
KYBER NET IKA — VOLUM E 5 1 ( 2 0 1 5 ) , NUMBE R 6 , P AGES 9 7 3 – 9 9 3

EXPONENTIAL SMOOTHING BASED ON L-ESTIMATION

Přemysl Bejda and Tomáš Cipra

Robust methods similar to exponential smoothing are suggested in this paper. First pre-
vious results for exponential smoothing in L1 are generalized using the regression quantiles,
including a generalization to more parameters. Then a method based on the classical sign
test is introduced that should deal not only with outliers but also with level shifts, including
a detection of change points. Properties of various approaches are investigated by means of a
simulation study. A real data example is used as an illustration.
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1. INTRODUCTION

Its simplicity and recursive computing scheme predetermine exponential smoothing to
be widely used for time series, namely for smoothing and forecasting. It is an ad hoc
procedure, but it is also relevant with respect to ARIMA models, see [1].

In [13] this method is shown to be still effective in practical problems.
However, the exponential smoothing, like many other statistical methods, is very

sensitive to outliers. The literature dealing with robust exponential smoothing remains
rather lacking. On the other hand, many other methods have been robustified, see, e.g.,
[11] Chapter 8. The first attempt to fulfill the gap was made in [2] (this method will
be described later in our paper). Other authors have tried to apply robust versions of
the Kalman filter to the state-space model associated with exponential smoothing (these
methods employ M-estimation) – e. g., [3, 4, 14] and [5].

The approach based on the Kalman filter supposes that there can be a change in
level in each step even if the change is rather small. On the other hand we suppose that
level shifts appear in data only rarely, but the corresponding changes can then be quite
significant.

Here we attempt to employ L-estimation and we also test for level shifts.
The general exponential smoothing supposes the model of the form

yt = z>t a + εt, (1)

where {yt} is a given time series, a is a vector of parameters, zt is a vector of fitting
functions (both of these vectors are of dimension p), and εt is a white noise. The white
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noise is usually supposed to be i.i.d. with normal distribution. Here we will admit that
εt can be contaminated by distributions with heavy tails, but with a probability density
symmetric around the origin.

The classical approach of exponential smoothing operates in the L2 norm (see, e. g.,
[7]). Here one looks for adaptive estimates â(t) at time t by minimizing

t∑
i=1

βt−i(yi − z>i a)2, (2)

where β is a discount coefficient with a value between zero and one.
In this paper two robust approaches to the general exponential smoothing are con-

sidered:

1. the exponential smoothing using regression quantiles and implemented by means
of a special algorithm in L1 norm;

2. the approach combining the idea of the exponential smoothing with the classical
sign test, which can also be applied to time series with level shifts.

2. EXPONENTIAL SMOOTHING BASED ON REGRESSION QUANTILES

The objective function to be minimized can, using the methodology of the regression
quantiles with a robustifying effect (see [9]), be transformed to the form

t∑
i=1

βt−i%α(yi − z>i a), (3)

where α ∈ (0, 1) and

%α(x) = |x|{αI[x > 0] + (1− α)I[x < 0]}, x ∈ R.

If we minimize (3), denoting the solution as aα(t) for a given α, then the corresponding
smoothed value of α−quantile of yt is yαt ≡ (zt)>aα(t). It generalizes the L1 approach
of [2]. Indeed, in the case of the median, i. e., with α = 0.5, instead of (3) we solve the
minimization problem

t∑
i=1

βt−i|yi − z>i a| (4)

(see, e. g., [2, 3] and [14]). The approach based on the regression quantiles can follow
certain ideas used in the previous works with α = 0.5.

First of all, we approximate (3) by

t∑
i=t−T+1

βt−i%α(yi − z>i a) (5)

where T should be sufficiently large such that the observations yt−T , yt−T−1, . . . , y1 with
exponential weights βT , βT+1, . . . , βt−1 can be neglected.

The function (5) can be minimized using a suitable algorithm (see next Section).
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2.1. Regression quantiles: Algorithm for generalized L1 approach

Here an algorithm will be introduced for the approach from the previous Section looked
upon as a generalized L1 approach. First we will describe the case p = 1. Then we will
deal with the general multi-dimensional case. However, the description of the algorithm
for the multi-dimensional case is complex so that we will describe the idea behind it
only very briefly.

2.2. Case p = 1

For the case of p = 1 we employ a simple algorithm. This algorithm has been introduced
by [2] for α = 0.5, and we will refer to it as C-algorithm.

We minimize

ãαt = argmin
a∈R

{
t∑

i=t−T+1

βt−i%α(yi − zia)

}
,

where zi are known scalars. Without a loss of generality we can assume that z1, . . . , zt 6=
0. In particular, for zi ≡ 1 it includes the case of the classical constant trend in time
series. For general zi the algorithm has the following form:

1. Order the ratios yt−T+1
zt−T+1

, . . . , ytzt from the smallest to the largest one. Denote the
ordered values by v(1) ≤ v(2) ≤ · · · ≤ v(T ).

2. If zj > 0, put c−i ≡ αβt−j |zj | and c+i ≡ (1 − α)βt−j |zj |. If zj < 0, put c−i ≡
(1 − α)βt−j |zj | and c+i ≡ αβt−j |zj |. The index i is chosen in such a way that it
corresponds to the order of the member with zj in the sequence v(1), . . . , v(T ).

3. Find the index r (r = {1, . . . , T}) which fulfills

r−1∑
j=1

c+j −
T∑
j=r

c−j < 0

r∑
j=1

c+j −
T∑

j=r+1

c−j ≥ 0
(6)

and put

ãαt = v(r).

In this way we construct the quantile estimates.
The procedure can be performed recursively if one uses the ordering from the previous

step and just adds the next observation. For this ordering we can also employ the
heapsort or another sorting algorithm with a low computational complexity. If zi is equal
to 1 for all i = 1, . . . , t, one obtains a robust version of simple exponential smoothing.

We will now show a result which relates to the robustness of the C-algorithm. The
following definition can be found in [8].
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Definition 2.1. Let x0 = (x1, . . . , xn). Consider the following value of an estimator
Hn(x0) of a functional H. From this initial sample x0 we replace m observations by any
values; this new sample will be denoted by xm, and the pertaining value of the estimator
by Hn(xm).

Then the estimator Hn has the breakdown point

ε∗n(Hn,x
0) =

m∗(x0)
n

,

where m∗(x0) is the largest value of m for which

sup
xm
‖Hn(xm)−Hn(x0)‖ <∞.

Lemma 2.2. For each window of the length T the breakdown point is given by the
ratio j

T where j is given by

argmax
j=1,...,T

(
1− βj−1

1− βT
<

1
2

)
. (7)

P r o o f . The observations closer to the current time have higher weights, therefore they
influence the result of our algorithm the most. Let us send j most current observations
into infinity (denote these numbers as outliers) such that the result of our procedure
also converges to infinity. In our case, this sending of observations into infinity does not
cause any loss of generality.

Now we are looking for the minimal number j. The sum of all weights is S = 1−βT
1−β .

If the weights of the first j observations sum to more than one half of S, then the
equations (6) have to be satisfied for a certain r in j, . . . , T . Since j of the most current
observations have the sum of weights J = 1−βj

1−β , it must hold that J
S >

1
2 when we send

our estimate to infinity. �

2.3. General case

The idea of the general case with p > 1 is the same as that of the previous algorithm.
However, it is much more complicated since the principle of ordering is more complex
here.

Let zt ∈ Rp be known vectors. We look for a suitable algorithm minimizing the
objective function (5). The equation yi − z>i a = 0 represents a hyperplane in Rp for a.
It is straightforward that we have to look for the minimum of (5) in the intersection of
such hyperplanes, i. e., at a point which is given by p different nonparallel hyperplanes,
where p is the dimension of vectors zt. This point lies on lines which are also given by an
intersection of appropriate hyperplanes. Another fact which must be employed is that, at
the point minimizing our objective function, all signs of directional left-hand derivatives
differ from signs of directional right-hand derivatives (we mean the left-hand derivative of
an appropriate line). Such a minimization problem can be solved by applying a special
table, where any row represents the line given by the intersection of the appropriate
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number of hyperplanes (p− 1 if they are not parallel). In each column there must be a
point which is given by the intersection of the line and another hyperplane. This table
is updated in each step. After constructing this table we can employ a similar algorithm
as in a one-dimensional case to find the minimum.

The problem of this approach is its high complexity. We will skip its detailed de-
scription.

3. SIGN TEST

An alternative approach to the robustification of the exponential smoothing described
in this Section can provide even better results. It combines some ideas also employed for
exponential smoothing with the classical sign test, see, e. g., [12] and [16]. It seems to
be applicable also to data with level shifts, including detection of change points. Since
the observations are not exponentially weighted, we cannot say that the method from
this Section belongs among exponential smoothing methods; in fact, it is a recursive
adaptive method.

3.1. Sign test: Constant trend

Let us assume the simplest version of the model (1)

yt = a+ εt, (8)

where level shifts can occur.

A rough idea for a recursive estimate â(t) of the level a can be described as follows:

1. Find the median of a segment of observations from the beginning.

2. If too many consequent observations lie under or above this median then there
could be a level shift. The detected change point for the level shift occurs at the
point where this pattern begins.

3. Estimate a by median up to this point and start this procedure again from the
identified level shift.

The idea of a sign test can be exploited in the corresponding recursive algorithm.
If we construct the median for a segment of observations then an observation will lie
above or below this median with probability 1

2 (for simplicity we neglect the possibility
that the observation is exactly identical with the median). Let us apply an indicator
Ii, where 1 means that the ith observation is above the median and 0 means that it is
under the median. For a fixed i an arbitrary sum Ski =

∑i+k
j=i+1 Ij for k > 0 has the

binomial distribution. If it is too large or too low, one can claim a conjecture that there
is a change point because too many observations lie above or below the median.

Similar to a sign test algorithm, we define the statistics

Aki =
2Ski − k√

k
. (9)
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We want to identify the potential level shifts in the series of statistics Aki (indexed
with k). Therefore we employ a symmetrical interval (−b, b), where b is determined
empirically, and if Aki lies outside the interval (−b, b) then we will indicate a level shift
at time i and start from that point i as from the starting point of the new segment.

We will employ the following notation. The length of the time series {yt} is n. The
median value found at time t since the beginning of the corresponding segment is Mt.
Let tj denote the time of the jth change point. The smoothed values ŷt between two
neighboring change points will be chosen equal; they are given by the last estimated
value Mtj−1 before the next change point. The number of observations for the initial
computation of the median in each segment is a fixed T . The symbol ŷt denotes the
estimate of a at time t and simultaneously the estimate of yt due to the model (8).

Remark 3.1. One can look for more exact distributions. E. g., [10] has suggested statis-
tics based on ordinary L1−residuals.

One can also replace Aki by other statistics. E. g., the arcsine transformation should
better approximate the normal distribution

2
√
k

(
arcsin

√
Ski
k
− arcsin

√
1
2

)
or even

√
4k + 2

arcsin

√
8Ski + 3
8k + 6

− arcsin

√
1
2

 .

Instead of a sign test we can also employ some other nonparametric tests, e. g.,
Wilcoxon signed-rank test (see [15]). Then we proceed as follows. The median Mt

is computed for all observations since the last change point, i. e., ytj , . . . , yt. The test
investigates whether the location parameter of observations yt−k, . . . , yt is equal to Mt.
Put Yi = yi − Mt. Order |Yt−k|, . . . , |Yt| and let Ri be the order of |Yi|. Put S+ =∑
Yi≥0Ri and S− =

∑
Yi<0Ri. If min(S+, S−) is too small within the framework of

the Wilcoxon test, we have found a change point. This test has to be performed for all
k = 1, . . . , t − tj . Obviously, the observations have to be ordered in each test of this
type, which is more time-consuming than our procedure.

We will use the statistic Aki because of its simplicity and possibility of recursive

calculations. If we have Ak−1
i+1 , then Sk−1

i+1 =
√
k−1Ak−1

i+1 +k−1

2 . Then we add Ski = Sk−1
i+1 +

Ii+1. It simplifies the computation of Aki so that the computational complexity of the
statistics in each step is at worst n.

Now we summarize our algorithm in particular steps:

1. Put t = 1, j = 1, t1 = 1.

2. Order the observations ytj , . . . , ytj+T and denote this ordered vector by K. Find
the median for K and denote it as Mtj+T . For each i = tj , . . . , tj + T compute
statistics Aki such that i + k = T . If each Aki lies in the chosen interval (−b, b),
then put t = tj + T and go to Step 3. Otherwise put t = i for the first i for which
Aki lies outside the interval, put Mi−1 = Mtj+T and go to Step 4.
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3. t = t+ 1. Add the observation yt to the vector K and reorder it. Find the median
Mt in this vector. Increase k by 1. If yt > Mt, increase the previous Ski by 1.
Recompute Aki . If each Aki lies in the interval (−b, b), repeat this step. Otherwise
put t = i for the first i for which Aki lies outside the interval and go to Step 4.

4. Put j = j + 1, M1
j = Mt−1 and tj = t.

5. From the observations ytj , . . . , ytj+T , compute median M2
j .

6. Compute d1,t = |M1
j − yt| and d2,t = |M2

j − yt|.

7. If d1,t < d2,t and t− tj ≤ T
2 , then put t = t+ 1. Add the observation yt to vector

K and reorder it. Return to Step 6. Otherwise go to Step 8.

8. Put tj = t and estimates ŷtj−1 , . . . , ŷtj−1 equal to Mt−1. Reset K. Go to
Step 2.

Remark 3.2. In this Remark we describe why Steps 4 – 7 were implemented into our
algorithm. Consider the case with a real change point at time t and the median changing
from the value M1 to M2. If yt−1 > M1 and M1 < M2 then the change point is found
earlier than in reality. The same situation occurs if yt−1 < M1 and M1 > M2. The
reason is that our procedure distinguishes only up and down movements of the time
series.

If we suppose that the errors are smaller than the difference between M1 and M2

(which is quite natural, but it also depends on the number of outliers), then we should
measure the distances d1 = |M1 − yt−1| and d2 = |M2 − yt−1|. If d1 < d2, we conjecture
that there is no change point at time t− 1.

This modification is useful if the errors of the time series do not exceed the difference
between M1

j and M2
j .

3.2. Sign test: General case

We return to the general model (1) and sketch a rough idea of an algorithm which can
be employed in such a general case. Then we focus only on a special case of the linear
trend.

By the series of pre-estimates we mean a series of preliminary estimates of param-
eters obtained in each time t. I. e., in each time t it includes a vector of p components.
These are not the final estimates of parameters but they enable us to construct such
final estimates.

Let us suppose that we have robust parameter estimates ât−1 from the previous step
and the series of pre-estimates till time t − 1. By means of this information we will
find the next member of the series of pre-estimates for time t and for any component
of the a. Without the loss of generality, suppose that we will first deal with the first
component a1 of the vector a. We denote by a2,...,p the remaining components of a,



980 P. BEJDA AND T. CIPRA

and adjust the current observation according to (1). Here we use ât−1 instead of a and
we suppose that εt = 0. In other words, we solve the equation

yt = z1,ta1 + z>2,...,p;tâ2,...,p;t−1 (10)

for the unknown variable a1. The solution of equation (10) is the first component of
the vector of pre-estimates at time t. We repeat this procedure for each component and
derive the new estimate ât as a median or another kind of robust estimator from the
series of pre-estimates. By means of the sign test from the previous Section, we test
each component of the series of pre-estimates, or we can test the series yt itself.

The details of the algorithm will be described for a special case of the linear trend.

3.3. Sign test: Linear trend

Consider the model with linear trend

yt = β0 + β1t+ εt. (11)

We have only two parameters; so the pre-estimates form two series. The members of
these series of pre-estimates for β0 and β1 at times τ, . . . , t will be denoted by βτ,t0 and
βτ,t1 , respectively. The estimates of parameters of β0 and β1 at time t will be denoted
by β̂0,t and β̂1,t, respectively. The estimated time of the jth change point will be τj .
The estimate of the observation yt will be ŷt. The estimates of β0 and β1 computed
after the jth change point by a relevant algorithm (see later) will be denoted by β̂j0 and
β̂j1. These estimates are obtained not recursively, like the estimates β̂0,t and β̂1,t, but
from the observations after the change point. They serve as the initial estimates for the
segment after each change point.

The length of window employed by the algorithm will be denoted by T .
First, we describe the situation after finding a change point at time τj :

1. Take T observations yτj , . . . , yτj+T−1 and find estimates β̂j0 and β̂j1, by means of a
robust algorithm; the latter exploits the observations yτj , . . . , yτj+T−1.

Usually the minimization of the
∑τj+T−1
t=τj

|yt− β̂j0− β̂
j
1t| delivers sufficiently robust

estimates but we can also employ other robust algorithms like WLS, M-estimation,
and others.

2. Put βt,t0 = yt − β̂j1t and βt,t1 = yt−β̂j0
t for t = τj , . . . , τj + T − 1.

3. Find medians from β
τj ,τj+T−1
0 and βτj ,τj+T−1

1 and denote these values by β̂0,τj+T−1

and β̂1,τj+T−1. Instead of medians we could use other robust estimates.

4. Compute the statistics (9) of the sign test and check whether the change point is
indicated. These statistics will be discussed later.

Now let us consider a case in which a change point is not identified in the previous
step. Suppose that the current time is τj + t, where t ≥ T. We know β̂0,τj+t−1 and
β̂1,τj+t−1. We want to find β̂0,τj+t and β̂1,τj+t.
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1. Put βτj+t,τj+t0 = yt − β̂1,τj+t−1 · t and β
τj+t,τj+t
1 =

yt−β̂0,τj+t−1

t .

2. After computing the next member of the series of pre-estimates, find medians from
β
τj ,τj+t
0 and β

τj ,τj+t
1 , and denote these values by β̂0,τj+t and β̂1,τj+t.

3. Compute the statistics of the sign test and check whether the change point is
indicated. These statistics will be discussed later.

Similar to the constant trend, the interval (−b, b) relevant for the test statistics will
be found by simulation experiments presented later.

Remark 3.3. A similar idea for estimating the next member of the series of pre-
estimates was introduced in [6] but there it is simply β

τj+t,τj+t
1 = yτj+t − yτj+t−1.

Such an approach has the disadvantage that it is not robust, since an outlier influences
two members of the series of pre-estimates. This can be solved by replacing yτj+t−1 with
its robust estimate ŷτj+t−1 = β̂0,τj+t−1 + β̂1,τj+t−1 · (t − 1) (compare [4]). However, it
is also inappropriate to put β̂τj+t,τj+t1 = yt − β̂0,τj+t−1 − β̂1,τj+t−1 · (t− 1), since in this
case the residuals are summed up while in our algorithm they are divided by t. Denote
δ0 = β̂0,t−1 − β0 and δ1 = β̂1,t−1 − β1. Suppose further that there is no change point for
several observations around the time t so that the parameters are constant. Then

yt − β̂0,t−1 − β̂1,t−1(t− 1) = β1 + (β0 − β̂0,t−1) + (β1 − β̂1,t−1)(t− 1) + εt

= β1 + δ0 + δ1(t− 1) + εt

in comparison to
yt − β̂0,t−1

t
=
δ0 + β1t+ εt

t
= β1 +

δ0 + εt
t

.

Let us now return to the test statistics. The idea behind them is the same as for the
constant trend. On the other hand there are other possible ways for these statistics to
be computed. Here we consider two of them:

(a) The statistics for the series of pre-estimates βτj ,τj+t0 and β
τj ,τj+t
1 : one uses the

median statistics β̂0,τj+t and β̂1,τj+t.

(b) The statistics for the original series yτj , . . . , yτj+t: one uses the estimates ŷt =
β̂0,τj+t + β̂1,τj+t · t.

Remark 3.4. The following results for both statistics can be verified simply:

(a) It is not true that the series of pre-estimates always has to lie only above or below
βold

0 and βold
1 . The pre-estimates βT+j,T+j

0 can be biased more by an incorrect
estimation of β1 than by an incorrect estimation of β0.
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(b) A counterexample exists for this approach (see, e. g., Remark 3.5), but it can be
easily solved. The advantage of approach (b) is also its simplicity.

Remark 3.5. Consider the following situation that can sometimes occur. A change
point appears at time τ . But it can happen that the new trend is at first above the old
one but after several observations falls below it. Then the change point can be indicated
incorrectly. On the other hand, such a problem can be solved by computing a new trend
and reviewing to see whether or not the change point could have occurred earlier.

Remark 3.6. Similar to Remark 3.2, some improvements are possible:

1. Put τj = t.

2. Estimate β̂j0 and β̂j1 from observations yτ1 , . . . , yτ1+T−1 applying the initial algo-
rithm.

3. Put ŷ1
t = β̂0,τj + β̂1,τj · t and ŷ2

t = β̂j0 + β̂j1t (see (12) below).

4. Compute d1,t = |ŷ1
t − yt| and d2,t = |ŷ2

t − yt|.

5. If d1,t < d2,t and t− τj ≤ T
2 then put t = t+ 1 and return to Step 3.

6. Otherwise put τj = t as the final estimate of the change point.

After finding a change point, we smooth the series between the previous and current
change points. First we obtain the initial estimates β̂j0 and β̂j1. Then we continue by
searching β̂0,t and β̂1,t up to the time of the change point. We start this procedure in
τj−1 and stop exactly in τj . As soon as we have β̂0,τj and β̂1,τj , we approximate all
observations between τj−1 and τj by

ŷt = β̂0,τj + β̂1,τj t. (12)

It is possible not to repeat the whole algorithm for finding β̂0,τj and β̂1,τj , employing
the last estimates β̂0,t and β̂1,t in (12) instead, but such a simplistic approach gives
slightly worse results. It is also possible to keep in memory all the previous β̂0,t and β̂1,t.

The algorithms described in this Section will be referred to as sign test algorithms.
In particular, we will distinguish the constant sign test algorithm and the linear sign
test algorithm.

4. SIMULATION STUDY

In this Section, simulations for models with constant and linear trends are presented with
the aim to find the optimal arrangement of the corresponding procedures and compare
different methods.
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4.1. Simulation study: Constant trend

We have generated, in Matlab and C, time series of length n = 100 with a constant trend
yt = a+ εt. The errors are i.i.d. N(0, 1) but they are, with probability p, contaminated
by other distributions specified in Tables 1, 2 and 3 (e. g. N(0, 100) with probabilities
p = 5% or p = 10%). For particular situations we have always generated N = 1000
series of the same type.

Let at denote the actual value of a at time t and let ŷt be the estimate of at (i. e., the
smoothed value) based on our algorithm. If we also want to stress the series number i,
we add the index i to the notation, e. g., yt,i.

Moreover, the level shift occurs at time t = 50. In particular, for each time series
the values at for t = 1, . . . , 49 are constant, generated by the uniform distribution on
the interval (-10,10) for each trajectory and the same rule holds for t = 50, . . . , 100 (all
samples are independent).

There is a criterion MAE (Mean Absolute Error) to be minimized with respect to the
technical coefficients b and T

MAE =
1
Nn

N∑
i=1

n∑
t=1

|at,i − ŷt,i|.

The MAE criterion’s value will differ for the case of forecasting (see later).
In Table 1 we look for b and T such that they minimize the criterion. If a function or

a coefficient is indexed by min, then the value has been obtained by minimizing MAE.
We compare the values of MAEmin with the values obtained under the condition that

the technical coefficients b and T are fixed (then the objective function is not indexed
and the values of coefficients are given in the legend of the corresponding Table).

Due to the first column and other computations it turns out that the results do
not depend too much on the technical coefficient T . More precisely, for a wide range
of values of T , the results are almost the same. Therefore for the sign test algorithm
with the constant trend, one can recommend the choice of this value between 35 and
50. But we should also take into account the approximate length between two change
points. The boundary b can be recommended equal somewhere around 3 (on the other
hand, the results are not too dependent on this value and we can choose any value
between 2.5 and 3.5). The values for b are appropriate, especially for smoothing. For
forecasting we should recommend lower values (between 1.5 and 2), because we could
forecast incorrectly after a level shift. A recommendation for routine application of a
sign test algorithm with constant trend follows: b equal to 3 and T higher than 20 or
equal to average conjectural length between two change points.

Let us now compare the sign test algorithm with other algorithms. It is also interest-
ing to see the average size of residuals. It can help us to decide whether the estimate by
a specific algorithm really smoothes the values of the series yt in the direction of at (in
other words, whether the estimate is closer to at than the original series yt). For this
purpose we employ the average of absolute errors

1
Nn

N∑
i=1

n∑
j=1

|at,i − yt,i|.
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Distribution MAE MAEmin bmin Tmin

p = 0% 0.164 0.157 2.760 49
p = 5%

N(0, 100) 0.198 0.168 3.159 50
Cauchy 0.173 0.155 2.904 50

U(−10, 10) 0.190 0.173 2.866 50
p = 10%
N(0, 100) 0.217 0.191 2.935 50
Cauchy 0.181 0.164 3.007 49

U(−10, 10) 0.215 0.187 3.135 45
p = 40%
U(0, 50) 1.77 1.662 2.232 52

Tab. 1. (constant trend by the sign test algorithm): In the first

column there are values of MAE for fixed b = 2 and T = 50. In the

second column there are the minimal values of MAE. There are also

minimal values of technical coefficients bmin and Tmin in the third and

fourth columns.

We will employ the following indices:

(i) average of absolute errors (Err);

(ii) simple exponential smoothing (index Exp);

(iii) C-algorithm (index C);

(iv) sign test algorithm (index S);

(v) M-estimation of simple exponential smoothing (index M).

E. g., MAEExp means that we substitute the estimates from the exponential smoothing
algorithm to the MAE criterion. The same technical coefficients (βExp, βC , b, T ) are
applied to each kind of outliers so their choice is rough.

The M-estimation method is adopted from [5]. Under assumption that the level shifts
appear quite rarely, the method [5] gives moderate results. On the other hand, when
we generate the data according to [5] then the robust method of [5] gives better results
than the method described here. Obviously it depends on the nature of the data:

1. if we suppose a small change in each step then M-estimation should be preferred.

2. in the case of significant rare jumps one should employ the method from this paper.

Table 2 shows that according to the MAE criterion, the sign test algorithm works best
by a significant margin.

The sign test methods construct the smoothed value of the series based on its current,
past and future values. However, the exponential smoothing based methods, employed
for comparison in our simulation study, use just current and past values of the series.
Thus, in the case of smoothing, the comparison is not ”fair”.
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Distribution Err MAEExp MAEC MAES MAEM
p = 0% 0.797 0.487 0.603 0.164 0.583
p = 5%

N(0, 100) 1.144 0.752 0.654 0.198 0.600
Cauchy 1.020 0.685 0.613 0.173 0.579

U(−10, 10) 1.007 0.635 0.648 0.190 0.609
p = 10%
N(0, 100) 1.513 1.017 0.730 0.217 0.637
Cauchy 1.468 1.108 0.632 0.181 0.586

U(−10, 10) 1.217 0.771 0.708 0.215 0.639
p = 40%
U(0, 50) 10.444 10.006 6.982 1.677 4.655

Tab. 2. (constant trend smoothing: comparison of algorithms): (i)

the average of absolute errors of simulated time series; the values of

MAE for (ii) the simple exponential smoothing with βExp = 0.6; (iii)

the C-algorithm with βC = 0.6; (iv) the sign test with b = 2 and

T = 50; (v) M-estimation of simple exponential smoothing with

αM = 0.8 and νM = 0.5.

Let us turn our attention to forecasting. If we want to forecast, then the crucial thing
is to detect the level shift faster than in the case of smoothing, because after level shift
it may happen that we predict too many observations in a wrong way (according to old
observations). We also employ the parameter b equal to 2 and not higher in the case of
smoothing, to keep comparable conditions for all algorithms.

In the case of forecasting, we employ the following function

MAEf =
1

N(n− 10)

N∑
i=1

n−1∑
t=10

|at+1,i − ŷt+1,i|t|,

where ŷt+1,i|t stands for an estimate of at+1,i, if we know the observations y1, . . . , yt.

From Table 3 we see that our algorithm is still the best, but it is much closer to the
others. The values of MAEf are generally worse. This is given by the fact that for
prediction it is harder to switch to another level after a level shift, and the prediction is
always delayed.

In Figure 1 we present a time series with large residuals and also a level shift. In
this picture we can visually compare how the algorithms are able to deal with these
obstacles. For instance the M algorithm deals quite well with high residuals but is unable
to react fast enough to a quite large level shift. The C-algorithm and the exponential
smoothing algorithm behave in a similar way, nevertheless the exponential smoothing is
more sensitive to violations in data.
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Distribution Err MAEf,Exp MAEf,C MAEf,S MAEf,M
p = 0% 0.797 0.564 0.675 0.560 0.672
p = 5%

N(0, 100) 1.150 0.835 0.724 0.575 0.699
Cauchy 1.136 0.894 0.681 0.552 0.673

U(−10, 10) 1.010 0.710 0.716 0.575 0.701
p = 10%
N(0, 100) 1.514 1.094 0.794 0.596 0.738
Cauchy 1.268 0.958 0.699 0.562 0.686

U(−10, 10) 1.226 0.848 0.771 0.581 0.723
p = 40%
U(0, 50) 10.531 10.198 7.046 2.961 4.799

Tab. 3. (constant trend forecasting: comparison of algorithms): (i)

the average of absolute errors of simulated time series; the values of

MAEf for (ii) the simple exponential smoothing with βExp = 0.6; (iii)

the C-algorithm with βC = 0.6; (iv) the sign test with b = 2 and

T = 50; (v) M-estimation of simple exponential smoothing with

αM = 0.8 and νM = 0.5.
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Fig. 1. (constant trend): Comparison of different estimates of time

series (α = 0.5, βC = 0.6, βExp = 0.6, T = 50, b = 2, αM = 0.8 and

νM = 0.5).
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4.2. Simulation study: Linear trend

In the linear case the situation differs from the case of a constant trend, since we also have
to deal with a slope. It is possible to generate the series by many methods. We choose
only one here. The notation is the same as above (e. g., MAE = 1

Nn

∑N
i=1

∑n
t=1 |β0,i +

β1,it− ŷt,i|).
Similar to the previous case, we generate the time series of length n = 100, and also

the N = 100 series for each distribution. The number N differs from the case of constant
trend, because the computation in the linear case can already be quite time-consuming if
N = 1000, especially when we want to minimize and look for the most suitable technical
coefficients.

The constant term is initialized by the uniform distribution on the interval 〈−10; 10〉
and the linear term similarly on the interval 〈−5; 5〉. The constant and slope coefficients
are changed at time t = 50 for each time series. The new linear term also follows
the uniform distribution on the interval 〈−5; 5〉. To avoid too large a gap between
observations 49 and 50, we put the constant term β0 for the new line such that a50 =
a49 + u, where u has the uniform distribution on the interval 〈−10; 10〉. The residuals
are constructed in the same way as for a constant trend. Now we have to deal with
coefficients T and b. We will employ the same methods as in the case of a constant
trend.

We employ the version of the sign test algorithm which follows Remark (b) (see
paragraph 3.3), because the algorithm following Remark (a) does not work properly in
some cases.

Let us look now at Table 4, where we display the optimal technical coefficients. For
the linear trend by the sign test, algorithm one can recommend choice of the window
in a length equal to the probable length between two neighboring level shifts. The
coefficient b should be chosen between 2.2 and 2.5 for the improved version of algorithm
(see Remark 3.6). Once more the choice of technical coefficients is not too important,
because we get very similar results for quite a wide range of values (see Table 4).

We can compare the sign test algorithm with the double exponential smoothing. The
coefficient was chosen to be optimal according to MAE and with respect to [1], where its
author recommends an interval for values of the coefficient for the double exponential
smoothing method. In the contaminated cases our algorithms give significantly better
results.

In Table 5 the authors also employs M-estimation of double exponential smoothing
and compares it with other algorithms. The detailed description of this method can be
found in [5]. The results for M-estimation are better for a higher contamination in (rel-
ative) comparison to other methods (similarly as for the constant trend): this approach
should be used in the case of small jumps occuring quite often since the M-estimation al-
gorithm has been suggested originally just for such a type of data. Otherwise we should
employ our algorithm.

Similar to the case of a constant trend we will study the ability of algorithms to
forecast. From Table 6 we see that our algorithm is the best in almost all cases except
for the non-contaminated case, but we have to employ the improved algorithm. In the
case of forecasting it is more suitable to use lower b around 1.5. We get even better
results then.
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Distribution MAE MAEmin bmin Tmin

p = 0% 0.231 0.219 2.293 53
p = 5%

N(0, 100) 0.289 0.250 2.520 52
Cauchy 0.271 0.221 2.286 53

U(−10, 10) 0.244 0.226 2.222 52
p = 10%
N(0, 100) 0.299 0.291 2.218 50
Cauchy 0.343 0.212 2.437 51

U(−10, 10) 0.265 0.241 2.220 53
p = 40%
U(0, 50) 2.305 2.113 2.01 49

Tab. 4. (linear trend by the sign test algorithm): This Table employs

the improved version of the algorithm according to Remark 3.6. In

the first column there are values of MAE for fixed b = 2 and T = 50.

In the second column there are the minimal values of MAE. There are

also minimal values of technical coefficients bmin and Tmin in the third

and fourth columns.

5. EXAMPLE: GDP OF CHINA

The example deals with the annual values of Chinese GDP in the period 1952 - 2014
from National Bureau of Statistics of China (see Table 7). Since the GDP of China
has a characteristic exponential growth, we apply a logarithmic transformation to the
data. We employ the improved algorithm for a linear trend. We choose the technical
coefficients b = 2.2 and T = 10 since we suppose that the change points can appear in
periods of approximately ten years.

The points detected by the algorithm as change points (namely 1961, 1982, 1994
and 2002) should correspond to the significant economic changes (see also Figure 2).
In 1958, Mao Tse-tung announced the Great Leap Forward. Our model indicates this
event in 1961. In this year the constant term of our model decreases and the slope does
not change so much. It is interesting that we get absolutely identical results for a wide
range of values b. Until 1978, our model shows a low but stable growth. After 1978,
when the crucial reforms of the Chinese economy began, the growth of GDP speeds up.
However, these reforms were realized only in several economic zones along the coast.
A more rapid growth started in the early 1980s when the reforms were introduced in
further areas. In 1990s the growth was still quite fast, but it was accompanied by a high
rate of inflation. In the period 2003-2006 other reforms (e. g., the protection of private
property) were approved. In 2006 the 11th Five-Year Economic Program was accepted
which aimed at education, medical care, etc. These changes of the Chinese economy are
visible in GDP and the algorithm reflects them too.
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Distribution Err MAEExp MAESLb MAESLTb MAEM
p = 0% 0.803 0.729 0.556 0.280 2.999
p = 5%

N(0, 100) 1.183 1.091 0.577 0.286 2.360
Cauchy 1.052 0.985 0.530 0.232 3.025

U(−10, 10) 1.000 0.899 0.544 0.249 3.498
p = 10%
N(0, 100) 1.514 1.442 0.664 0.304 2.921
Cauchy 1.200 1.133 0.522 0.244 2.957

U(−10, 10) 1.196 1.081 0.609 0.307 3.611
p = 40%
U(0, 50) 10.488 10.448 5.791 2.237 11.435

Tab. 5. (linear trend smoothing: comparison of algorithms): In the

first column one calculates the errors i. e.,

Err = 1
Nn

PN
i=1

Pn
j=1 |at,i − yt,i|. In the further columns the values

of MAE for different algorithms are calculated. In the second column

we present the double exponential smoothing with β = 0.84 (Exp).

Next column contains the values for linear sign test algorithms

without the improvement, connected with looking for change points

from Remark 3.6. The coefficients for the unimproved version are

T = 10, b = 2. The next column contains the values for the linear sign

test algorithm (T = 50, b = 2), now considering the improvement.

The last column contains values of double exponential smoothing

employing M-estimation with parameters αM = 0.8 and νM = 0.7.

6. CONCLUSIONS

Let us summarize the results and compare the algorithms as to complexity and robust-
ness.

6.1. Conclusion: Complexity

First consider the constant sign test algorithm. We have n steps of our algorithm and in
each step we have to put one observation in a proper place to find a median. We have to
do n operations and calculate and check the statistics. There are in total 3n operations
in each step. The complexity of our algorithm is then O(n2). In reality it depends on b
(also on the number of real level shifts in the series); when b is small then we have to
order only a few observations and so the complexity is close to n.

We proceed similarly if our model has the dimension p. Only we have to deal with p
series in the same way as in the one-dimensional case so that the complexity is O(pn2).
However, because of performing regression in L1 norm and often recalculating estimates,
the real time of computations is much higher.

The C-algorithm also has the complexity O(n2). In real time it is slightly faster than
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Distribution Err MAEf,Exp MAEf,SLb MAEf,SLTb MAEf,M
p = 0% 0.796 0.979 1.589 1.036 3.058
p = 5%

N(0, 100) 1.133 1.302 1.582 1.042 3.178
Cauchy 0.939 1.155 1.559 1.038 4.119

U(−10, 10) 1.008 1.105 1.522 0.991 3.420
p = 10%
N(0, 100) 1.484 1.661 1.770 1.170 2.962
Cauchy 2.291 3.108 1.590 1.076 2.700

U(−10, 10) 1.196 1.292 1.632 1.072 3.908
p = 40%
U(0, 50) 10.576 11.064 6.226 4.884 13.564

Tab. 6. (linear trend forecasting: comparison of algorithms): In the

first column one calculates the errors i. e.,

Err = 1
Nn

PN
i=1

Pn
j=1 |at,i − yt,i|. In the further columns, the values

of MAEf for different algorithms are calculated. In the second column

we present the double exponential smoothing with β = 0.84 (Exp).

Next column contains the values for linear sign test algorithms

without the improvement connected with looking for change points

from Remark 3.6. The coefficients for the unimproved version are

T = 10, b = 2. The next column contains the values for the linear sign

test algorithm (T = 50, b = 2), but now considering the improvement.

The last column contains values of double exponential smoothing

employing M-estimation with parameters αM = 0.8 and νM = 0.7.

the one-dimensional sign test algorithm.
The exponential smoothing has the complexity n. In the general case it is O(pn). It

is also much simpler to implement and the idea behind it is easier to understand than
for algorithms which were introduced in this paper. One can summarize that the idea
behind the sign test algorithm is not too complicated and the speed of computation is
satisfactory in comparison with other robust algorithms.

6.2. Conclusion: Robustness

The sign test algorithm is suggested to deal with both outliers and level shifts. The
simulation study shows that the first objective is met fully and the second partly. In
the case of many small level shifts, i. e., the case studied for instance in [5], the method
from the present paper should be preferred. After applying the notes from Remark 3.2,
the results seem to be better but they are still sensitive to the frequency of level shifts.

According to the simulation study the suggested algorithms give better results even
in the case without outliers.
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Year 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
ln(GDP) 11.13 11.32 11.36 11.42 11.54 11.58 11.78 11.88 11.89 11.71 11.65 11.73 11.89
Estimate 11.13 11.23 11.33 11.44 11.54 11.65 11.75 11.85 11.96 11.66 11.73 11.80 11.87

Year 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
ln(GDP) 12.05 12.14 12.09 12.06 12.18 12.33 12.40 12.44 12.52 12.54 12.62 12.60 12.68
Estimate 11.94 12.00 12.07 12.14 12.20 12.27 12.34 12.41 12.47 12.54 12.61 12.67 12.74

Year 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
ln(GDP) 12.81 12.92 13.03 13.10 13.19 13.30 13.49 13.71 13.85 14.01 14.23 14.35 14.45
Estimate 12.81 12.88 12.94 13.01 13.18 13.35 13.51 13.67 13.84 14.00 14.16 14.33 14.49

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
ln(GDP) 14.60 14.81 15.08 15.39 15.63 15.78 15.89 15.95 16.01 16.12 16.22 16.31 16.43
Estimate 14.65 14.82 14.98 15.53 15.63 15.72 15.82 15.92 16.02 16.12 16.22 16.27 16.42

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
ln(GDP) 16.59 16.74 16.90 17.10 17.27 17.36 17.53 17.70 17.79 17.89 17.97
Estimate 16.58 16.73 16.89 17.04 17.20 17.36 17.51 17.67 17.82 17.98 18.13

Tab. 7. Natural logarithm of Chinese GDP in 100 billions of Chinese

yuan estimated by the improved linear sign test algorithm (b = 2.2,

T = 10).

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Lo
ga

ri
th

m
 o

f 
b

ill
io

n
s 

o
f 

yu
an

s 

Year 

Logarithm of GDP of China 

Log of 
GDP 

Estimate 

Fig. 2. Natural logarithm of Chinese GDP in billions of Chinese

yuan estimated by the improved linear sign test algorithm (b = 2.2,

T = 10).



992 P. BEJDA AND T. CIPRA

6.3. Conclusions: Possible generalizations

The algorithms introduced in this paper are not easy to be generalized to ARMA pro-
cesses. The sign test algorithms can be generalized, similarly as the C-algorithm, to look
for quantiles. Another possible generalization includes seasonality. We can also employ
estimator of location and other suitable tests, not only median and sign tests.
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