Kybernetika 51 no. 6, 1049-1067, 2015

Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances

Ou Meiying, Gu Shengwei, Wang Xianbing and Dong KexiuDOI: 10.14736/kyb-2015-6-1049

Abstract:

This paper investigates finite-time tracking control problem of multiple nonholonomic mobile robots in dynamic model with external disturbances, where a kind of finite-time disturbance observer (FTDO) is introduced to estimate the external disturbances for each mobile robot. First of all, the resulting tracking error dynamic is transformed into two subsystems, i. e., a third-order subsystem and a second-order subsystem for each mobile robot. Then, the two subsystem are discussed respectively, continuous finite-time disturbance observers and finite-time tracking control laws are designed for each mobile robot. Rigorous proof shows that each mobile robot can track the desired trajectory in finite time. Simulation example illustrates the effectiveness of our method.

Keywords:

finite-time tracking control, finite-time disturbance observer, external disturbances, nonholonomic mobile robot, dynamic model

Classification:

93A14, 93D15, 93D21

References:

  1. S. Bhat and D. Bernstein: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000), 751-766.   DOI:10.1137/s0363012997321358
  2. W. Chen: Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mechatronics 9 (2004), 706-710.   DOI:10.1109/tmech.2004.839034
  3. W. Chen, D. Ballance, P. Gawthrop and J. O'Reilly: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47 (2000), 932-938.   DOI:10.1109/41.857974
  4. S. Ding, J. Wang and W. Zheng: Second-order sliding mode control for nonlinear uncertain systems bounded by positive functions. IEEE Trans. Ind. Electron. 62 (2015), 5899-5909.   DOI:10.1109/tie.2015.2448064
  5. J. Desai, J. Ostrowski and V. Kumar: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Automat. Control 17 (2001), 905-908.   DOI:10.1109/70.976023
  6. W. Dong: Robust formation control of multiple wheeled mobile robots. J. Intel. Robot. Syst.: Theory and Appl. 62 (2011), 547-565.   DOI:10.1007/s10846-010-9451-6
  7. W. Dong and J. Farrell: Cooperative control of multiple nonholonomic mobile agents. IEEE Trans. Automat. Control {\mi 53} (2008), 1434-1448.   DOI:10.1109/tac.2008.925852
  8. W. Dong and J. Farrell: Decentralized cooperative control of multiple nonholonomic dynamic systems with uncertainty. Automatica 45 (2009), 706-710.   DOI:10.1016/j.automatica.2008.09.015
  9. H. Du, Y. He and Y. Cheng: Finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems. Kybernetika 49 (2013), 507-523.   CrossRef
  10. L. Guo and W. Chen: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlin. Control 15 (2005), 109-125.   DOI:10.1002/rnc.978
  11. G. Hardy, J. Littlewood and G. Polya: Inequalities. Cambridge University Press, Cambridge 1952.   CrossRef
  12. M. Ou, H. Du and S. Li: Finite-time formation control of multiple nonholonomic mobile robots. Int. J. Robust Nonlin. Control 24 (2014), 140-165.   CrossRef
  13. Z. Jiang and H. Nijmeijer: Tracking control of mobile robots: a case study in backstepping. Automatica 33 (1997), 1393-1399.   CrossRef
  14. E. Justh and P. Krishnaprasad: Equilibrium and steering laws for planar formations. Syst. Control Lett. 52 (2004), 25-38.   DOI:10.1016/j.sysconle.2003.10.004
  15. S. Li, H. Du and X. Lin: Finite time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47 (2011), 1706-1712.   CrossRef
  16. Z. Lin, B. Francis and M. Maggiore: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Automat. Control 50 (2005), 121-127.   DOI:10.1109/tac.2004.841121
  17. A. Jadbabaie, J. Lin and A. Morse: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Control 48 (2003), 988-1001.   DOI:10.1109/tac.2003.812781
  18. Y. Kanayama, Y. Kimura, F. Miyazaki and T. Noguchi: A stable tracking control method for an autonomous mobile robot. In: Proc. IEEE Int. Conf. Rob. Autom. (1990), pp. 384-389.   CrossRef
  19. A. Levant: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76 (2003), 924-941.   CrossRef
  20. S. Li, S. Ding and Q. Li: Global set stabilisation of the spacecraft attitude using finite-time control technique. Int. J. Control 82 (2009), 822-836.   CrossRef
  21. R. Murray: Recent research in cooperative control of multivehicle systems. ASME J. Dyn. Syst. Meas. Control 129 (2007), 571-583.   DOI:10.1115/1.2766721
  22. W. Ni, X. Wang and C. Xiong: Leader-following consensus of multiple linear systems under switching topologies: an averaging method. Kybernetika 48 (2012), 1194-1210.   CrossRef
  23. M. Ou, H. Du and S. Li: Finite-time tracking control of multiple nonholonomic mobile robots. J. Franklin Inst. {\mi49} (2012), 2834-2860.   CrossRef
  24. M. Ou, S. Li and C. Wang: Finite-time tracking control for a nonholonomic mobile robot based on visual servoing. Asian J. Control 16 (2014), 679-691.   CrossRef
  25. M. Ou, H. Sun and S. Li: Finite time tracking control of a nonholonomic mobile robot with external disturbances. In: Proc. 31th Chinese Control Conference, Hefei 2012, pp. 853-858.   CrossRef
  26. W. Ren and R. Beard: Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Trans. Automat. Control 50 (2005), 655-661.   DOI:10.1109/tac.2005.846556
  27. R. Saber and R. Murray: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520-1533.   DOI:10.1109/tac.2004.834113
  28. Y. Shtessel, I. Shkolnikov and A. Levant: Smooth second-order sliding modes: missile guidance application. Automatica 43 (2007), 1470-1476.   CrossRef
  29. T. Vicsek, A. Czirok, E. Jacob, I. Cohen and O. Schochet: Novel type of phase transitions in a system of self-driven particles. Phys. Rev. Lett. 75 (1995), 1226-1229.   DOI:10.1103/physrevlett.75.1226
  30. J. Wang, Z. Qiu and G. Zhang: Finite-time consensus problem for multiple non-holonomic mobile agents. Kybernetika 48 (2012),1180-1193.   CrossRef
  31. Y. Wu, B. Wang and G. Zong: Finite time tracking controller design for nonholonomic systems with extended chained form. IEEE Trans. Circuits Sys. II: Express Briefs 52 (2005), 798-802.   CrossRef
  32. J. Yang, S. Li, X. Chen and Q. Li: Disturbance rejection of ball mill grinding circuits using DOB and MPC. Powder Technol. 198 (2010), 219-228.   DOI:10.1016/j.powtec.2009.11.010
  33. S. Yu and X. Long: Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. Automatica 54 (2015), 158-165.   DOI:10.1016/j.automatica.2015.02.001