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A NEW LMI-BASED ROBUST FINITE-TIME SLIDING
MODE CONTROL STRATEGY FOR A CLASS
OF UNCERTAIN NONLINEAR SYSTEMS

Saleh Mobayen and Fairouz Tchier

This paper presents a novel sliding mode controller for a class of uncertain nonlinear sys-
tems. Based on Lyapunov stability theorem and linear matrix inequality technique, a sufficient
condition is derived to guarantee the global asymptotical stability of the error dynamics and
a linear sliding surface is existed depending on state errors. A new reaching control law is
designed to satisfy the presence of the sliding mode around the linear surface in the finite time,
and its parameters are obtained in the form of LMI. This proposed method is utilized to achieve
a controller capable of drawing the states onto the switching surface and sustain the switching
motion. The advantage of the suggested technique is that the control scheme is independent of
the order of systems model and then, it is fairly simple. Therefore, there is no complexity in
the utilization of this scheme. Simulation results are provided to illustrate the effectiveness of
the proposed scheme.
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1. INTRODUCTION

The practical control systems contain nonlinear and time-varying behavior with var-
ious uncertainties and external disturbances due to the linearization approximations,
modeling errors and measurement errors that can make the performance differ from the
nominal design [22, 23, 26, 28]. Therefore, control of such systems has attracted great
research interest in the past decades [24]. Over the past years, many researchers have
considered the problem of stabilizing the nonlinear systems using the state feedback
control method [6, 21, 32]. Many stabilization and tracking approaches for uncertain
nonlinear systems such as state-feedback control, output-feedback control, fuzzy con-
trollers, linear matrix inequality (LMI) and H∞ control are sensitive to uncertainties
and disturbances [8]. Various control techniques have been suggested to stabilize this
class of dynamical systems via several discontinuous controllers based on hybrid control,
sliding mode control (SMC), and some time-varying approaches [10].
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SMC as an efficient and robust control methodology is magnificently employed for
the stabilization and control of various linear and nonlinear structures such as underwa-
ter vehicles, robotic manipulators, aircraft, spacecraft, electrical motors, flexible space
structures, and power network systems [33]. The major specifications of SMC control
systems are the robustness in contrast to uncertainties, insensitivity to the bounded per-
turbations, fast response, reasonable transient performance, controller straightforward
implementation, considerable computational facility, and the possibility of the stabiliza-
tion control of some complex and nonlinear schemes which are difficult to be stabilized
via continuous state-feedback control methods [17]. The process of this method is sep-
arated into two phases, specifically, the sliding phase and the reaching phase [24, 33].
In the first stage, a sliding (switching) surface is described which should have the prop-
erty wherein the preferred performance can be achieved so that the states stay on the
switching surface. In the subsequent stage, an appropriate control law is planned such
that forces the states of the system to reach the switching surface in the finite time [4].
Because of the impact of switching surface on the stability and transient performance of
the system, the design procedure of the switching surface is one of the chief subjects in
SMC [24]. Typically, it is designed as a linear sliding surface. The stability of the sliding
behavior is assured by assigning the parameters of the linear surface and is analyzed by
creating an appropriate Lyapunov functional [11]. LMI has appeared as an influential
computational tool in solving of the control problems due to its computational flexibility
and efficiency and to treat with a large category of design problems. It helps to solve
some minimization convex problems, for instance, H∞ control [3], H2 control [34] and
guaranteed cost control [20]. An LMI procedure is a semi-definite inequality which is a
linear relation in unknown variables. Due to the latest advancements in convex optimiza-
tion, particular efficient algorithms exist for solving LMIs and remarkable developments
have been applied in the linear control theory to solve the optimal problems with multi-
ple constraints via LMIs [12]. The main goal of the multi-objective approach is to seek
a common Lyapunov matrix that fulfills the parametric constraints determined by the
design performances [1]. The common variables estimation may cause the conservatism;
however, the flexibility of the control design with multiple objectives and the simplicity
of synthesis in the parameter space are provided by LMIs [9, 13].

Many techniques such as pole-placement, H∞ control, mixed H2/H∞ optimization,
eigen-structure assignment and optimal quadratic methods have been proposed for the
design of the sliding surfaces. In [19], an H∞ disturbance attenuation-based SMC
method is considered for the nonlinear stochastic systems with disturbance-dependent
noises such that the controlled system is asymptotically stable in probability with a pre-
scribed H∞ performance. In [31], a sliding mode H∞ controller for offshore steel jacket
platform with nonlinear self-excited wave forces and external disturbances is designed to
decrease the amplitudes of oscillation of the offshore platform. In [29], by intentionally
introducing an appropriate time-delay into the control channel, a novel SMC-based ac-
tive control for an offshore steel jacket platform with wave-induced force and parametric
perturbations is proposed. In [30], the combination of SMC with H∞ control and re-
gional pole-placement technique is exploited for a fluid power electrohydraulic actuator
system with load disturbance and external noise to derive the optimal feedback gain
which is calculated in the form of LMIs. In [7], the linear-quadratic SMC technique
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for the remote plant control in networked environment with information transfer delay
is addressed. In [27], the SMC surface design is concerned with multi-objective mixed
H2/H∞ optimization for the perturbed nonlinear systems in the existence of matched
and unmatched uncertainties and disturbances. In [14], the asymptotic boundedness of
the state errors using SMC technique for a class of chaotic systems with matched and
unmatched uncertainties is proved. In [16], a terminal sliding mode design approach
using composite nonlinear feedback technique is provided to guarantee the finite-time
boundedness of the state errors during the sliding mode. In [15], a global SMC method
using nonlinear surfaces is investigated to improve the transient and steady state per-
formance of uncertain nonlinear systems and a design method is presented to assure the
exponentially convergence of the states to the origin. In this paper, an original SMC
method is presented to analyze the stability, robustness and finite-time control of a class
of uncertain and nonlinear systems. A design approach via LMI is employed to guar-
antee the asymptotically convergence of the state errors to the origin throughout the
sliding phase. Furthermore, a control law is planned that guarantees the error trajec-
tory reaches at the switching surface in a finite-time. In comparison with the previous
researches which derive the asymptotic boundedness and finite-time boundedness of the
state errors, the asymptotic convergence is investigated in this paper. Moreover, unlike
the former researches, the resultant LMI conditions have much less pre-assumed design
parameters and also, the control scheme is independent of the order of systems model.

The presentation of the paper is divided into several parts. The problem description
and some assumptions are described in Section 2. Then, the stability analysis and the
proposed design method are discussed in Section 3. Next, the simulation results on
two numerical examples are given in Section 4 and finally, conclusions are presented in
Section 5.

2. PROBLEM DESCRIPTION AND ASSUMPTIONS

Consider the uncertain nonlinear system described as:

ẋ = Ax+ (B̃ + ∆B̃)u+ f̃(x, u, t)
y = Cx (1)

where x ∈ Rn is the state vector, u ∈ R is the control input, y ∈ Rp is the output
vector and B̃, C, A are matrices with appropriate dimensions, ∆B̃ denote the time-
varying uncertainties, and f̃(x, u, t) is the uncertain nonlinear function. The following
assumptions are considered:

Assumption 1. Pair (A, B̃) is stabilizable.

Assumption 2. Pair (A,C) is observable.

Assumption 3. The nonlinear function f̃(x, u, t) and the time-varying uncertainties
∆B̃ are assumed to be bounded.
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Now, without loss of generality and considering A =
(
A11 A12

A21 A22

)
, B̃ =

(
0
B

)
,

∆B̃ =
(

0
B

)
and f̃(x, u, t) =

(
0

f(x, u, t)

)
, the system described by (1) can be trans-

formed into regular form as:

ẋ1 = A11x1 +A12x2,

ẋ2 = A21x1 +A22x2 + (B + ∆B)u+ f(x, u, t),
y = Cx, (2)

where x = [x1, x2]T , x1 ∈ Rn−1, x2 ∈ R are the states of the system and Aij(i, j = 1, 2)
are constant matrices.

The switching surface is defined as:

S(e) = Λe, (3)

where,

Λ = [F, g] (4)

and e = [e1, e2]T with:

e1 = x1 − xm1 ,

e2 = x2 − xm2 , (5)

and xm = [xTm1
, xTm2

]T is the reference trajectory, F and g are gain vector and scalar
value, respectively.

When the sliding condition is reached, (3) yields:

e2 = −g−1Fe1. (6)

The error dynamical system is attained from (2), (5) and (6) as:

ė1 = (A11 −A12g
−1F )e1 +A11xm1 +A12xm2 − ẋm1 . (7)

Assumption 4. A control law um is existed for the reference trajectory such that:

ẋm1 = A11xm1 +A12xm2 , (8)

where using (7) and (8), the closed-loop system becomes as:

ė1 = (A11 −A12g
−1F )e1. (9)
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Lemma 1. (Moulay and Peruquetti [18]) Assume that a continuous positive-definite
function V (t) satisfies the following differential inequality:

V̇ (t) ≤ −αV (t)− βV (t)η ∀t ≥ t0, V (t0) ≥ 0, (10)

where α and β are two positive coefficients, and η is a fraction of two odd positive
integers with 0 < η < 1 . Then, for the initial time t0, the Lyapunov function V (t)
approaches to the origin at least in a finite time as follows:

tr = t0 +
1

α(1− η)
ln
(αV (t0)(1−η) + β

β

)
. (11)

3. MAIN RESULTS

In the subsequent theorem, a design method via LMI is provided which guarantees the
asymptotic reachability of the state errors to zero during the sliding phase.

Theorem 1. Consider the error dynamical system (7). If there exist scalar value
g > 0, and matrices X > 0, Y and W > 0 with appropriate dimensions such that the
subsequent LMI is fulfilled:(

A11X −A12Y +XAT11 − Y TAT12 X
X −W

)
< 0,

then using P = X−1 and F = gY X−1 in (3), the error dynamical system in (7) will be
asymptotically stable.

P r o o f . Define the Lyapunov functional for system (7) as:

V1(e1) = eT1 Pe1, (12)

where P is a symmetric positive-definite matrix. By regarding the derivative of Lyapunov
function along the system trajectory (7), one yields:

V̇1(e1) = eT1 P ė1 + ėT1 Pe1,

= eT1 P (A11 −A12g
−1F )e1 + eT1 (A11 −A12g

−1F )TPe1. (13)

Now, supposing that the subsequent inequality is fulfilled:

P (A11 −A12g
−1F ) + (A11 −A12g

−1F )TP ≤ −W−1, (14)

then (13) can be simplified as:

V̇1(e1) ≤ −eT1 W−1e1 ≤ −λmin(W−1) ‖e1‖
2
, (15)

where λmin(·) signifies the minimum eigenvalue. Then, the sufficient condition for (15)
is resulted as:

V̇1(e1) ≤ −α1V1(e1), (16)
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where:

α1 =
λmin(W−1)
λmax(P )

. (17)

Considering (17), it is apparent that α1 is a positive scalar parameter. Considering
X = P−1, and pre- and post-multiplying X in (14) gives:

A11X −A12g
−1FX +XAT11 − (A12g

−1FX)T ≤ −XW−1X. (18)

Defining Y = g−1FX, and using Schur complement on (18), the resultant LMI can
be concluded. Hence, the sliding equation (7) is asymptotically stable if the LMI is
feasible. �

Remark 1. It can be easily concluded from (6) that when the sliding mode s(e) = 0
is satisfied, the term e2(t) will also converge to the region asymptotically. Therefore,
the asymptotical stability of the error dynamical system is guaranteed.

The following theorem offers a novel control law that assures the state errors arrive
at the switching surface in a finite time.

Theorem 2. Consider the uncertain nonlinear system (2). Assume that the gains and
are attained from Theorem 1. Using the control law:

u = −(gB)−1(ΛAregx− Λẋm +Qsgn(s) + γs+ σsgn(s)|s|η), (19)

with arbitrary positive coefficients σ and γ, and considering that Q is a vector which its
elements are the upper bounds of the corresponding elements of Π where Π = g(∆Bu+
f(x, u.t)), i. e., Q ≥ Πmax, then the state trajectories of the system (2) are forced to
move from the initial conditions to the switching surface (3) in the finite time and to
remain on it.

P r o o f . The positive-definite function is considered as:

V2(s) =
1
2
sT s. (20)

Differentiating V2(s) and using (3), (4) and (5) yields:

V̇2(s) = sT ṡ,

= sT (F (A11x1 +A12x2) + g(A21x1 +A22x2 + (B + ∆B)u+ f(x, u, t))
−Fẋm1 − gẋm2),

= sT (ΛAregx+ g(B + ∆B)u+ gf(x, u, t)− Λẋm). (21)

Substituting (19) in (21), one can obtain:

V̇2(s) = −sTσsgn(s)|s|η − sT γs− sTQsgn(s) + sT g(∆Bu+ f(x, u, t)). (22)
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Based on the condition Q ≥ max(Π) follows that:

V̇2(s) ≤ −λmin(γ)(‖s‖)2 − λmin(σ)(‖s‖)η+1

= −α2V2(s)− β2(V2(s))η2 , (23)

where α2 = 2λmin(γ) > 0, β2 = 2(η+1)/2λmin(σ) > 0 and η2 = (η + 1)/2 < 1. Now,
according to the Lemma 1, the system states will reach sliding surface in finite time tr
calculated as follows:

tr =
1

α2(1− η2)
ln
(α2V2(s(e(t0)))1−η2 + β2

β2

)
(24)

where V2(s(e(t0))) = 1
2s
T (e(t0))s(e(t0)) . This finalizes the proof. �

4. ROBUST PERFORMANCE ANALYSIS

For the control problems to have reasonable actions, the stability and performance pur-
poses must be fulfilled [2]. The control law (19) is designed so as to guarantee the
asymptotical stability in the Lyapunov sense and the performance measure in L2 sense
satisfying: ∫ T

0

‖s‖2 dt ≤ ς2
∫ T

0

‖Π‖2 dt (25)

for some ς > 0, T ≥ 0, and all Π ∈ L2(0, T ). To evidence the condition (25), the
subsequent inequality holds:

−(ςΠ− s)T (ςΠ− s) ≤ 0. (26)

Form (26), one can obtain:

‖s‖ − ς2‖Π‖2 ≤ 2‖s‖2 − 2ςsTΠ. (27)

Then, it follows from (23) and (27) that:∫ T

0

(‖s‖ − ς2‖Π‖2) dt ≤
∫ T

0

2(‖s‖2 − ςsTΠ) dt,

≤
∫ T

0

[
2(‖s‖2 − ςsTΠ) + V̇2

]
dt− (V2(T )− V2(0)),

≤
∫ T

0

[
2(‖s‖2 − ςsTΠ)− λmin(γ)‖s‖2 − λmin(σ)‖s‖η+1

]
dt,

≤
∫ T

0

‖s‖
[
2‖s‖+ 2ςΠ− λmin(γ)‖s‖ − λmin(σ)‖s‖η

]
dt, (28)

where Π = max(‖Π‖). To guarantee the inequality (28), one requires that the parameters
σ and γ be chosen such that satisfy the following condition:

λmin(γ) + λmin(σ)=η−1 ≥ 2
(

1 +
ς

=
Π
)

(29)

where = = max ‖s‖.
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5. SIMULATION RESULTS

In this section, the planned LMI-based robust controller is employed on two numerical
examples.

Example 1. Consider the uncertain nonlinear system described by (2) with [5]:

A11 =
(

2 0
1.75 0.25

)
, A12 =

(
1

0.8

)
, A21 =

(
−2 0

)
, A22 = 1, B = 1,

where ∆B = 0.2 sin(t) and f(x, u, t) = 0.5 sin(10x2t) . The uncertainty and nonlinear
function have the following bounds: |f(x, u, t)| ≤ 0.5, |∆B| ≤ 0.2 .

For simulation use, take Q = 5, γ = 2, σ = 1, and η = 3
5 . The sampling time is

0.01 second and the simulation run time is 10 seconds. The initial conditions are taken
as: x(0) = [1, 1, 1]T . The possible solutions of gains F and g are obtained using Matlab
LMI toolbox as: F = [10.9105, 13.2702], g = 5.4424.

Figure 1 shows the system states controlled using the control signal (20). It is shown
from this figure that the states reach zero rapidly and the offered control structure is
able to overcome the parameter uncertainties and system nonlinearities. The trajectory
of the control signal is displayed in Figure 2. We can see that the designed robust track-
ing control signal has suitable amplitude and is free of high frequency oscillations. The
trajectory of the switching surface is given in Figure 3. Evidently, the switching surface
converges to the origin rapidly.
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Fig. 1. Trajectory of the system states.
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Example 2. Consider the following fourth-order system [25]:

ẋ =


0 1 0 0

−3.4× 10−3 −2.3 3.4× 10+3 0
0 0 0 1

3.4× 10+3 0 −3.4× 10+3 −731.8

x

+




0
0
0

1.6× 10+3

+ ∆B

u+ f(x, u, t)

y = [1 0 0 0]x

which, when expressed in the form of equation (2), gives:

A11 =

 0 1 0
−3.4× 10−3 −2.3 3.4× 10+3

0 0 0


A12 =

1
0
1


A21 =

(
3.4× 10+3 0 −3.4× 10+3

)
,

A22 = −731.8, B = 1.6× 10+3,

and the parametric uncertainty and nonlinear function are given as:

∆B = [0 0 0 5 cos(3t)]T ,

f(x, u, t) = [0 0 0 (−5 cos(4πx4t)− 2(1 + sgn(t− 0.5)))]T .

The desired trajectory is xm = [0 0 0 0]T . The constant parameters are selected
as: Q = 6, γ = 3, σ = 2, and η = 3

5 . For the simulation usage, two different initial
conditions are set as: x(0) = [−25 0 − 25 0]T and x(0) = [−5 0 − 5 0]T . The
solutions of the LMI are obtained using MATLAB LMI toolbox and YALMIP solver as:
F = [4.6678 4.1576 5.4102], g = 1.0613.

Figure 4 shows the trajectories of the output responses for different values of ini-
tial states. From Figure 4, although the nominal system has the uncertain term and
nonlinear function, our proposed control law can successfully restrain the effects of un-
certainties and nonlinearities sand obtain good performance. The time trajectories of
the control signal and sliding surface are shown in Figures 5 and 6. Obviously, the sliding
motion trends to the origin in finite time in spite of uncertainties. Due to the discontin-
uous part of the control law, a slight chattering exists in SMC. The simulation results
indicate the feasibility and the effectiveness of the proposed method for the uncertain
nonlinear control system.
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6. CONCLUSIONS

In this paper, a novel SMC technique is employed to control a class of uncertain and non-
linear systems. The design coefficients of the offered SMC can be specified by sufficient
conditions via LMI. The resultant LMI is relatively straightforward in the computational
aspect. The reaching law is suggested to guarantee the presence of the sliding behavior
around the sliding surface. The stability action of the system can be proved and the
system errors are asymptotically stable. It is demonstrated that this simple controller
suffices to asymptotically stabilize the system to the origin. Simulations demonstrate



1046 S. MOBAYEN AND F. TCHIER

0 1 2 3 4 5 6 7 8 9 10
−300

−250

−200

−150

−100

−50

0

50

100

150

Time(sec)

Sl
id

in
g 

Su
rfa

ce

 

 
x

1
(0)=x

3
(0)=−25

x
1
(0)=x

3
(0)=−5

Fig. 6. Trajectory of the sliding surface.

that the planned control law has strong robustness and good control effect and achieves
favorable performance for the control of uncertain nonlinear systems. Therefore, via
LMI optimization, one can easily solve the robust finite-time sliding mode control de-
sign problem for several control systems which cannot be easily solved using the previous
approaches.
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