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NECESSARY CONDITIONS FOR VECTOR OPTIMIZATION
IN INFINITE DIMENSION

MARIE DVORSKA AND KAREL PASTOR

In the paper we present second-order necessary conditions for constrained vector optimiza-
tion problems in infinite-dimensional spaces. In this way we generalize some corresponding
results obtained earlier.
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1. INTRODUCTION

The research of second-order optimality conditions is very important from both theo-
retical and practical point of view. Let us recall the following monographs containing
a lot of information on generalized second-order derivatives and their applications in
optimization: [25] 311 [35].

In this paper, we will study a certain vector constrained optimization problem. Let
X,Y., Z be normed linear spaces, f: X — Y, g: X — Z be functions, and let C C Y and
K C Z be closed convex pointed cones with int C' # () and int K # (). For the definitions
and properties of such cones, see e.g. [23] [34] [35].

We will consider the problem

min f(z), subject to g(z) € — K. (1)

A feasible point xg (i.e. g(xg) € —K) is said to be a local weakly efficient point of
problem if there exists a neighbourhood U of z( such that

(f(UNg (=K)) = f(zo)) N (-t C) = 0.

The problem was studied e.g. in [I6] 7, 18 19, 20, 26, 27, B2]. The obtained
results were surpassed in 2011, when I. Ginchev [I4] and D. Bednafik with K. Pastor
[8] published indepedently the following equivalent result (Theorem [1.1)). We recall that
the equivalence was shown in [I1].

We will need some next notions around problem to remind Theorem
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First, for a cone C' C X, we define
C*={c" e X*;(c",¢) >0, Vce(C}

and by Sx+ we denote the unit sphere in X*, i.e. the set {a* € X*;||z*| = 1}.

Further, we recall that a function f: X — Y, where X and Y are normed linear
spaces, is strictly differentiable at x € X if it has Fréchet derivative f'(x) € L(X,Y) at
2 such that it holds

. 1 / _
yilﬁlo S 15 (f(y +th) = f(y)) = f'(2)h] = 0.

Supposing that a function f: X — Y is Fréchet differentiable at x € X, we define
the second-order Hadamard directional derivative Dof(x;u) of f at x in the direction
u € X in the following way:

Jfx+tv) — f(x) —tf (z)u
2/2
- {y €Y: I(tn,un) — (0%,u),

o at tau) — ()t f ()
y=lm 2 /2 b

Dsf(z;u) = Limsupy g

Finally, for problem we denote

K(g(x0)) = {v(2 + g(x0)) : v 2 0,2 € K}.

Theorem 1.1. Let f: R™ — R™ and g: R™ — RP be strictly differentiable at xq € R™.
If ¢ is a local weakly efficient point of problem , then

(i) there exists (¢*, k*) € ((C* x K(g(x0))*) \ {(0,0)}) such that

c* o f(xg) +k*og'(x9) =0 (2)

(i) for u € R™if (f, g)'(zo)u € —(C x K(g(xo)) \ int(C x K(g(x0)))), then for every
(Y0, 20) € Da(f, 9)(wo;u) there exists (c*, k) € ((C* x K(g(x0))") \ {(0,0)}) such
that is true and

(c*,90) + (K", 2z0) > 0. (3)

2. (-STABILITY

In some previous papers, the second-order optimality conditions were stated for C!
functions, see e.g. [2, 9} 10} 16, 17, 19, 20} 21} 22] and references therein. We recall that
a CY! function is a function which is differentiable with a locally Lipschitz derivative.
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In 2007, the concept of ¢—stability was introduced to diminish the C!'! property
in solving some second-order scalar optimization problems [3]. A function f: X — R,
where X is a normed linear space, is £—stable at x € X if there exist a neighborhood U
of x and a K > 0 such that

|f(ysh) — fY(x;h)| < K|y — 2|, Yy €U, Vh e Sx,
where

fy+th) — fly)
t

/ . T .
f(y;h) = hr?l(ljnf

The properties of {—stable at some point functions were studied e. g. in [1} 4 5} [6] [7],
8, [T, 12, 14, 151 28], 291 [30] for both scalar and vector functions. Among the others, the
sufficient second-order optimality condition for problem was stated indepedently in
[14] and [] in terms of ¢—stable at some point functions.

Now, we recall the definition of ¢—stability for vector functions possibly for infinite
dimension. We say that a function f: X — Y, where X and Y are normed linear spaces,
is £-stable at x € X provided that there are a neighborhood ¢/ of x and a constant K > 0
such that

[f (s h) () = fo(h) (9)] < Klly — ],

for every y € U, for every h € Sx and for every v € Sy«.
The symbol f*(z;h)(y) denotes the lower Dini directional derivative of f at x in the
direction h € X with respect to the linear functional v € Y*. It is defined by the formula:

. v f@+ th) — f(2))
Fi@h) () = lim inf p .

Of course, f(z;h) = f*(z; h)(1) for scalar functions.

3. INFINITE DIMENSION

The following differentiable property of /—stable at a point functions was obtained in
[33} Theorem 3.1], consult also [12].

Theorem 3.1. Let X be a normed linear space, Y a Banach space, and f: X — Y be
a continuous function near x € X. If f is an ¢-stable function at x, then f is strictly
differentiable at x.

In the sequel, we will need a certain mean value theorem.

Lemma 3.2. (Pastor [33, Lemma 3.2]) Let X and Y be normed linear spaces, f: X —
Y be a continuous function, v € Y* and let a,b € X. Then there are points 1, &2 € (a,b)
such that

FA&b—a)(v) < (v, f(b) — f(a)) < f(&sb—a)(y).
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The following lemma generalizes the analogous result from [7, Lemma 6], where we
supposed that X was a finite-dimensional space and that Y was a Banach space having
the Radon-Nikodym property.

Lemma 3.3. Let X be a normed linear space, Y a Banach space, and f: X — Y bea
continuous function near x € X. If f is an /—stable function at x, then there exists an
a > 0 such that

YR >036>0Vu,we X :|ul] <R,|w|| <R,V e (0,0):

2
t

2 (Pt tu) — F(@) — ' (@) — 2 (F e+ tw) — f(x) — tf’(x)w)H
< a(llul + ]} — w]. (4)

-

Proof. Note that by Theorem f is strictly differentiable at x. Suppose that U
denotes a neighborhood of x on which f is continuous and a constant K > 0 is such that

|FE s h) (&) — fiash)(€)| < Klly — ||, Vy €U, Vh € Sx,VE € Sy-.

Let us consider an auxiliary function g: X — Y defined by g(z):= f(2)— f'(x)z,z€ X.

There is an n > 0 such that B(z,n) C U. Further, we fix R > 0 and consider ¢ > 0
such that R < n. Then for arbitrary v € X and w € X satisfying ||u| < R, |w| < R,
and for every ¢ € (0,0) we have x + tu € B(z,n), v + tw € B(z,n). We fix u,w with
the previous properties. Then for certain y; € (z + tu, x + tw), & € Sy, it holds due to
Lemma the Hahn—Banach theorem and /—stability:

IIt%(f(ﬂc + tu) — f(z) —tf'(z)u) — z(f(a: +tw) — f(z) — tf (z)w)|
= gl + tu) — gla + )] = 216 gl + 1) — gle+ tw)]
2 gt s — w) )| = 21 (s — w)(€0) — (. () u— )

2
7Ky — allllu = wl.

IN

IN

Since for some g € (0,1) we have y, = p(x +tu)+ (1 —p)(z+tw), then we can derive:

(@ + tu) + (1 — p)(z + tw) — z||
= tlpu+ (1 - pw|

t(pllull + (1 = p)flwl])

t(flwll + flwl).

llye — =l

IN A

Now, letting o := 2K > 0 we get our inequality . O
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Theorem 3.4. Let X be a normed linear space, Y, Z be Banach spaces, f: X — Y,
g: X — Z be continuous functions near x € X which are /-stable at . Let = be a local
weakly efficient point for problem (1). Then the following two conditions are satisfied
for each u € Sx:

(1) (fv g)’(x)u ¢ _int(c x K)7
(ii) if (f,9)'(z)u € —((C x K)\int(C x K)), then for all (y, z) € Da(f, g)(z; ) it holds
convi{ (y, 2), Tm(f, g)' (&)} 1 (~ int(C x K)) = 0.

Proof. In order to prove (i) fix u € X arbitrarily. Suppose that z € X is a local
weakly efficient point for problem (1) and ¢’(z)u € —int K. Then there exists a sequence
{z +tpu}{> C X, t; | 0, such that

(9(z + tpu) — g(z))/ty € —int K
glx +tru) €g(z) —int K ¢ —K — K = —K.
Hence, every point = + tpu, k € N, is feasible and we obtain
fla +tyw) — f(2) ¢ —int C

(f(z + tpu) = f(2))/tr & —int C

for all k large enough. Now letting k — +o00 we get that f/(x)u ¢ —int C. Note that
Theorem [3.1| guarantees the existence of f’(x) and ¢’ ().

In order to prove the second condition we will assume on the contrary that there
is au € Sy such that (f,g9) (x)u € —((C x K) \ int(C x K)), and for some (y,z) €
Dy (f,g)(x;u) it holds:

conv{(y, z),Im(f,g)"(x)} N (= int(C x K)) # 0.
In other words, there exist a A € [0,1] and a w € X so that
(1= XN)(y, 2)(w) + A(f, 9) (x)w € —int(C x K). (5)

Since (—int(C x K)) is open, the above formula gives the existence of an € > 0 such
that
(1 =N (y, 2)(u) + A(f,9) (z)w € —int(C x K), VA€ (A—g,A+e).

Thus, we can suppose, without loss of generality, that A € (0,1) in formula .
Let sequences {tx 132, tx | 0, and {ur}p2 |, up — u satisfy

{2/ (f (@ + truy) — fl2) — tif' (2)u)} —y

{2/t (g(x + trur) — g(x) — trg' (2)u)} — 2
as k — 4+oo. We put

Vg = Uk + {thw/Q(l — X)}
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Observe that vy — u as k — 400, and w = (2(1 — X)(vx — ux))/(Atx). We claim that
(2/t2)(g(z + tyvr) — g(z + tpux)) — Ag'(z)w/(1 — X) as k — +oo. Indeed, by the
Hahn—Banach Theorem, Lemma|3.2] and the definition of {—stability, there are {; € Sz,

Yk € (@ + trpug, © + tgvg) and L > 0 such that for almost all k € N it holds

12/82) (g(a + trvr) — gl + trux)) — Ag'(@)w/(1 = N)|
(€, (2/t7)(9( + tyor) — gl + tyuy)) — Mg’ (@)w/(1 = X))

< X (yr;w)(€)/(1 = X) = Ag (3 w) () /(1 = A)
< LAlye = z([[[w]l/(L =) — 0 as k — +oo.
Since
Jim (2/60)(9(@ + tevw) — 9(2) — tg (@)u)
= Jim (2/60)(9(x + teur) = 9(2) = thg (@)u)
+ kErfm(Q/ti)(g(x +tpvr) — g(x + trur)) = 2 + Mg’ (2)w/(1 = X) € —int K
we derive

g(z +trvg) € g(x) + thg' () u —int K € —K — K —int K C —int K

for almost all £ € N.
Hence, every point x + tvy is feasible if k is large enough. We can proceed analogously

for f — we get
flx+tpvr) — f(z) €t f (x)u —int C € —C —int C C —int C

for almost all k£ € N, a contradiction. O

Theorem 3.5. Let X be a normed linear space, Y, Z be Banach spaces, f: X — Y and
g: X — Z be continuous functions near x € X which are ¢/-stable at . If z is a local
weakly efficient point of problem , then

(i) there exists a (¢*, k*) € ((C* x K*)\ {(0,0)}) such that
¢ o f'(wo) + k" o g'(0) =0 (6)
(ii) for any uw € X, if (f,9)'(z)u € —((C x K) \ int(C x K)), then for every (yo, 20) €
Ds(f,g)(x;u) there exists a (c*,k*) € ((C* x K*)\ {(0,0)}) such that (6) is true

and
(c*,y0) + (K", z0) > 0. (7)
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Proof.

(i) By Theorem (i) and the separation theorem (see e.g. [I3| Corollary 2.13])
there are (¢*,k*) € (Y* x Z*)\ {(0,0)}) and « € R such that for every u € X
and for every (c,k) € —(C x K) we have

(€, f'(@)u) + (K, ¢ (z)u) = o, (8)

(c*,e) + (k" k) < a. (9)

Since (f,g)'(z)X and C x K are cones, it holds « = 0. Then, the inequality
becomes the equality @ Setting k£ = 0 in @[), we obtain ¢* € C*, and setting
c=0in @D, we obtain k* € K*.

(ii) Using Theorem[3.4](ii) and the separation theorem, one has (8], (), and in addition
<C*7y0> + <k*7ZO> > a.
Similarly as in (i), « =0, ¢* € C*, k* € K*, and thus formulas @ and @ hold.

O

4. COMPARISON OF THEOREMS

Remark 4.1. Comparing Theorem and Theorem [3.5] we can say that in finite—
dimensional setting the optimality condition from Theorem is tighter in general.
Indeed, for an arbitrary zp € K we can write

z0 = 1(20 — g(z0) + g(z0)),

and because g(zg) € —K and K is a cone, we have zg — g(x9) € K. Therefore 2y €
K(g(x0)), and thus K C K(g(zo)). Then K (g(z¢))* C K*.

Now, it is an open question whether or not we can replace K* by K(g(z¢))* in
Theorem 3.5

Remark 4.2. Further, in finite-dimensional setting, Theorem requires only strict
differentiability at the considered point. Having in mind Theorem [3.1} it is another
open question whether or not we can replace ¢—stability by strict differentiability in
Theorem [3.5

On the other hand, Theorem can help to find a local weakly efficient point of
problem (1) in infinite dimension in contrast to Theorem We will demonstrate this
fact by the following example which was inspired by Example 1 in [7].
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Example 4.3. Consider the sequence a,, = 1/n, n =1,2,... Then

2

.a +a 1
lim =22 % _ = 5.
n%ooa,rH»l—‘,—an 2

Let us define a function ¢: [0, +00) — R as follows.

ai, if u>aq,
27 n M
o(u) = %(u —ant1) + Gny1, if u € (ant1,an),
0, if u=0.

Next, we will define a function f: R — R via the Riemann integral:

||
r(x) = /0 p(u)du, zeR.

YA
ay +
as r
BTN
wn\\\;\;\g _ .
0 a3 a2 aq 7

Fig. 1. Function ¢.

It is easy to see r is not of class C*! on any neighborhood of z = 0. Furthermore
7’(0) = 0, r is £-stable at z = 0, and lim inf, o r(¢)/(2/t?) > ¢ for some € > 0 (for details
see [BP2, Example 2]). By definition of ¢, we can show that for any x > 0, we have
r(x) < 22/2. Now we consider a function f: R — £y defined as follows

7(t) = {“”}m e by,

n
2 n=1
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where o = {{a,},25 : 327 |an|? < 400} with the norm

400
{an}l = | D lanl*.
n=1

It is well known that ({2, || - ||) is a Banach space and that ¢5 = ¢5. We will define

“+o0
:{x_{xn} ety Z(jg)n>§||{xn}n}.

n=1

Then

n=1

+oo
C* = {a ={an}i> €ly: Zanxn >0, Vo= {z,} € C} )

We note that the considered cone C' is a special case of a more general type of cones
satisfying int C' # () and int C* # (), for details see [24].
For any ¢t € R and § = {an},/2] € S¢; we have:

. A f(tEs) = f(1))
fe(t,il)(f) = hr;lllonf

S

e VP fr) +<>o>
= liminf <§,{ - }":1 {2" }n:1

s|0 S

+
C hminf LS, [rEES) (@)
sl0 s "

r(t£s)—r(t) = an ’ = an,
D=9 7N Ol 41) S 22
Z on r ( ’ ) on

n=1 n=1

= liminf
s|0 S

From the properties of r we deduce that f/(0) = 0 and that f is {-stable at t = 0. It
can be easily shown that it holds

Daf(0:1) = Daf(0,-1) € {{y}i5 € a9 > o Vm €N
Further, we define g: R — R : ¢g(¢) = ¢, and
K ={s;s >0} =K".
We have ¢'(0) = 1, Dag(0;1) = D2g(0,—1) = {0}.

Now, we can see that Theorem [3.5] admits for 0 to be a local weakly efficient point.
Indeed, condition (i) of Theorem [3.5]is satisfied if we take

¢ = {(\/g)}ﬂj K =0,
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Condition (ii) from Theorem [3.5|is also satisfied for the previous choice of ¢* and k*,
because

—+oo —+oo
* * * Yn € €
¢ yo) + (K", 20) = (¢ yo) = ) > = >0
< y0> < 0> < y0> — (\/i)n —~ (2%)71 QQ -1

for every yo € Do f(0;1) = Do f(0,—1) and 2z = 0.
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