τ j,i, τ̄j,i) =
∑τ̄j,i
τ=τj,i

Di(τ, τ), D̂i(τ j,i, τ̄j,i) =∑τ̄j,i
τ=τj,i

D̂i(τ, τ) and D̃i(τ j,i, τ̄j,i) =
∑τ̄j,i−1
τ=τj,i

D̂i(τ, τ) + D̃i(τ̄j,i, τ̄j,i). Further we have

{τ ∈ {1, . . . , t− 1} : i ∈ C̃τG} =

{
{τ̄1,i, . . . , τ̄Ni−1,i} if τ̄Ni,i = t,
{τ̄1,i, . . . , τ̄Ni,i} if τ̄Ni,i < t.
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Hence, if τ̄Ni,i = t we obtain

∑
τ∈{1,...,t}:i∈CτG

Di(τ, τ)−
∑

τ∈{1,...,t−1}:i∈C̃τG

σCi (Gi + (∇Gi)T sτ )+ (58)

=
Ni−1∑
j=1

 τ̄j,i∑
τ=τj,i

Di(τ, τ)− σCi (Gi + (∇Gi)T sτ̄j,i)+

+
τ̄Ni,i∑

τ=τNi,i

Di(τ, τ)

=
Ni−1∑
j=1

(
Di(τ j,i, τ̄j,i)− σCi (Gi + (∇Gi)T sτ̄j,i)+

)
+Di(τNi,i, τ̄Ni,i)

≤
Ni−1∑
j=1

D̂i(τ j,i, τ̄j,i) + D̃i(τNi,i, τ̄Ni,i) =
∑

τ∈{1,...,t−1}:i∈CτG

D̂i(τ, τ) + D̃i(t, t)

and in case when τ̄Ni,i < t we have

∑
τ∈{1,...,t}:i∈CτG

Di(τ, τ)−
∑

τ∈{1,...,t−1}:i∈C̃τG

σCi (Gi + (∇Gi)T sτ )+ (59)

=
Ni∑
j=1

 τ̄j,i∑
τ=τj,i

Di(τ, τ)− σCi (Gi + (∇Gi)T sτ̄j,i)+


≤

Ni∑
j=1

D̂i(τ j,i, τ̄j,i) =
∑

τ∈{1,...,t}:i∈CτG

D̂i(τ, τ).

Similar arguments show that

∑
τ∈{1,...,t}:i∈CτH

Ei(τ, τ)−
∑

τ∈{1,...,t−1}:i∈C̃τH

σCi (Hi + (∇Hi)T sτ )+ (60)

≤

{∑
τ∈{1,...,t}:i∈CτH

Êi(τ, τ) if τ̄Ni,i = t,∑
τ∈{1,...,t−1}:i∈CτH

Êi(τ, τ) + Ẽi(t, t) if τ̄Ni,i < t,

where Êi and Ẽi are defined analogously to D̂i and D̃i, in particular

Êi(τ, τ) := (σCi −λ̃Hi )(βH,τi δτ−βH,τ−1
i δτ−1)|Hi|−(σCi −λ̃Gi )(βG,τi δτ−βG,τ−1

i δτ−1)(Gi)−,

Ẽi(τ, τ) := (σCi −λ̃Hi )(βH,τ−1
i δτ−βH,τ−1

i δτ−1)|Hi|−(σCi −λ̃Gi )(βG,τi δτ−βG,τ−1
i δτ−1)(Gi)−.

Since for every τ ∈ {1, . . . , t} the index sets CτG and CτH form a partition of C, the index
i exactly belongs to one of the two sets CτG, CτH . Since we also have D̂i(t, t) ≤ D̃i(t, t)
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and Êi(t, t) ≤ Ẽi(t, t), we obtain from (58),(59) and (60), the estimate∑
τ∈{1,...,t}:i∈CτG

Di(τ, τ)−
∑

τ∈{1,...,t−1}:i∈C̃τG

σCi (Gi + (∇Gi)T sτ )+

+
∑

τ∈{1,...,t}:i∈CτH

Ei(τ, τ)−
∑

τ∈{1,...,t−1}:i∈C̃τH

σCi (Hi + (∇Hi)T sτ )+

≤
t−1∑
τ=1

max{D̂i(τ, τ), Êi(τ, τ)}+ max{D̃i(t, t), Ẽi(t, t)}. (61)

Taking into account

max{D̂i(τ, τ), Êi(τ, τ)}

≤ −(σCi −max{λ̃Gi , λ̃Hi })
(

(βG,τi δτ−βG,τ−1
i δτ−1)(Gi)−+(βH,τi δτ−βH,τ−1

i δτ−1)(Hi)−
)

and

max{D̃i(t, t), Ẽi(t, t)} ≤ −(σCi −max{λ̃Gi , λ̃Hi })(δt−δt−1)
(
βG,t−1
i (Gi)− + βH,t−1

i (Hi)−
)

it follows that

t−1∑
τ=1

max{D̂i(τ, τ), Êi(τ, τ)}+ max{D̃i(t, t), Ẽi(t, t)}

≤ −(σCi −max{λ̃Gi , λ̃Hi })
(

(βG,t−1
i δt−1−βG,0i δ0)(Gi)−+(βH,t−1

i δt−1−βH,0i δ0)(Hi)−

+(δt − δt−1)
(
βG,t−1
i (Gi)− + βH,t−1

i (Hi)−
))

= −(σCi −max{λ̃Gi , λ̃Hi })
(

(βG,t−1
i δt − βG,0i δ0)(Gi)− + (βH,t−1

i δt − βH,0i δ0)(Hi)−
)

≤ −(σCi −max{λ̃Gi , λ̃Hi })
(
βG,0i (δt − 1)(Gi)− + βH,0i (δt − 1)(Hi)−

)
, (62)

where we have used βG,t−1
i ≤ βG,0i , βH,t−1

i ≤ βH,0i and δ0 = 1. Thus the claimed
inequality (50) follows from (61) and (62).

Next we prove for every i ∈ I the estimate

σgi
(
(gi+(∇gi)T st)+−(gi+(∇gi)T s0)+

)
−

t∑
τ=1

λg,τi (∇gi)T (sτ−sτ−1) ≤ (σgi−̃λ
g
i )(δ

t−1)βg,0i (gi)+.

(63)
For every τ = 1, . . . , t we have λg,τi ≥ 0, βg,τ−1

i = βg,0i and

λg,τi
(
(1− βg,τ−1

i δτ )gi + (∇gi)T sτ
)

= 0, λg,τi
(
(1− βg,τ−1

i δτ−1)gi + (∇gi)T sτ−1
)
) ≤ 0,

implying, together with δτ ≤ δτ−1,

λg,τi (∇gi)T (sτ−sτ−1)≥λg,τi βg,0i (δτ−δτ−1)gi ≥ λg,τi βg,0i (δτ−δτ−1)(gi)+≥ λ̃gi β
g,0
i (δτ−δτ−1)(gi)+.
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Summing up this inequalities yields

t∑
τ=1

λg,τi (∇gi)T (sτ − sτ−1) ≥ λ̃gi β
g,0
i (δt − δ0)(gi)+ = λ̃gi β

g,0
i (δt − 1)(gi)+.

Since by feasibility of (st, δt) for QPCC(βτ−1, ρ) we have (gi+(∇gi)T st)+ ≤ βg,0i δt(gi)+

and due to our choice of βg,0i we have (gi+(∇gi)T s0)+ = (gi)+ = βg,0i (gi)+, the inequality
(63) follows.

Similar arguments show, that for every i ∈ E we have

σhi (|hi+(∇hi)T st|−|hi+(∇hi)T s0|)−
t∑

τ=1

λh,τi (∇hi)T (sτ−sτ−1) ≤ (σhi − λ̃hi )(δt−1)|hi|.

(64)
Then the relation (39) follows from (49), (50), (63) and (64) and the second estimate
(40) is an easy consequence of (33) and (38). �

5.1.2. Searching for the next iterate

We choose the next iterate as a point from the polygonal line connecting the points
s0
k, . . . , s

Nk
k . First we parametrize this line by its length as a curve ŝk : [0, 1] → Rn in

the following way. We define tk(1) := Nk, for every γ ∈ [0, 1) we denote by tk(γ) the
smallest number t such that Stk/S

Nk
k > γ and we set αk(1) := 1,

αk(γ) :=
γ − Stk(γ)−1

k /SNkk

S
tk(γ)
k /SNkk − Stk(γ)−1

k /SNkk
=

γSNkk − Stk(γ)−1
k

‖stk(γ)
k − stk(γ)−1

k ‖
, γ ∈ [0, 1)

where S0
k := 0, Stk :=

∑t
τ=1 ‖sτk − s

τ−1
k ‖ for t = 1, . . . , Nk. Then we define

ŝk(γ) = s
tk(γ)−1
k + αk(γ)(stk(γ)

k − stk(γ)−1
k ).

Now consider some sequence of positive numbers γk1 = 1, γk2 , γ
k
3 , . . . with 1 > γ̄ ≥

γkj+1/γ
k
j ≥ γ > 0 for all j ∈ N and let us shortly denote tjk := tk(γkj ), αjk := αk(γkj ).

Consider the smallest j, denoted by j(k) such that for some given constant ξ ∈ (0, 1)
one has

φ
tjk
k (αjk)− φ1

k(0) ≤ ξ
(

(1− αjk)(φ̂t
j
k−1

k (1)− φ̂1
k(0)) + αjk(φ̂t

j
k

k (1)− φ̂1
k(0))

)
, (65)

where in case tjk = 1 we define φ̂0
k(1) := φ̂1

k(0). Then the new iterate is given by

xk+1 := xk + ŝk(γkj(k)).

Lemma 5.5. The new iterate xk+1 is well defined.

P r o o f . In order to show that the new iterate is well defined, we have to prove the
existence of some j such that (65) is fulfilled. Let τk be the smallest natural number
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such that sτkk 6= 0. Note that this implies stk = 0 for t = 0, . . . τk − 1 and consequently
Sτk−1
k = 0. There is some δk > 0 such that |φτkk (α)− φ̂τkk (α)| ≤ α(1− ξ)(φ̂1

k(0)− φ̂τkk (1)),
whenever 0 ≤ α ≤ δk. Since limj→∞ γkj = 0, we can choose j as large that tjk = τk and
αjk ≤ δk yielding

φτkk (αjk)− φ̂τkk (αjk) ≤ (1− ξ)αjk(φ̂1
k(0)− φ̂τkk (1)). (66)

Then by convexity of φ̂τkk from Lemma 5.2, taking into account φ̂τkk (0) ≤ φ̂τk−1
k (1) ≤

φ̂1
k(0) by Lemma 5.4 and Proposition 5.3 and φ1

k(0) = φ̂1
k(0) we obtain

φτkk (αjk)− φ1
k(0) ≤ φ̂τkk (αjk) + (1− ξ)αjk(φ̂1

k(0)− φ̂τkk (1))− φ̂1
k(0)

≤ (1− αjk)φ̂τkk (0)− (1− αjk)φ̂1
k(0) + ξαjk(φ̂τkk (1)− φ̂1

k(0))

≤ (1−αjk)
(

(ξφ̂τk−1
k (1)+(1−ξ)φ̂1

k(0))−φ̂1
k(0)

)
+ξαjk(φ̂τkk (1)−φ̂1

k(0))

= ξ
(

(1− αjk)(φ̂τk−1
k (1)− φ̂1

k(0)) + αjk(φ̂τkk (1)− φ̂1
k(0))

)
.

Thus (65) is fulfilled for this j and the lemma is proved. �

5.2. Convergence of the algorithm

We consider the behavior of the Algorithm 5.1 when it does not prematurely stop and
it generates an infinite sequence of iterates

xk, Bk, (stk, δ
t
k), λtk, J

t
k, J̃

t
k, β

t
k, t = 0, . . . , Nk.

We discuss the convergence behavior under the following assumption.

Assumption 1.

1. Algorithm 4.1 can be run for every k, i. e. we can find a working set J at the
initialization step.

2. There exist constants Cx, Cs, Cλ such that

‖xk‖ ≤ Cx, SNk ≤ Cs, λ̃hk , λ̃
g
k, λ̃

G
k , λ̃

H
k ≤ Cλ

for all k, where λ̃hk := maxi∈E{λ̃hi,k}, λ̃
g
k := maxi∈I{λ̃gi,k}, λ̃Gk := maxi∈C{λ̃Gi,k},

λ̃Hk := maxi∈C{λ̃Hi,k}.

3. There exist constants C̄B ,CB such that CB ≤ λ(Bk), ‖Bk‖ ≤ C̄B for all k, where
λ(Bk) denotes the smallest eigenvalue of Bk.

For our convergence analysis we need one more merit function

Φk(x) := f(x) +
∑
i∈E

σhi,k|hi(x)|+
∑
i∈I

σgi,k(gi(x))+

+
∑
i∈C

σCi,k(|min{Gi(x), Hi(x)}| − (max{Gi(x), Hi(x)})−).
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Lemma 5.6. For each k, for every t = 1, . . . , Nk and for any α ∈ [0, 1] it holds

Φk(xk + s) ≤ φtk(α) and Φk(xk) = φ1
k(0), (67)

where s = (1− α)st−1
k + αstk.

P r o o f . Let A,B ∈ R. We start with the proof of the inequality

|min{A,B}| − (max{A,B})− ≤ |max{A,B}| − (min{A,B})−. (68)

If min{A,B} < 0 we have |min{A,B}| = −(min{A,B})− and since it always holds that
−(max{A,B})− ≤ |max{A,B}| we obtain (68).

In the case min{A,B} ≥ 0 we have 0 ≤ min{A,B} ≤ max{A,B} and hence

|min{A,B}|−(max{A,B})− = min{A,B} ≤ max{A,B} = |max{A,B}|−(min{A,B})−,

showing the validity of (68).
Thus, for every i ∈ CtG,k we have

|Gi(xk + s)| − (Hi(xk + s))−

≥ min{|min{Gi(xk + s), Hi(xk + s)}| − (max{Gi(xk + s), Hi(xk + s)})−,
|max{Gi(xk + s), Hi(xk + s)}| − (min{Gi(xk + s), Hi(xk + s)})−}

= |min{Gi(xk + s), Hi(xk + s)}| − (max{Gi(xk + s), Hi(xk + s)})−

because of (68). Analogously we obtain

|Hi(xk+s)|−(Gi(xk+s))− ≥ |min{Gi(xk+s), Hi(xk+s)}|−(max{Gi(xk+s), Hi(xk+s)})−

for every i ∈ CtH,k and the claimed inequality Φk(xk + s) ≤ φtk(α) follows.
To show Φk(xk) = φ1

k(0) consider i ∈ C1
G,k. If Gi(xk) ≤ Hi(xk) then we obviously

have

|Gi(xk)| − (Hi(xk))− = |min{Gi(xk), Hi(xk)}| − (max{Gi(xk), Hi(xk)})−. (69)

On the other hand, if Gi(xk) > Hi(xk) we have 0 ≥ Gi(xk) > Hi(xk) because of
i ∈ C1

G,k ⊂ J̃0
G,k and (69) again follows. Analogously, one shows

|Hi(xk)| − (Gi(xk))− = |min{Gi(xk), Hi(xk)}| − (max{Gi(xk), Hi(xk)})−

for i ∈ C1
H,k and the second claim follows. �

An easy consequence of the way how we define the penalty parameters in (36) is the
following lemma.

Lemma 5.7. Under Assumption 1 there exists some k̄ such that for all k ≥ k̄ the
penalty parameters remain constant, σ̄ := σk and consequently Φk(x) = Φk̄(x).
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Remark 5.8. Note that we do not use Φk for calculating the new iterate because the
first order approximation is in general not convex on the line segments connecting st−1

k

and stk due to the involved min operation.

Lemma 5.9. Assume that Assumption 1 is fulfilled. Then

lim
k→∞

φ
t
j(k)
k

k (αj(k)
k )− φ1

k(0) = 0. (70)

P r o o f . Take an existed k̄ from Lemma 5.7. Then we have for k ≥ k̄

Φk+1(xk+1) = Φk̄(xk+1) = Φk̄(xk + ŝk(γkj(k))) = Φk(xk + ŝk(γkj(k))) ≤ φ
t
j(k)
k

k (αj(k)
k )

< φ1
k(0) = Φk(xk)

and therefore Φk+1(xk+1) − Φk(xk) ≤ φ
t
j(k)
k

k (αj(k)
k ) − φ1

k(0) < 0. Hence the sequence
Φk(xk) is monotonically decreasing and therefore convergent, because it is bounded
below by Assumption 1. Hence

−∞ < lim
k→∞

Φk(xk)− Φk̄(xk̄) =
∞∑
k=k̄

(Φk+1(xk+1)− Φk(xk)) ≤
∞∑
k=k̄

(φt
j(k)
k

k (αj(k)
k )− φ1

k(0))

and the assertion follows. �

Proposition 5.10. Assume that Assumption 1 is fulfilled. Then

lim
k→∞

φ̂Nkk (1)− φ̂1
k(0) = 0 (71)

and consequently
lim
k→∞

‖sNkk ‖ = 0. (72)

P r o o f . We prove (71) by contraposition. Assuming on the contrary that (71) does
not hold, by taking into account φ̂Nkk (1) − φ̂1

k(0) ≤ 0 by Proposition 5.3, there exists
a subsequence K = {k1, k2, . . .} such that φ̂Nkk (1) − φ̂1

k(0) ≤ r̄ < 0. By passing to a
subsequence we can assume that for all k ∈ K we have k ≥ k̄ with k̄ given by Lemma
5.7 and Nk = N̄ , where we have taken into account (34). By passing to a subsequence
once more we can also assume that

lim
k
K→∞

Stk = S̄t, lim
k
K→∞

rtk = r̄t,

where rtk := φ̂tk(1)− φ̂1
k(0). Note that r̄N̄ ≤ r̄ < 0.

Let us first consider the case S̄N̄ = 0. There exists δ > 0 such that |φN̄k (α)−φ̂N̄k (α)| ≤
(ξ−1)r̄N̄‖(1−α)sN̄−1

k +αsN̄k ‖ ∀k ∈ K, whenever ‖(1−α)sN̄−1
k +αsN̄k ‖ ≤ δ. Since S̄N̄ = 0

implies sN̄k → 0 we can assume that ‖sN̄k ‖ ≤ min{δ, 1/2} ∀k ∈ K. Then

φN̄k (1)− φ1
k(0) ≤ φ̂N̄k (1)− φ̂1

k(0) + (ξ − 1)r̄N̄‖sN̄k ‖ (73)

≤ φ̂N̄k (1)− φ̂1
k(0) + (ξ − 1)(φ̂N̄k (1)− φ̂1

k(0))

= ξ(φ̂N̄k (1)− φ̂1
k(0))→ ξr̄N̄ < 0 (74)
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and this implies that for the next iterate we have j = 1 and hence tjk = N̄ and αjk = 1,
contradicting (70).

Now consider the case S̄N 6= 0 and let us define the number τ̄ := max{t | S̄t = 0}+ 1.
Note that Proposition 5.3 yields

rtk ≤ −
λ(Bk)

2

t∑
τ=1

‖sτk − sτ−1
k ‖2 ≤ −λ(Bk)

2

√
t

(
t∑

τ=1

‖sτk − sτ−1
k ‖

)2

= −λ(Bk)
2

√
t(Stk)2

(75)
and therefore r̃ := maxt≥τ̄ r̄t < 0. By passing to a subsequence we can assume that for
every t ≥ τ̄ and every k ∈ K we have rtk ≤ r̄t

2 .

Now assume that for infinitely many k ∈ K we have tj(k)
k > τ̄ . Then we conclude

φ
t
j(k)
k

k (αj(k)
k )− φ1

k(0) ≤ ξ

(
(1− αj(k)

k )(φ̂t
j(k)
k −1

k (1)− φ̂1
k(0)) + α

j(k)
k (φ̂t

j(k)
k

k (1)− φ̂1
k(0))

)
≤ ξ

2

(
(1− αj(k)

k )r̃ + α
j(k)
k r̃

)
≤ ξr̃

2
< 0

contradicting (70). Hence for all but finitely many k ∈ K, without loss of generality for
all k ∈ K, we have tj(k)

k ≤ τ̄ .

There exists δ > 0 such that |φτ̄k(α) − φ̂τ̄k(α)| ≤ |r̄τ̄ |(1−ξ)γ‖(1−α)sτ̄−1
k +αsτ̄k‖

4Sτ̄ ∀k ∈ K,

whenever ‖(1 − α)sτ̄−1
k + αsτ̄k‖ ≤ δ. By eventually choosing δ smaller we can assume

δ ≤ S̄ τ̄ . Note that we have ‖stk‖ ≤ Stk for all t and thus ‖sτ̄−1
k ‖ → 0. This implies

S̄ τ̄ = lim
k
K→∞

S τ̄k −S
τ̄−1
k = lim

k
K→∞
‖sτ̄k − s

τ̄−1
k ‖ = lim

k
K→∞
‖sτ̄k‖. Hence, by passing to

a subsequence if necessary we can assume that for all k ∈ K we have ‖sτ̄−1
k ‖ ≤ δ/4,

γ
3
4
δ
‖sτ̄k − s

τ̄−1
k ‖

‖sτ̄k‖
> 4(1− γ)S τ̄−1

k , (76)

‖sτ̄k‖ ≤
9
8
S̄ τ̄ (77)

and
γS τ̄k − S

τ̄−1
k

‖sτ̄k − s
τ̄−1
k ‖

≥
γ

2
. (78)

Now let for each k the index j̃(k) denote the smallest j such that tjk = τ̄ and αjk‖sτ̄k‖ ≤
3
4δ. Hence we either have tj̃(k)−1

k > τ̄ or αj̃(k)−1
k ‖sτ̄k‖ > 3

4δ. In the first case we have
Sτ̄k
SN̄k
≤ γk

j̃(k)−1
≤

γk
j̃(k)

γ and therefore αj̃(k)
k ≥ γSτ̄k−S

τ̄−1
k

‖sτ̄k−s
τ̄−1
k ‖ ≥

γ

2 ≥
γδ

2S̄τ̄
by (78). In the second

case we have

3
4
δ < α

j̃(k)−1
k ‖sτ̄k‖ ≤

γk
j̃(k)

γ SN̄k − S
τ̄−1
k

‖sτ̄k − s
τ̄−1
k ‖

‖sτ̄k‖.
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Rearranging yields γk
j̃(k)

SN̄k ≥ γ
(

3
4δ
‖sτ̄k−s

τ̄−1
k ‖

‖sτ̄k‖
+ S τ̄−1

k

)
and therefore, by using (76) and

(77),

α
j̃(k)
k ≥

γ
(

3
4δ
‖sτ̄k−s

τ̄−1
k ‖

‖sτ̄k‖
+ S τ̄−1

k

)
− S τ̄−1

k

‖sτ̄k − s
τ̄−1
k ‖

>
γ 9

16δ
‖sτ̄k−s

τ̄−1
k ‖

‖sτ̄k‖

‖sτ̄k − s
τ̄−1
k ‖

=
9γδ

16‖sτ̄k‖
≥

γδ

2S̄ τ̄
.

We now prove that j̃(k) fulfills (65). In fact, since tj̃(k)
k = τ̄ , αj̃(k)

k ≥ γδ

2S̄τ̄
and

‖(1− αj̃(k)
k )sτ̄−1 + α

j̃(k)
k sτ̄‖ ≤ ‖sτ̄−1‖+ α

j̃(k)
k ‖sτ̄‖ ≤ δ/4 + 3δ/4 = δ

we conclude

φτ̄k(αj̃(k)
k )− φ̂τ̄k(αj̃(k)

k ) ≤
|r̄τ̄ |(1− ξ)γ‖(1− αj̃(k)

k )sτ̄−1
k + α

j̃(k)
k sτ̄k‖

4S τ̄

≤ (1− ξ)
γδ

2S τ̄
(φ̂1
k(0)− φ̂τ̄k(1)) ≤ (1− ξ)αj̃(k)

k (φ̂1
k(0)− φ̂τ̄k(1)).

Now we can proceed as in the proof of Lemma 5.5 to show that j̃(k) fulfills (65).
However, this yields j̃(k) ≥ j(k) by definition of j(k) and hence τ̄ ≥ tj(k)

k ≥ tj̃(k)
k = τ̄

showing tj(k)
k = τ̄ . But then we also have αj(k)

k ≥ αj̃(k)
k ≥ γδ

2S̄τ̄
and from (65) we obtain

φ
t
j(k)
k

k (αj(k)
k )− φ1

k(0) ≤ ξ

(
(1− αj(k)

k )(φ̂t
j(k)
k −1

k (1)− φ̂1
k(0)) + α

j(k)
k (φ̂t

j(k)
k

k (1)− φ̂1
k(0))

)
≤ ξα

j(k)
k (φ̂t

j(k)
k

k (1)− φ̂1
k(0)) ≤ ξ

γδ

2S̄ τ̄
r̃

2
< 0

contradicting (70) and so (71) is proved. Condition (72) now follows from (71) because
we conclude from (75) that

φ̂Nkk (1)− φ̂1
k(0) ≤ −λ(Bk)

2

√
Nk(SNkk )2 ≤ −λ(Bk)

2

√
Nk(‖sNkk ‖)

2.

�

Now we are ready to state the main result of this section.

Theorem 5.11. Let Assumption 1 be fulfilled. Then every limit point is M-stationary
for the problem (1).

P r o o f . Let x̄ denote a limit point of the sequence xk and let K denote a subsequence
such that lim

k
K→∞

xk = x̄. Further let λ̄ be a limit point of the bounded sequence λNkk
and assume without loss of generality that lim

k
K→∞

λNkk = λ̄. First we show feasibility
of x̄ for the problem (1) and complementarity of λ̄.

Consider i ∈ I. For all k it holds that

0 ≥
(

(1− βg,Nk−1
i,k δNkk )gi(xk) + (∇gi(xk))T sNkk

)
⊥ λg,Nki,k ≥ 0.
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Since 0 ≤ δNkk ≤ ζ, 0 ≤ βg,Nk−1
i,k ≤ 1 we have 1 ≥ (1− βg,Nk−1

i,k δNkk ) ≥ 1− ζ and together
with sNkk → 0 by Proposition 5.10 we conclude

0 ≥ lim sup
k
K→∞

(
gi(xk) +

(∇gi(xk))T sNkk
(1− βg,Nk−1

i,k δNkk )

)
= gi(x̄),

λ̄gi ≥ 0 and

0 = lim
k
K→∞

λg,Nki,k

(
gi(xk) +

(∇gi(xk))T sNkk
(1− βg,Nk−1

i,k δNkk )

)
= λ̄gi gi(x̄).

Hence 0 ≤ λ̄gi ⊥ gi(x̄) ≤ 0. Similar arguments show that for every i ∈ E we have

0= lim
k
K→∞

(
hi(xk)+

(∇hi(xk))T sNkk
(1−δNkk )

)
=hi(x̄).

Finally consider i ∈ C. Then for infinitely many k ∈ K we either have

(1− βG,Nk−1
i,k δNkk )Gi + (∇Gi)T sNkk ≥ 0, (1− βH,Nk−1

i,k δNkk )Hi + (∇Hi)T sNkk = 0

or

(1− βG,Nk−1
i,k δNkk )Gi + (∇Gi)T sNkk = 0, (1− βH,Nk−1

i,k δNkk )Hi + (∇Hi)T sNkk ≥ 0.

We consider only the first case because the second one can be treated analogously. Again
we have 1 ≥ (1− βG,Nk−1

i,k δNkk ), (1− βH,Nk−1
i,k δNkk ) ≥ 1− ζ and hence

0 ≤ lim inf
k
K→∞

(
Gi(xk) +

(∇Gi(xk))T sNkk
(1− βG,Nk−1

i,k δNkk )

)
= Gi(x̄),

0 = lim
k
K→∞

λG,Nki,k

(
Gi(xk) +

(∇Gi(xk))T sNkk
(1− βG,Nk−1

i,k δNkk )

)
= λ̄Gi Gi(x̄)

and

0 = lim
k
K→∞

(
Hi(xk) +

(∇Hi(xk))T sNkk
(1− βH,Nk−1

i,k δNkk )

)
= Hi(x̄).

Hence 0 ≤ Gi(x̄) ⊥ Hi(x̄) ≥ 0 and λ̄Gi Gi(x̄) = λ̄Hi Hi(x̄) = 0. By first order optimality
condition we have

Bks
Nk
k +∇f(xk) +

∑
i∈E

λh,Nki,k ∇hi(xk) +
∑
i∈I

λg,Nki,k ∇gi(xk)−
∑
i∈C

(λG,Nki,k ∇Gi(xk)

+λH,Nki,k ∇Hi(xk)) = 0

for each k and by passing to a limit and by taking into account that BksNk → 0 by
Proposition 5.10 we obtain

∇f(x̄) +
∑
i∈E

λ̄hi∇hi(x̄) +
∑
i∈I

λ̄gi∇gi(x̄)−
∑
i∈C

(λ̄Gi ∇Gi(x̄) + λ̄Hi ∇Hi(x̄)) = 0.
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Now consider i ∈ C. Then for infinitely many k ∈ K we have one of the following three
possibilities:

(i) i ∈ (JNkG,k \ J
Nk
H,k): this implies λ̄Hi = 0.

(ii) i ∈ (JNkH,k \ J
Nk
G,k): this implies λ̄Gi = 0.

(iii) i ∈ (JNkG,k ∩ J
Nk
H,k): this implies λ̄Gi , λ̄

H
i ≥ 0.

This finishes the proof. �

6. NUMERICAL RESULTS

Algorithm 4.1 was implemented in MATLAB where we did not take care of the nu-
merical performance. We did not use any update methods for factorizing the occurring
matrices when one index left or entered the working set and computed the factorization
from scratch. As in SQP-methods for nonlinear programming, the matrices Bk were
computed by using the BFGS formula for updating the Hessian of the Lagrangian with
the modification due to Powell [26] ensuring positive definiteness of Bk.

To perform numerical tests we used a subset of test problems taken from MacM-
PEC, which is a collection of MPECs in AMPL and is maintained by Leyffer [19]. In
MacMPEC there are currently 193 test problems, 54 of them were discarded because of
their size, since our AMPL license can only handle problems with up to 300 variables.
Further, 11 problems could not be treated because they do not match our format (1).
Our algorithm found for 101 of the remaining 128 test problems (79 %) the solution
provided by MacMPEC when using the starting point from MacMPEC. For one prob-
lem (design-cent-3) we found the optimal solution (which is the same as the one of the
better scaled problem design-cent-31), whereas in MacMPEC this problem is marked as
infeasible. For 2 problems (2 %) we found a solution which we could prove to be globally
optimal, but differs from the one from MacMPEC. For 15 problems (12 %) our algo-
rithm converged to a different solution when using the starting point from MacMPEC,
however when changing the starting point our method found the MacMPEC solution.
Only for 9 problems (7 %) we could not find any solution. For one problem (taxmcp) our
algorithm always stopped with the degeneracy condition fulfilled. For the remaining 8
problems we could not find a working set at some iteration. For example our algorithm
did not work for the problem scholtes5 where the feasible region is given by

0 ≤ x1 ⊥ x3 ≥ 0, 0 ≤ x2 ⊥ x3 ≥ 0.

The constraints of the auxiliary problem (4) which we have to solve at some iterate xk

with xk1 > 0, xk2 > 0, xk3 = 0 are given by

0 ≤ (1− 0 · δ)xk1 + s1 ⊥ (1− 1 · δ)xk3 + s3 ≥ 0
0 ≤ (1− 0 · δ)xk2 + s2 ⊥ (1− 1 · δ)xk3 + s3 ≥ 0

and it is easy to see that no working set exists for the auxiliary problem at (s, δ) = (0, 1).
These numerical results indicate that our algorithm behaves very reliable as long as

the assumption that we can find a working set is fulfilled.
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To better demonstrate the performance of our algorithm we conclude this section by
a table with more detailed information about solving 31 chosen problems. We use the
following notation.

Problem name of the test problem
(n, q) number of variables, number of all constraints
k∗ total number of outer iterations of the SQP method

(N0, . . . , Nk∗−1) total numbers of inner iterations corresponding to each outer iterationPk∗−1
k=0 j(k) overall sum of steps made during line search

]feval total number of function evaluations, ]feval = (q + 1)
“
k∗ +

Pk∗−1
k=0 j(k)

”
]∇feval total number of gradient evaluations, ]∇feval = (q + 1)(k∗ + 1)

Problem (n, q) k∗ (N0, . . . , Nk∗−1)
Pk∗−1

k=0 j(k) ]feval ]∇feval

bar-truss-3 (35, 47) 9 (1, 3, 1, . . . , 1) 11 960 480
bard1 (5, 9) 4 (1, 1, 1, 1) 4 80 50
bard2 (12, 29) 6 (3, 1, . . . , 1) 6 360 210

bilevel2 (16, 33) 5 (8, 3, 1, 1, 1) 5 340 204
design-cent-21 (13, 19) 8 (1, . . . , 1) 11 380 180
design-cent-4 (22, 33) 7 (1, . . . , 1) 7 476 272

ex9.1.7 (17, 26) 2 (4, 1) 2 108 81
ex9.2.6 (16, 22) 6 (3, 2, 1, 1, 1, 1) 6 276 161
flp4-1 (80, 90) 2 (1, 1) 2 364 273
flp4-2 (110, 170) 2 (1, 1) 2 684 513
flp4-3 (140, 240) 2 (1, 1) 2 964 723
flp4-4 (200, 350) 2 (1, 1) 2 1404 1053

gnash16 (13, 22) 9 (5, 1, 1, 1, 2, 3, 1, 1, 1) 9 414 230
incid-set1-8 (118, 225) 5 (34, 4, 4, 1, 1) 5 2260 1356
incid-set1c-8 (117, 229) 5 (39, 6, 4, 1, 1) 5 2300 1380
incid-set2c-8 (117, 229) 26 (21, 1, 5, 2, 1, . . . , 1) 51 17710 6210
liswet1-050 (152, 203) 23 (28, 1, . . . , 1) 23 9384 4896

pack-comp2c-8 (107, 203) 9 (35, 9, 8, 4, 3, . . . , 3) 11 4080 2040
pack-rig1-8 (87, 169) 14 (16, 4, 1, . . . , 1) 22 6120 2550
pack-rig1c-8 (87, 176) 12 (15, 4, 1, . . . , 1) 12 4248 2301
pack-rig2-8 (85, 165) 13 (15, 5, 4, 2, 1, . . . , 1) 18 5146 2324
pack-rig2c-8 (85, 172) 9 (12, 2, 3, 1, 1, 1, 1, 2, 1) 9 3114 1730
pack-rig2p-8 (103, 201) 18 (17, 3, 3, 2, 2, 1, 2, 1, 2, 2, 1, . . . , 1) 35 10706 3838
pack-rig3-8 (85, 165) 17 (17, 5, 5, 5, 2, 2, 1, . . . , 1) 30 7802 2988
pack-rig3c-8 (85, 172) 10 (16, 4, 3, 1, . . . , 1) 10 3460 1903

portfl-i-1 (87, 99) 12 (7, 1, . . . , 1) 12 2400 1300
qpec-100-3 (110, 204) 28 (307, 4, 4, 2, 1, 4, 3, 8, 5, 2, 28 11480 5945

1, 2, 1, . . . , 1)
qpec-200-1 (210, 404) 14 (200, 35, 17, 2, 1, . . . , 1) 14 11340 6075
qpec-200-4 (240, 408) 15 (278, 15, 6, 1, 2, 1, . . . , 1) 15 12270 6544

qpec1 (30, 40) 4 (11, 1, 1, 1) 4 328 205
sl1 (8, 14) 4 (2, 1, 1, 1) 4 120 75

We see that only in the first iterations we need a higher number of inner iterations.
However, the number of inner iterations needed to solve the auxiliary problem was always
less than two times the number of constraints. Usually we need only one inner iteration
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when we are close to a solution, but it may happen, as in problem pack-comp2c-8, that
the initial working set chosen by our algorithm is different from that at the solution of
the auxiliary problem.

Locally we observe very fast convergence of the algorithm. For the problems where∑k∗−1
k=0 j(k) 6= k∗, we include the following table with all the numbers (j(0), . . . , j(k∗ − 1))

of steps made during line search in each outer iteration.

Problem (j(0), . . . , j(k∗ − 1))
bar-truss-3 (3, 1, . . . , 1)

design-cent-21 (1, 2, 1, 1, 1, 1, 3, 1)
incid-set2c-8 (1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 5, 5, 4, 2, 2, 2, 3, 2, 1, 3, 1, 1, 2, 3, 1, 1)

pack-comp2c-8 (1, 2, 2, 1, . . . , 1)
pack-rig1-8 (1, 1, 2, 2, 1, 3, 1, 4, 2, 1, . . . , 1)
pack-rig2-8 (1, 3, 1, 2, 3, 1, . . . , 1)
pack-rig2p-8 (1, 1, 7, 4, 3, 3, 1, 1, 1, 1, 1, 4, 2, 1, . . . , 1)
pack-rig3-8 (1, 3, 5, 3, 4, 2, 2, 1, . . . , 1)
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[30] S. Scholtes and M. Stöhr: Exact penalization of mathematical programs with equilibrium
constraints. SIAM J. Control Optim. 37 (1999), 617–652. DOI:10.1137/s0363012996306121

[31] S. Steffensen and M. Ulbrich: A new regularization scheme for mathematical programs with
equilibrium constraints. SIAM J. Optim. 20 (2010), 2504–2539. DOI:10.1137/090748883

[32] O. Stein: Lifting mathematical programs with complementarity constraints. Math. Pro-
gramming 131 (2012), 71–94. DOI:10.1007/s10107-010-0345-y
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